What Bacteria Are Present in the Endosphere of Lettuce Seeds and Why?
Abstract
1. Introduction
2. Materials and Methods
2.1. Seed Preparation
2.2. DNA Extraction, Amplicon Library Preparation and Sequencing
2.3. Statistical Analysis
3. Results
Taxonomic Composition of the Endophytic Bacterial Community of Lettuce Seeds
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bintarti, A.F.; Sulesky-Grieb, A.; Stopnisek, N.; Shade, A. Endophytic Microbiome Variation Among Single Plant Seeds. Phytobiomes J. 2022, 6, 45–55. [Google Scholar] [CrossRef]
- Raheem, S.; Khan, A.L.; Saqib, B.; Sajjad, A.; Lee, I.-J. What Is There in Seeds? Vertically Transmitted Endophytic Resources for Sustainable Improvement in Plant Growth. Front. Plant Sci. 2018, 9, 24. [Google Scholar] [CrossRef]
- Acuña, J.J.; Hu, J.; Inostroza, N.G.; Valenzuela, T.; Perez, P.; Epstein, S.; Sessitsch, A.; Zhang, Q.; Jorquera, M.A. Endophytic Bacterial Communities in Ungerminated and Germinated Seeds of Commercial Vegetables. Sci. Rep. 2023, 13, 19829. [Google Scholar] [CrossRef]
- Krishnan, A.; Archna, S.; Sharma, P.; Singh, P.K.; Gond, S.; Pathak, D. Seed Endophytic Bacterial Profiling from Wheat Varieties of Contrasting Heat Sensitivity. Front. Plant Sci. 2023, 14, 1101818. [Google Scholar] [CrossRef]
- Shade, A.; Jacques, M.-A.; Barret, M. Ecological Patterns of Seed Microbiome Diversity, Transmission, and Assembly. Curr. Opin. Microbiol. 2017, 37, 15–22. [Google Scholar] [CrossRef]
- Nelson, E.B. The Seed Microbiome: Origins, Interactions, and Impacts. Plant Soil 2018, 422, 7–34. [Google Scholar] [CrossRef]
- L’Hoir, M.; Duponnois, R. Combining the Seed Endophytic Bacteria and the Back to the Future Approaches for Plant Holobiont Breeding. Front. Agron. 2021, 3, 724450. [Google Scholar] [CrossRef]
- Kim, J.; Ahn, S.-H.; Yang, J.; Choi, S.; Jung, H.W.; Jeon, J. Plant Protective and Growth Promoting Effects of Seed Endophytes in Soybean Plants. Plant Pathol. J. 2023, 39, 513–521. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, H. Assembly and Function of Seed Endophytes in Response to Environmental Stress. J. Microbiol. Biotechnol. 2023, 33, 1119–1129. [Google Scholar] [CrossRef]
- Hadian, S.; Smith, D.L.; Supronienė, S. Modulating the Plant Microbiome: Effects of Seed Inoculation with Endophytic Bacteria on Microbial Diversity and Growth Enhancement in Pea Plants. Microorganisms 2025, 13, 570. [Google Scholar] [CrossRef]
- Berg, G.; Rybakova, D.; Fischer, D.; Cernava, T.; Vergès, M.-C.C.; Charles, T.; Chen, X.; Cocolin, L.; Eversole, K.; Corral, G.H.; et al. Microbiome Definition Re-Visited: Old Concepts and New Challenges. Microbiome 2020, 8, 103. [Google Scholar] [CrossRef]
- Gollop, R.; Kroupitski, Y.; Matz, I.; Chahar, M.; Shemesh, M.; Sela Saldinger, S. Bacillus Strain BX77: A Potential Biocontrol Agent for Use against Foodborne Pathogens in Alfalfa Sprouts. Front. Plant Sci. 2024, 15, 1287184. [Google Scholar] [CrossRef]
- Reynolds, J.L. New UGA Study will Look to Lettuce Microbes for Food Safety Solutions. Available online: https://newswire.caes.uga.edu/story/8943/lettuce-microbiome.html#:~:text=By%20studying%20the%20interactions%20between,pathogen’s%20fate%20during%20produce%20processing (accessed on 25 June 2025).
