Comparative Study of Pinus radiata Plant Production Methods: Classical Seed Germination vs. Somatic Embryogenesis, from Operative to Biochemical Approaches
Abstract
1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Traditional Germination
2.3. SE Process
2.4. Biochemical Analysis: Somatic vs. Zygotic Embryos
2.4.1. Total Protein Analysis
2.4.2. Soluble Carbohydrates and Starch Estimation
2.5. Statistical Analyses
3. Results
Biochemical Analysis: Somatic vs. Zygotic Embryos
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. The State of World’s Forests. 2024. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/768ba59e-c692-47c3-9a13-3c3c10993396/content/cd1211en.html#gsc.tab=0 (accessed on 24 February 2025).
- Fenning, T.M.; Gershenzon, J. Where will the Wood come from? Plantation forests and role of biotechnology. Trends Biotechnol. 2002, 20, 291–296. [Google Scholar] [CrossRef]
- Fenning, T. The use of tissue culture and in-vitro approaches for the study of tree diseases. Plant Cell Tissue Organ Cult. 2019, 136, 415–430. [Google Scholar] [CrossRef]
- Brockerhoff, E.G.; Gresham, B.A.; Meurisse, N.; Nahrung, H.F.; Perret-Gentil, A.; Pugh, A.R.; Sopow, S.L.; Turner, R.M. Pining away and at home: Global utilisation of Pinus radiata by native and non-native insects. NeoBiota 2023, 84, 137–167. [Google Scholar] [CrossRef]
- El Bosque Vasco en Cifras. Informe de HAZI Fundazioa Sobre el Inventario Forestal del País Vasco. 2022. Available online: http://www.nasdap.net/inventarioforestal (accessed on 24 February 2025).
- Mesanza, N.; García-García, D.; Raposo, E.R.; Raposo, R.; Iturbide, M.; Pascual, M.T.; Barrena, I.; Urkola, A.; Berano, N.; Sáez de Zerain, A.; et al. Weather variables associated with spore dispersal of Lecanosticta acicola causing pine needle blight in northern Spain. Plants 2021, 10, 2788. [Google Scholar] [CrossRef]
- Park, Y.S.; Barrett, J.D.; Bonga, J.M. Application of somatic embryogenesis in high-value clonal forestry: Deployment, genetic control, and stability of cryopreserved clones. Vitr. Cell Dev. Biol. Plant 1998, 34, 231–239. [Google Scholar] [CrossRef]
- Vidal, N.; Sánchez, C. Use of bioreactor systems in the propagation of forest trees. Eng. Life Sci. 2019, 19, 896–915. [Google Scholar] [CrossRef]
- Nielsen, U.B.; Hansen, C.B.; Hansen, U.; Johansen, V.K.; Egertsdotter, U. Accumulated effects of factors determining plant development from somatic embryos of Abies nordmanniana and Abies bornmuelleriana. Front. Plant Sci. 2022, 13, 989484. [Google Scholar] [CrossRef]
- Pavese, V.; Moglia, A.; Abbà, S.; Milani, A.; Torello Marinoni, D.; Corredoira, E.; Martínez, M.; Botta, R. First report on genome editing via ribonucleoprotein (RNP) in Castanea sativa Mill. Int. J. Mol. Sci. 2022, 23, 5762. [Google Scholar] [CrossRef]
- Bonga, J.M. A comparative evaluation of the application of somatic embryogenesis, rooting of cuttings, and organogenesis of conifers. Can. J. For. Res. 2015, 45, 379–383. [Google Scholar] [CrossRef]
- Park, Y.-S.; Beaulieu, J.; Bousquet, J. Multi-varietal forestry integrating genomic selection and somatic embryogenesis. In Vegetative Propagation of Forest Trees; Park, Y.-S., Bonga, J.M., Moon, H.-K., Eds.; National Institute of Forest Science: Seoul, Republic of Korea, 2016; pp. 302–322. [Google Scholar]
- Chamberland, V.; Robichaud, F.; Perron, M.; Gélinas, N.; Bousquet, J.; Beaulieu, J. Conventional versus genomic selection for white spruce improvement: A comparison of costs and benefits of plantations on Quebec public lands. Tree Genet. Genomes 2020, 16, 17. [Google Scholar] [CrossRef]
