Enhancement of In Vitro Seed Germination, Growth, and Root Development in Two Sideritis Species through GA3 Application and Diverse LED Light Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Seed Morphology and Seed Quality Parameters in Sideritis Species
2.2. In Vitro Seed Germination and Growth of Seedlings Under Different Lighting Conditions
2.2.1. Sideritis clandestina subsp. pelopponesiaca
2.2.2. Sideritis scardica Griseb
2.3. Single-Value Germination Indices Implemented in Germination Metrics
2.4. Statistical Analysis
3. Results
3.1. In Vitro Germination of Sideritis clandestina subsp. pelopponesiaca Seeds and Growth of Seedlings
3.2. In Vitro Germination of Sideritis scardica Seeds and Growth of Seedlings
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Beltrán, B.J.; Franklin, J.; Syphard, A.D.; Regan, H.M.; Flint, L.E.; Flint, A.L. Effects of climate change and urban development on the distribution and conservation of vegetation in a Mediterranean type ecosystem. Int. J. Geogr. Inf. Sci. 2014, 28, 1561–1589. [Google Scholar] [CrossRef]
- Katsiotis, S.; Chatzopoulou, P. Aromatic, Medicinal and Essential Oil, 3rd ed.; Adelfhon Kyriakidi Publications: Thessaloniki, Greece, 2015. [Google Scholar]
- Kalivas, A.; Ganopoulos, I.; Xanthopoulou, A.; Chatzopoulou, P.; Tsaftaris, A.; Madesis, P. DNA barcode ITS2 coupled with high resolution melting (HRM) analysis for taxonomic identification of Sideritis species growing in Greece. Mol. Biol. Rep. 2014, 41, 5147–5155. [Google Scholar] [CrossRef]
- Chatzopoulou, P. Protection and Sustainable Use of Aromatic Medicinal Plants, The case of Olympus tea. In Aromatic and Medicinal Plants and their Sustainable Management. In Proceedings of the Seminar Organized by the University of Thessaly, TEI of Larissa, ELGO-Dimitra (General Directorate of Agricultural Research) and the Environmental Education Center of Elassona-Kissavos, Elassona, Greece, 7 November 2012; p. 72012. [Google Scholar]
- Shtereva, L.A.; Vassilevska-Ivanova, R.D.; Kraptchev, B.V. In vitro cultures for micropropagation, mass multiplication and preservation of an endangered medicinal plant Sideritis scardica Griseb. Bot. Serb. 2015, 39, 111–120. Available online: https://botanicaserbica.bio.bg.ac.rs/arhiva/pdf/2015_39_2_633_full.pdf (accessed on 30 April 2024).
- Latté, K.P. Sideritis scardica Griseb.: The Greek mountain tea [Sideritis scardica Griseb]. Z. Phytother. 2016, 37, 85–91. [Google Scholar]
- Strid, A.; Tan, K. Mountain Flora of Greece; Cambridge University Press: New York, NY, USA, 1986. [Google Scholar]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular plants of Greece: An annotated checklist, Botanic Garden and Botanical Museum Berlin-Dahlem: Berlin, Germany; Hellenic Botanical Society [Englera 31]: Athens, Greece, 2013; pp. 1–370. [Google Scholar]
- Dimopoulos, P.; Raus, T.; Bergmeier, E.; Constantinidis, T.; Iatrou, G.; Kokkini, S.; Strid, A.; Tzanoudakis, D. Vascular plants of Greece: An annotated checklist. Supplement. Willdenowia 2016, 46, 301–347. [Google Scholar] [CrossRef]
- Zyzelewicz, D.; Kulbat-Warycha, K.; Oracz, J.; Zyzelewicz, K. Polyphenols and other bioactive compounds of Sideritis plants and their potential biological activity. Molecules 2020, 25, 3763. [Google Scholar] [CrossRef]
- Hofrichter, J.; Krohn, M.; Schumacher, T.; Lange, C.; Feistel, B.; Walbroel, B.; Pahnke, J. Sideritis spp. extracts enhance memory and learning in Alzheimer’s β-amyloidosis mouse models and aged C57Bl/6 mice. J. Alzheim Dis. 2016, 53, 967–980. [Google Scholar]
- Aneva, I.; Zhelev, P.; Kozuharova, E.; Danova, K.; Nabavi, S.F.; Behzad, S. Genus Sideritis, section Empedoclia in Southeastern Europe and Turkey—Studies in ethnopharmacology and recent progress of biological activities. DARU J. Pharm. Sci. 2019, 27, 407–421. [Google Scholar] [CrossRef]
- Petrakou, K.; Iatrou, G.; Lamari, F.N. Ethnopharmacological survey of medicinal plants traded in herbal markets in the Peloponnisos, Greece. J. Herb. Med. 2020, 19, 100305. [Google Scholar] [CrossRef]
- Solomou, A.; Skoufogianni, E.; Mylonas, C.; Germani, R.; Danalatos, N.G. Cultivation and utilization of “Greek mountain tea” (Sideritis spp.): Current knowledge and future challenges. Asian J. Agric. Biol. 2019, 7, 289–299. Available online: https://www.asianjab.com/wp-content/uploads/2019/06/15.-AJAB-2018-07-215.pdf (accessed on 30 April 2024).