- Truyens, S.; Weyens, N.; Cuypers, A.; Vangronsveld, J. Bacterial Seed Endophytes: Genera, Vertical Transmission and Interaction with Plants. Environ. Microbiol. Rep. 2014, 7, 40–50. [Google Scholar] [CrossRef]
- Wassermann, B.; Cernava, T.; Müller, H.; Berg, C.; Berg, G. Seeds of Native Alpine Plants Host Unique Microbial Communities Embedded in Cross-Kingdom Networks. Microbiome 2019, 7, 108. [Google Scholar] [CrossRef]
- Abdelfattah, A.; Wisniewski, M.; Schena, L.; Tack, A. Experimental Evidence of Microbial Inheritance in Plants and Transmission Routes from Seed to Phyllosphere and Root. Environ. Microbiol. 2021, 23, 2199–2214. [Google Scholar] [CrossRef]
- Khanal, S.; Imran, M.; Zhou, X.-G.; Antony-Babu, S. Characterization of Differences in Seed Endophytic Microbiome in Conventional and Organic Rice by Amplicon-Based Sequencing and Culturing Methods. Microbiol. Spectr. 2024, 12, e0366223. [Google Scholar] [CrossRef]
- Vimal, S.R.; Singh, J.S.; Kumar, A.; Prasad, S.M. The Plant Endomicrobiome: Structure and Strategies to Produce Stress Resilient Future Crop. Curr. Res. Microb. Sci. 2024, 6, 100236. [Google Scholar] [CrossRef]
- Liu, H.; Brettell, L.E.; Qiu, Z.; Singh, B.K. Microbiome-Mediated Stress Resistance in Plants. Trends Plant Sci. 2020, 25, 733–743. [Google Scholar] [CrossRef]
- Rybakova, D.; Mancinelli, R.; Wikström, M.; Birch-Jensen, A.-S.; Postma, J.; Ehlers, R.-U.; Goertz, S.; Berg, G. The Structure of the Brassica Napus Seed Microbiome Is Cultivar-Dependent and Affects the Interactions of Symbionts and Pathogens. Microbiome 2017, 5, 104. [Google Scholar] [CrossRef]
- Bergna, A.; Cernava, T.; Rändler-Kleine, M.; Grosch, R.; Zachow, C.; Berg, G. Tomato Seeds Preferably Transmit Plant Beneficial Endophytes. Phytobiomes 2018, 2, 183–193. [Google Scholar] [CrossRef]
- Danilova, N.; Galieva, G.; Kuryntseva, P.; Selivanovskaya, S.; Galitskaya, P. Influence of the Antibiotic Oxytetracycline on the Morphometric Characteristics and Endophytic Bacterial Community of Lettuce (Lactuca sativa L.). Microorganisms 2023, 11, 2828. [Google Scholar] [CrossRef]
- Callahan, B.J.; McMurdie, P.J.; Rosen, M.J.; Han, A.W.; Johnson, A.J.A.; Holmes, S.P. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nat. Methods 2016, 13, 581–583. [Google Scholar] [CrossRef] [PubMed]
- Doni, F.; Suhaimi, N.S.M.; Irawan, B.; Mohamed, Z.; Mispan, M.S. Associations of Pantoea with Rice Plants: As Friends or Foes? Agriculture 2021, 11, 1278. [Google Scholar] [CrossRef]
- Dutkiewicz, J.; Mackiewicz, B.; Lemieszek, M.; Golec, M.; Milanowski, J. Pantoea agglomerans: A Mysterious Bacterium of Evil and Good. Part III. Deleterious Effects: Infections of Humans, Animals and Plants. Ann. Agric. Environ. Med. 2016, 23, 197–205. [Google Scholar] [CrossRef]
- Walterson, A.; Stavrinides, J. Pantoea: Insights into a Highly Versatile and Diverse Genus within the Enterobacteriaceae. FEMS Microbiol. Rev. 2015, 39, 968–984. [Google Scholar] [CrossRef]
- Chisti, Y. Bioremediation—Keeping the Earth Clean. Biotechnol. Adv. 2005, 23, 371–372. [Google Scholar] [CrossRef]
- Alvarez, H.M.; Hernández, M.A.; Lanfranconi, M.P.; Silva, R.A.; Villalba, M.S. Rhodococcus as Biofactories for Microbial Oil Production. Molecules 2021, 26, 4871. [Google Scholar] [CrossRef]
- Olanrewaju, O.S.; Babalola, O.O. Bacterial Consortium for Improved Maize (Zea mays L.) Production. Microorganisms 2019, 7, 519. [Google Scholar] [CrossRef]