- Trontin, J.-F.; Klimaszewska, K.; Morel, A.; Hargreaves, C.; Lelu-Walter, M.-A. Molecular aspects of conifer zygotic and somatic embryo development: A review of genome-wide approaches and recent insights. In In Vitro Embryogenesis in Higher Plants; Germana, M.A., Lambardi, M., Eds.; Springer: New York, NY, USA, 2016; pp. 167–207. [Google Scholar]
- Stasolla, C.; Yeung, E.C. Recent advances in conifer somatic embryogenesis: Improving somatic embryo quality. Plant Cell Tissue Organ Cult. 2003, 74, 15–35. [Google Scholar] [CrossRef]
- Castander-Olarieta, A.; Montalbán, I.A.; Moncaleán, P. Multi-strategy approach towards optimization of maturation and germination in radiata pine somatic embryogenesis. Plant Cell Tissue Organ Cult. 2023, 153, 173–190. [Google Scholar] [CrossRef]
- Cooke, J.; Cooke, B.; Gifford, D. Loblolly pine seed dormancy: Constraints to germination. New For. 2002, 23, 239–256. [Google Scholar] [CrossRef]
- Barnett, L.B.; Adams, R.E.; Ramsey, J.A. The effect of stratification on in vitro protein synthesis in seeds of Pinus lambertiana. Life Sci. 1974, 14, 653–658. [Google Scholar] [CrossRef]
- Noland, T.L.; Murphy, J.B. Protein synthesis and aminopeptidase activity in dormant sugar pine seeds during stratification and warm incubation. J. Plant Physiol. 1986, 124, 1–10. [Google Scholar] [CrossRef]
- Mullen, R.T.; King, J.E.; Gifford, D.J. Changes in mRNA populations during loblolly pine (Pinus taeda L.) seed stratification, germination, and post-germinative growth. Physiol. Plant. 1996, 9, 545–553. [Google Scholar] [CrossRef]
- Einali, A.; Valizadeh, J. Storage reserve mobilization, gluconeogenesis, and oxidative pattern in dormant pistachio (Pistacia vera L.) seeds during cold stratification. Trees 2016, 31, 659–671. [Google Scholar] [CrossRef]
- Burdon, R.D. Introduced forest trees in New Zealand: Recognition, role, and seed source. Radiata pine (Pinus radiata D. Don). In Forest Research Institute Bulletin; Miller, J.T., Ed.; New Zealand Forest Research Institute Ltd.: Rotorua, New Zealand, 1992; Volume 124, pp. 1–59. [Google Scholar]
- Escobar, R.; Sanchez, M.; Pereira, G. Forest nursery management in Chile. In National Proceedings: Forest and Conservation Nursery Associations-1999, 2000, and 2001; Dumroese, R.K., Riley, L.E., Landis, T.D., Eds.; Proceedings Rocky Mountain Research Station; US Department of Agriculture Forest Service: Ogden, UT, USA, 2002; Volume 24, pp. 219–225. [Google Scholar]
- Modi, N.R.; Radadiya, B.; Ghanchi, M.H. Effect of pre-sowing chemical treatment on selected seeds: For enhancing germination. Int. J. Sci. Res. Tech. 2025, 2, 124–129. [Google Scholar]
- Barnett, J.P.; Varela, S. A review of chemical treatments to improve germination of longleaf pine seeds. Native Plants J. 2004, 5, 18–24. [Google Scholar] [CrossRef]
- Sandoval, K.P.; Castander-Olarieta, A.; Moncaleán, P.; Montalbán, I.A. Assessment of alternative freezing methods for preservation at −80 °C of radiata pine embryogenic cultures: A six-year study. Cryobiology 2025, 119, 105217. [Google Scholar] [CrossRef]
- Morel, A.; Trontin, J.F.; Corbineau, F.; Lomenech, A.M.; Beaufour, M.; Reymond, I.; Le Metté, C.; Ader, K.; Harvengt, L.; Cadene, M.; et al. Cotyledonary somatic embryos of Pinus pinaster Ait. most closely resemble fresh, maturing cotyledonary zygotic embryos: Biological, carbohydrate and proteomic analyses. Planta 2014, 240, 1075–1095. [Google Scholar] [CrossRef]