- Lin, Z.; Wang, K.; Feng, J. Identification and Analysis of VOCs Released by Rhodococcus ruber GXMZU2400 to Promote Plant Growth and Inhibit Pathogen Growth. BMC Plant Biol. 2025, 25, 559. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, X.; Li, J.; Zhang, Y.; Huang, Y.; Zhang, W.; Shi, Y.; Wang, J.; Chen, S. A Novel Quorum Quencher, Rhodococcus pyridinivorans XN-36, Is a Powerful Agent for the Biocontrol of Soft Rot Disease in Various Host Plants. Biol. Control 2022, 169, 104889. [Google Scholar] [CrossRef]
- Hardoim, P.R.; van Overbeek, L.S.; Berg, G.; Pirttilä, A.M.; Compant, S.; Campisano, A.; Döring, M.; Sessitsch, A. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiol. Mol. Biol. Rev. 2015, 79, 293–320. [Google Scholar] [CrossRef]
- Ramsey, J.S.; Johnson, R.S.; Jason, S.H.; Kruse, A.; Mahoney, J.; Hilf, M.E.; Hunter, W.B.; Hall, D.G.; Schroeder, F.C.; MacCoss, M.J.; et al. Metabolic Interplay between the Asian Citrus Psyllid and Its Profftella Symbiont: An Achilles’ Heel of the Citrus Greening Insect Vector. PLoS ONE 2015, 10, e0140826. [Google Scholar] [CrossRef] [PubMed]
- Chernogor, L.; Eliseikina, M.; Petrushin, I.; Chernogor, E.; Khanaev, I.; Belikov, S.I. Janthinobacterium Sp. Strain SLB01 as Pathogenic Bacteria for Sponge Lubomirskia Baikalensis. Pathogens 2023, 12, 8. [Google Scholar] [CrossRef] [PubMed]
- Farh, M.E.-A.; Kim, Y.-J.; Sukweenadhi, J.; Singh, P.; Yang, D.-C. Aluminium Resistant, Plant Growth Promoting Bacteria Induce Overexpression of Aluminium Stress Related Genes in Arabidopsis thaliana and Increase the Ginseng Tolerance against Aluminium Stress. Microbiol. Res. 2017, 200, 45–52. [Google Scholar] [CrossRef]
- Chowdhury, P.; Babin, D.; Sandmann, M.; Jacquiod, S.; Sommermann, L.; Sørensen, S.; Fliessbach, A.; Mäder, P.; Geistlinger, J.; Smalla, K.; et al. Effect of Long-Term Organic and Mineral Fertilization Strategies on Rhizosphere Microbiota Assemblage and Performance of Lettuce. Environ. Microbiol. 2019, 21, 2426–2439. [Google Scholar] [CrossRef]
- Hopkins, D.; Sparrow, A.D.; Gregorich, E.; Elberling, B.; Novis, P.; Fraser, F.; Scrimgeour, C.; Dennis, P.; Meier-Augenstein, W.; Greenfield, L. Isotopic Evidence for the Provenance and Turnover of Organic Carbon by Soil Microorganisms in the Antarctic Dry Valleys. Environ. Microbiol. 2009, 11, 597–608. [Google Scholar] [CrossRef] [PubMed]
- Thorwall, S.; Trivedi, V.; Ottum, E.; Wheeldon, I. Population Genomics-Guided Engineering of Phenazine Biosynthesis in Pseudomonas chlororaphis. Metab. Eng. 2023, 78, 223–234. [Google Scholar] [CrossRef]
- Claeyssen, É.; Rivoal, J. Isozymes of Plant Hexokinase: Occurrence, Properties and Functions. Phytochemistry 2007, 68, 709–731. [Google Scholar] [CrossRef]
- Sah, S.; Krishnani, S.; Singh, R. Pseudomonas Mediated Nutritional and Growth Promotional Activities for Sustainable Food Security. Curr. Res. Microb. Sci. 2021, 2, 100084. [Google Scholar] [CrossRef]
- Sanow, S.; Kuang, W.; Schaaf, G.; Huesgen, P.; Schurr, U.; Roessner, U.; Watt, M.; Arsova, B. Molecular Mechanisms of Pseudomonas-Assisted Plant Nitrogen Uptake: Opportunities for Modern Agriculture. Mol. Plant Microbe Interact. 2023, 36, 536–548. [Google Scholar] [CrossRef]