- Gautier, F.; Label, P.; Eliášová, K.; Leplé, J.C.; Motyka, V.; Boizot, N.; Vondráková, Z.; Malbeck, J.; Trávnícková, A.; Le Metté, C.; et al. Cytological, biochemical and molecular events of embryogenic state in Douglas-fir (Pseudotsuga menziesii [Mirb.]). Front. Plant Sci. 2019, 10, 118. [Google Scholar] [CrossRef]
- Lelu-Walter, M.A.; Thompson, D.; Harvengt, L.; Sanchez, L.; Toribio, M.; Pâques, L.E. Somatic embryogenesis in forestry with a focus on Europe: State-of-art, benefits, challenges and future direction. Tree Genet. Genomes 2013, 9, 883–899. [Google Scholar] [CrossRef]
- Egerstdotter, U. Plant physiological and genetical aspects of the somatic embryogenesis process in conifers. Scand. J. Forest Res. 2019, 34, 360–369. [Google Scholar] [CrossRef]
- Sun, T.; Wang, Y.; Zhu, L.; Liu, X.; Wang, Q.; Ye, J. Evaluation of somatic embryo production during embryogenic tissue proliferation stage using morphology, maternal genotype, proliferation rate and tissue age of Pinus thunbergii Parl. J. For. Res. 2022, 33, 445–454. [Google Scholar] [CrossRef]
- MacKay, J.J.; Becwar, M.R.; Park, Y.S.; Corderro, J.P.; Pullman, G.S. Genetic control of somatic embryogenesis initiation in loblolly pine and implications for breeding. Tree Genet. Genomes 2006, 2, 1–9. [Google Scholar] [CrossRef]
- Heine, A.J.; Walker, T.D.; Jett, J.B.; Isik, F.; McKeand, S.E. Pollination bag type affects ovule development and seed yields in Pinus taeda L. For. Sci. 2022, 69, 187–189. [Google Scholar] [CrossRef]
- Wu, H.X. Benefits and risks of using clones in forestry-A review. Scand. J. Forest Res. 2019, 34, 352–359. [Google Scholar] [CrossRef]
- Bishir, J.; Roberds, J. Limit theorems and a general framework for risk analysis in clonal forestry. Math. Biosci. 1997, 142, 1–11. [Google Scholar] [CrossRef]
- Burdon, R.D.; Aimers-Halliday, J. Managing risk in clonal forestry. CAB Rev. Perspect. Agric. Vet. Sci. Nutr. Nat. Resour. 2006, 1, 1–9. [Google Scholar] [CrossRef]
- McLean, D.; Apiolaza, L.; Paget, M.; Klápště, J. Simulating deployment of genetic gain in a radiata pine breeding program with genomic selection. Tree Genet. Genomes 2023, 19, 33. [Google Scholar] [CrossRef]
- Carlsson, J.; Egertsdotter, U.; Ganeteg, U.; Svennerstam, H. Nitrogen utilization during germination of somatic embryos of Norway spruce: Revealing the importance of supplied glutamine for nitrogen metabolism. Trees Struct. Funct. 2019, 33, 383–394. [Google Scholar] [CrossRef]
- Maruyama, T.E.; Hosoi, Y. Post-maturation treatment improves and synchronizes somatic embryo germination of three species of Japanese pines. Plant Cell Tissue Organ Cult. 2012, 110, 45–52. [Google Scholar] [CrossRef]
- Savane, P.; Belmokhtar, N.; Delile, A.; Boizot, N.; Ridel, C.; Lelu-Walter, M.A.; Teyssier, C. Characterization of hybrid larch somatic embryo maturation by biochemical analyses and by a novel, fast mid-infrared approach. Physiol. Plant. 2023, 175, e13966. [Google Scholar] [CrossRef]
- Lelu-Walter, M.A.; Pâques, L.E. Simplified and improved somatic embryogenesis of hybrid larches (Larix × eurolepis and Larix × marschlinsii). Perspectives for breeding. Ann. For. Sci. 2009, 66, 104. [Google Scholar] [CrossRef]
- Eliášová, K.; Konrádová, H.; Dobrev, P.I.; Motyka, V.; Lomenech, A.M.; Fischerová, L.; Lelu-Walter, M.A.; Vondráková, Z.; Teyssier, C. Desiccation as a post-maturation treatment helps complete maturation of Norway spruce somatic embryos: Carbohydrates, phytohormones and proteomic status. Front. Plant Sci. 2022, 13, 823617. [Google Scholar] [CrossRef]
- Lelu-Walter, M.A.; Bernier-Cardou, M.; Klimaszewska, K. Clonal plant production from self- and cross-pollinated seed families of Pinus sylvestris (L.) through somatic embryogenesis. Plant Cell Tissue Organ Cult. 2008, 92, 31–45. [Google Scholar] [CrossRef]
- Välimäki, S.; Teyssier, C.; Tikkinen, M.; Delile, A.; Boizot, N.; Varis, S.; Lelu-Walter, M.A.; Aronen, T. Norway spruce somatic embryogenesis benefits from proliferation of embryogenic tissues on filter discs and cold storage of cotyledonary embryos. Front. Plant Sci. 2022, 13, 1031686. [Google Scholar] [CrossRef]
- Klimaszewska, K.; Morency, F.; Jones-Overton, C.; Cooke, J. Accumulation pattern and identification of seed storage proteins in zygotic embryos of Pinus strobus and in somatic embryos from different maturation treatments. Physiol. Plant. 2004, 121, 682–690. [Google Scholar] [CrossRef]
- Businge, E.; Bygdell, J.; Wingsle, G.; Moritz, T.; Egertsdotter, U. The effect of carbohydrates and osmoticum on storage reserve accumulation and germination of Norway spruce somatic embryos. Physiol. Plant. 2013, 149, 273–285. [Google Scholar] [CrossRef]
- Brownfield, D.L.; Todd, C.D.; Stone, S.L.; Deyholos, M.K.; Gifford, D.J. Patterns of storage protein and triacylglycerol accumulation during loblolly pine somatic embryo maturation. Plant Cell Tissue Organ Cult. 2007, 88, 217–223. [Google Scholar] [CrossRef]
- Joy, R.W.; Yeung, E.C.; Kong, L.; Thorpe, T.A. Development of white spruce somatic embryos: I. storage product deposition. Vitr. Cell. Dev. Biol. Plant 1991, 27, 32–41. [Google Scholar] [CrossRef]
- Tereso, S.; Zoglauer, K.; Milhinhos, A.; Miguel, C.; Oliveira, M.M. Zygotic and somatic embryo morphogenesis in Pinus pinaster: Comparative histological and histochemical study. Tree Physiol. 2007, 27, 661–669. [Google Scholar] [CrossRef]
- Hazubska-Przybył, T.; Kalemba, E.M.; Ratajczak, E.; Bojarczuk, K. Effects of abscisic acid and an osmoticum on the maturation, starch accumulation and germination of Picea spp. somatic embryos. Acta Physiol. Plant. 2016, 38, 59. [Google Scholar] [CrossRef]
- Lipavská, H.; Svobodová, H.; Albrechtová, J.; Kumstýřová, L.; Vágner, M.; Vondráková, Z. Carbohydrate status during somatic embryo maturation in Norway spruce. Vitr. Cell. Dev. Biol. Plant 2000, 36, 260–267. [Google Scholar] [CrossRef]
- Kubes, M.; Drazna, N.; Konradova, H.; Lipavska, H. Robust carbohydrate dynamics based on sucrose resynthesis in developing Norway spruce somatic embryos at variable sugar supply. Vitr. Cell. Dev. Biol. Plant 2014, 50, 45–57. [Google Scholar] [CrossRef]
- Hudec, L.; Konrádová, H.; Hašková, A.; Lipavská, H. Norway spruce embryogenesis: Changes in carbohydrate profile, structural development and response to polyethylene glycol. Tree Physiol. 2016, 36, 548–561. [Google Scholar] [CrossRef]
- Goeten, D.; Farias-Soares, F.L.; Rogge-Renner, G.D.; Pereira, M.L.T.; Walters, C.; Silveira, V.; Santa Catarina, C.; Guerra, M.P.; Steiner, N. Carbohydrate and dehydrin-like protein profiles during Araucaria angustifolia seed development provides insights toward ex situ conservation. Trees 2023, 37, 1201–1215. [Google Scholar] [CrossRef]
- Castander-Olarieta, A.; Pereira, C.; Mendes, V.M.; Correia, S.; Manadas, B.; Canhoto, J.; Montalbán, I.A.; Moncaleán, P. Thermopriming associated proteome and sugar content responses in Pinus radiata embryogenic tissue. Plant Sci. 2022, 321, 11132. [Google Scholar] [CrossRef]