- Wang, M.; Bian, Z.; Shi, J.; Wu, Y.; Yu, X.; Yang, Y.; Ni, H.; Chen, H.; Bian, X.; Li, T.; et al. Effect of the Nitrogen-Fixing Bacterium Pseudomonas protegens CHA0-ΔretS-Nif on Garlic Growth under Different Field Conditions. Ind. Crops Prod. 2020, 145, 111982. [Google Scholar] [CrossRef]
- Cassán, F.; Vanderleyden, J.; Spaepen, S. Physiological and Agronomical Aspects of Phytohormone Production by Model Plant-Growth-Promoting Rhizobacteria (PGPR) Belonging to the Genus Azospirillum. J. Plant Growth Regul. 2014, 33, 440–459. [Google Scholar] [CrossRef]
- Sun, Y.; Ma, C.; Kang, X.; Zhang, L.; Wang, J.; Zheng, S.; Zhang, T. Hydrogen Sulfide and Nitric Oxide Are Involved in Melatonin-Induced Salt Tolerance in Cucumber. Plant Physiol. Biochem. 2021, 167, 101–112. [Google Scholar] [CrossRef]
- Matthieu, B.; Martial, B.; Sophie, B.; Anne, P.; Sophie, V.; Olivier, B.; Gilles, H.; Philippe, S.; Marie-Agnès, J. Emergence Shapes the Structure of the Seed Microbiota. Appl. Environ. Microbiol. 2015, 81, 1257–1266. [Google Scholar] [CrossRef]
- Mendoza-Hernández, J.C.; Vázquez-Delgado, O.R.; Castillo-Morales, M.; Varela-Caselis, J.L.; Santamaría-Juárez, J.D.; Olivares-Xometl, O.; Arriola Morales, J.; Pérez-Osorio, G. Phytoremediation of Mine Tailings by Brassica juncea Inoculated with Plant Growth-Promoting Bacteria. Microbiol. Res. 2019, 228, 126308. [Google Scholar] [CrossRef]
- Hale, L.; Curtis, D.; Azeem, M.; Montgomery, J.; Crowley, D.E.; McGiffen, M.E. Influence of Compost and Biochar on Soil Biological Properties under Turfgrass Supplied Deficit Irrigation. Appl. Soil Ecol. 2021, 168, 104134. [Google Scholar] [CrossRef]
- Hynes, T.M.; Mc Donnell, R.J.; Kirsch, A.; Dillon, R.J.; O’Hora, R.; Gormally, M.J. Effect of Temperature on the Larval Stage of Tetanocera elata (Diptera: Sciomyzidae)—Potential Biological Control Agent of Pestiferous Slugs. Biol. Control 2014, 74, 45–51. [Google Scholar] [CrossRef]
- Mafa, M.S.; Rufetu, E.; Alexander, O.; Kemp, G.; Mohase, L. Cell-Wall Structural Carbohydrates Reinforcements Are Part of the Defence Mechanisms of Wheat against Russian Wheat Aphid (Diuraphis noxia) Infestation. Plant Physiol. Biochem. 2022, 179, 168–178. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Zhang, H.; Shim, W. Application of Game Theory to Explore the Dynamics of Host−Pathogen Association in Phytobiomes. Phytobiomes 2018, 2, 111–116. [Google Scholar] [CrossRef]
- Fisher, K.; Phillips, C. The Ecology, Epidemiology and Virulence of Enterococcus. Microbiology 2009, 155, 1749–1757. [Google Scholar] [CrossRef]
- Jiménez, J.; Novinscak, A.; Filion, M. Pseudomonas fluorescens LBUM677 Differentially Increases Plant Biomass, Total Oil Content and Lipid Composition in Three Oilseed Crops. J. Appl. Microbiol. 2019, 128, 1119–1127. [Google Scholar] [CrossRef]
- Jaksomsak, P.; Rerkasem, B. Responses of Grain Zinc and Nitrogen Concentration to Nitrogen Fertilizer Application in Rice Varieties with High-Yielding Low-Grain Zinc and Low-Yielding High Grain Zinc Concentration. Plant Soil 2017, 411, 101–109. [Google Scholar] [CrossRef]
- Zhang, Y.-B.; Zhang, G.-F.; Liu, W.-X.; Wan, F.-H. Continuous Heat Waves Change the Life History of a Host-Feeding Parasitoid. Biol. Control 2019, 135, 57–65. [Google Scholar] [CrossRef]
- Jiang, Y.; Wen, J.; Bai, J.; Jia, X.; Hu, Z. Biodegradation of Phenol at High Initial Concentration by Alcaligenes faecalis. J. Hazard. Mater. 2007, 147, 672–676. [Google Scholar] [CrossRef] [PubMed]
- De, J.; Nagappa, R.; Vardanyan, L. Detoxification of Toxic Heavy Metals by Marine Bacteria Highly Resistant to Mercury. Mar. Biotechnol. 2008, 10, 471–477. [Google Scholar] [CrossRef]
- Sanz-Puente, I.; Redondo-Salvo, S.; Torres-Cortés, G.; de Toro, M.; Fernandes, S.; Börner, A.; Lorenzo, Ó.; de la Cruz, F.; Robledo, M. Vertical Transmission of Core Endophytes through the Seeds. bioRxiv 2025. [CrossRef]
- Frank, A.C.; Saldierna Guzmán, J.P.; Shay, J.E. Transmission of Bacterial Endophytes. Microorganisms 2017, 5, 70. [Google Scholar] [CrossRef]
- Vasileva, E.N.; Akhtemova, G.A.; Zhukov, V.A.; Tikhonovich, I.A. Endophytic Microorganisms in Fundamental Research and Agriculture. Ecol. Genet. 2019, 17, 19–32. [Google Scholar] [CrossRef]
- Kuryntseva, P.; Pronovich, N.; Galieva, G.; Galitskaya, P.; Selivanovskaya, S. Exploring the Role of Vertical and Horizontal Pathways in the Formation of Lettuce Plant Endospheric Bacterial Communities: A Comparative Study of Hydroponic and Soil Systems. Horticulturae 2025, 11, 762. [Google Scholar] [CrossRef]
- Raimi, A.; Adeleke, R. High-Throughput Sequencing Analysis of Community Diversity and Functional Structure of Endophytic Bacteria in Edible Vegetable Crops: Potential Implication on Plant Microbiological Quality. 3 Biotech 2025, 15, 216. [Google Scholar] [CrossRef]
- Compant, S.; Samad, A.; Faist, H.; Sessitsch, A. A Review on the Plant Microbiome: Ecology, Functions, and Emerging Trends in Microbial Application. J. Adv. Res. 2019, 19, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Eyre, A.W.; Wang, M.; Oh, Y.; Dean, R.A. Identification and Characterization of the Core Rice Seed Microbiome. Phytobiomes J. 2019, 3, 148–157. [Google Scholar] [CrossRef]
- Wang, M.; Eyre, A.W.; Thon, M.R.; Oh, Y.; Dean, R.A. Dynamic Changes in the Microbiome of Rice During Shoot and Root Growth Derived from Seeds. Front. Microbiol. 2020, 11, 559728. [Google Scholar] [CrossRef]
- Nunes, I.; Hansen, V.; Bak, F.; Bonnichsen, L.; Su, J.; Hao, X.; Raymond, N.S.; Nicolaisen, M.H.; Jensen, L.S.; Nybroe, O. Succession of the Wheat Seed-Associated Microbiome as Affected by Soil Fertility Level and Introduction of Penicillium and Bacillus Inoculants in the Field. FEMS Microbiol. Ecol. 2022, 98, fiac028. [Google Scholar] [CrossRef] [PubMed]
Kingdom | Phylum | Class | Order | Family | Genus | 16S-C1_S252 | 16S-C2_S253 | 16S-C3_S254 |
---|---|---|---|---|---|---|---|---|
Bacteria | Pseudomonadota | Gammaproteobacteria | Enterobacterales | Erwiniaceae | Pantoea | 0.00 | 0.00 | 59.52 |
Bacteria | Actinomycetota | Actinobacteria | Mycobacteriales | Nocardiaceae | Rhodococcus | 0.00 | 0.00 | 26.19 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Enterobacterales | Erwiniaceae | Pantoea | 0.00 | 36.00 | 0.00 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Burkholderiales | Oxalobacteraceae | Candidatus Profftella | 23.08 | 0.00 | 0.00 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Enterobacterales | NA | NA | 23.08 | 0.00 | 0.00 |
Bacteria | Pseudomonadota | Gammaproteobacteria | NA | NA | NA | 19.23 | 0.00 | 0.00 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Burkholderiales | Oxalobacteraceae | Janthinobacterium | 0.00 | 20.00 | 0.00 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Pseudomonadales | Pseudomonadaceae | Pseudomonas | 0.00 | 20.00 | 0.00 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Burkholderiales | Oxalobacteraceae | Candidatus Profftella | 0.00 | 16.00 | 0.00 |