- Navarro, B.V.; Elbl, P.; De Souza, A.P.; Jardim, V.; de Oliveira, L.F.; Macedo, A.F.; dos Santos, A.L.W.; Buckeridge, M.S.; Floh, E.I.S. Carbohydrate-mediated responses during zygotic and early somatic embryogenesis in the endangered conifer, Araucaria angustifolia. PLoS ONE 2017, 12, e0180051. [Google Scholar] [CrossRef]
- Wang, L.; Ruan, Y. Regulation of cell division and expansion by sugar and auxin signaling. Front. Plant Sci. 2013, 4, 163. [Google Scholar] [CrossRef]
- Ballesteros, D.; Pritchard, H.W.; Walters, C. Dry architecture: Towards the understanding of the variation of longevity in desiccation-tolerant germplasm. Seed Sci. Res. 2020, 30, 142–155. [Google Scholar] [CrossRef]
- Pullman, G.S.; Buchanan, M. Identification and quantitative analysis of stage-specific carbohydrates in loblolly pine (Pinus taeda) zygotic embryo and female gametophyte tissues. Tree Physiol. 2008, 28, 985–996. [Google Scholar] [CrossRef]
- Konradova, H.; Grigova, M.; Lipavska, H. Cold-induced accumulation of raffinose family oligosaccharides in somatic embryos of Norway spruce (Picea abies). Vitr. Cell. Dev. Biol. Plant 2003, 39, 425–427. [Google Scholar] [CrossRef]
- Obendorf, R.L. Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Sci. Res. 1997, 7, 63–74. [Google Scholar] [CrossRef]
Sample | Collection Dates | DW (%) | Total Protein Content (mg g−1 DW) |
---|---|---|---|
Somatic embryos | 13 weeks | 18.5 ± 0.9 d | 275.5 ± 16.1 a |
15 weeks | 22.9 ± 0.8 c | 274.6 ± 18.6 a | |
17 weeks | 25.6 ± 0.6 b | 254 ± 13.2 ab | |
19 weeks | 27.2 ± 0.9 b | 241.7 ± 9.9 ab | |
Zygotic embryos | 94.2 ± 0.5 a | 190.5 ± 27.4 b |
Somatic Embryos | Zygotic Embryos | |||
---|---|---|---|---|
Carbohydrate Content (mg g−1 DW) | 15 Weeks | 17 Weeks | 19 Weeks | |
Stachyose | 0 | 0 | 0 | 47.7 ± 3.6 |
Raffinose | 0 | 0 | 0.9 ± 0.5 | 15.3 ± 1.9 |
Glucose | 21.8 ± 1.8 a | 16.2 ± 1.4 b | 12.4 ± 0.8 bc | 8.4 ± 0.7 c |
Galactose | 0 | 0 | 0.9 ± 0.5 | 11 ± 1.5 |
Fructose | 17.9 ± 0.9 a | 12.6 ± 0.6 b | 10.6 ± 0.9 b | 0.8 ± 0.03 c |
Chiro-inositol | 9.1 ± 1.1 a | 10.5 ± 1.5 a | 9.8 ± 1.3 a | 1.1 ± 0.01 b |
Myo-inositol | 8.1 ± 0.7 a | 6.4 ± 0.3 b | 5.6 ± 0.3 b | 0.9 ± 0.03 c |
Starch | 72.8 ± 4.7 a | 63.5 ± 3.8 ab | 61.4 ± 3.6 b | 1.8 ± 0.03 c |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castander-Olarieta, A.; Herrero, J.; Teyssier, C.; Moncaleán, P.; Montalbán, I.A. Comparative Study of Pinus radiata Plant Production Methods: Classical Seed Germination vs. Somatic Embryogenesis, from Operative to Biochemical Approaches. Seeds 2025, 4, 41. https://doi.org/10.3390/seeds4030041
Castander-Olarieta A, Herrero J, Teyssier C, Moncaleán P, Montalbán IA. Comparative Study of Pinus radiata Plant Production Methods: Classical Seed Germination vs. Somatic Embryogenesis, from Operative to Biochemical Approaches. Seeds. 2025; 4(3):41. https://doi.org/10.3390/seeds4030041
Chicago/Turabian StyleCastander-Olarieta, Ander, Javier Herrero, Caroline Teyssier, Paloma Moncaleán, and Itziar A. Montalbán. 2025. "Comparative Study of Pinus radiata Plant Production Methods: Classical Seed Germination vs. Somatic Embryogenesis, from Operative to Biochemical Approaches" Seeds 4, no. 3: 41. https://doi.org/10.3390/seeds4030041
APA StyleCastander-Olarieta, A., Herrero, J., Teyssier, C., Moncaleán, P., & Montalbán, I. A. (2025). Comparative Study of Pinus radiata Plant Production Methods: Classical Seed Germination vs. Somatic Embryogenesis, from Operative to Biochemical Approaches. Seeds, 4(3), 41. https://doi.org/10.3390/seeds4030041