Bacteria | Actinomycetota | Actinobacteria | Mycobacteriales | Nocardiaceae | Rhodococcus | 11.54 | 0.00 | 0.00 |
Bacteria | Cyanobacteriota | Cyanobacteriia | Chloroplast | NA | NA | 0.00 | 0.00 | 0.00 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Enterobacterales | NA | NA | 7.69 | 0.00 | 0.00 |
Bacteria | Bacillota | Bacilli | Lactobacillales | Enterococcaceae | Enterococcus | 7.69 | 0.00 | 0.00 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Burkholderiales | Oxalobacteraceae | NA | 7.69 | 0.00 | 0.00 |
Bacteria | Pseudomonadota | Alphaproteobacteria | Sphingomonadales | Sphingomonadaceae | NA | 0.00 | 8.00 | 0.00 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Burkholderiales | Alcaligenaceae | Alcaligenes | 0.00 | 0.00 | 4.76 |
Bacteria | Pseudomonadota | Gammaproteobacteria | Pseudomonadales | Pseudomonadaceae | Pseudomonas | 0.00 | 0.00 | 4.76 |
Bacteria | Actinomycetota | Actinobacteria | NA | NA | NA | 0.00 | 0.00 | 4.76 |
Pantoea (32%) | Rhodococcus (13%) | Enterococcus (3%) | Alcaligenes (2%) | Janthinobacterium (7%) | Pseudomonas (9%) | ||
---|---|---|---|---|---|---|---|
PGPB | phytohormones | auxins, gibberellins, cytokinins | IAA | auxins, cytokinins | IAA, gibberellins | IAA | IAA, gibberellins |
siderophores | + | + | + | + | pyoverdine | ||
nitrogen fixation | + | + | + | ||||
phosphorus mobilization | + | + | + | + | + | ||
Suppression of phytopathogens | antimicrobial compounds | pantocin and herbicides | + | enterocins | + | violacein, quinazoline alkaloids | 2,4-diacetylfloroglucine (DAPG), phenazines (e.g., phenazine-1-carboxylic acid), pyoluteorin |
competition | + | + | + | ||||
induction of systemic resistance (ISR) | + | ||||||
Increased stress tolerance | cold | cryoprotective proteins | |||||
drought | + | ||||||
salinization | proline | proline, glycine betaine | proline, trehalose | ||||
oxidative stress | proline | osmoprotectants | proline, glycine betaine | proline, trehalose | |||
Seed germination | decomposition of growth inhibitors in the seed coat, activation of metabolic processes in the embryo | ||||||
Detoxification | destruction of pesticides, PAHs and alkanes | decomposition of phenols and organochlorine compounds | detoxification of heavy metals |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuryntseva, P.; Tarasova, D.; Pronovich, N.; Gilmutdinova, I.; Galieva, G.; Biktasheva, L.; Selivanovskaya, S. What Bacteria Are Present in the Endosphere of Lettuce Seeds and Why? Seeds 2025, 4, 42. https://doi.org/10.3390/seeds4030042
Kuryntseva P, Tarasova D, Pronovich N, Gilmutdinova I, Galieva G, Biktasheva L, Selivanovskaya S. What Bacteria Are Present in the Endosphere of Lettuce Seeds and Why? Seeds. 2025; 4(3):42. https://doi.org/10.3390/seeds4030042
Chicago/Turabian StyleKuryntseva, Polina, Darya Tarasova, Nataliya Pronovich, Ilsina Gilmutdinova, Gulnaz Galieva, Liliya Biktasheva, and Svetlana Selivanovskaya. 2025. "What Bacteria Are Present in the Endosphere of Lettuce Seeds and Why?" Seeds 4, no. 3: 42. https://doi.org/10.3390/seeds4030042
APA StyleKuryntseva, P., Tarasova, D., Pronovich, N., Gilmutdinova, I., Galieva, G., Biktasheva, L., & Selivanovskaya, S. (2025). What Bacteria Are Present in the Endosphere of Lettuce Seeds and Why? Seeds, 4(3), 42. https://doi.org/10.3390/seeds4030042