- Grigoriadou, K.; Krigas, N.; Sarropoulou, V.; Papanastasi, K.; Tsoktouridis, G.; Maloupa, E. In vitro propagation of medicinal and aromatic plants: The case of selected Greek species with conservation priority. In Vitro Cell Dev. Biol.-Plant 2019, 55, 635–646. [Google Scholar] [CrossRef]
- Blackie, M. The role of agriculture in the nutrition of children. Paediatr. Int. Child Health 2014, 34, 289–294. [Google Scholar] [CrossRef]
- Neergheen-Bhujun, V.; Awan, A.T.; Baran, Y.; Bunnefeld, N.; Chan, K.; Dela Cruz, T.E.; Egamberdieva, D.; Elsässer, S.; Johnson, M.V.; Komai, S.; et al. Biodiversity, drug discovery, and the future of global health: Introducing the biodiversity to biomedicine consortium, a call to action. J. Glob. Health 2017, 7, 020304. [Google Scholar] [CrossRef] [PubMed]
- Moraes, R.M.; Cerdeira, A.L.; Lourenço, M.V. Using micropropagation to develop medicinal plants into crops. Molecules 2021, 26, 1752. [Google Scholar] [CrossRef]
- Drik, O. Preserving endangered species: Tissue culture for conservation of rare plants. J. Plant Biotechnol. Microbiol. 2023, 6, 162. Available online: https://www.alliedacademies.org/journal-plant-biotechnology-microbiology/ (accessed on 30 April 2024).
- Estrelles, E.; Güemes, J.; Riera, J.; Boscai, U.; Ibars, A.; Costa, M. Seed germination behavior in Sideritis from different Iberian habitats. Not. Bot. Horti Agrobot. 2010, 38, 9–13. Available online: https://api.core.ac.uk/oai/oai:doaj.org/article:3380e1f5997246f5b6b1fba45782f1f5 (accessed on 30 April 2024).
- Kadis, C.; Kounnamas, C.; Georghioub, K. Seed germination and conservation of endemic, rare, and threatened aromatic plants of Cyprus. Isr. J. Plant Sci. 2010, 58, 251–261. [Google Scholar] [CrossRef]
- Yankova-Tsvetkova, E.; Yurukova-Grancharova, P.; Vitkova, A. Reproductive biology of the Balkan endemic Sideritis scardica (Lamiaceae). Bot. Serb. 2013, 37, 83–87. Available online: https://botanicaserbica.bio.bg.ac.rs/arhiva/pdf/2013_37_1_580_full.pdf (accessed on 30 April 2024).
- Evstatieva, L.; Koleva, I. Cultivation of Sideritis scardica Griseb. In Proceedings of the First Conference on Medicinal and Aromatic Plants of South Eastern European Countries, Arandjelovac, Yugoslavia, 29 May–3 June 2000; pp. 189–195. [Google Scholar]
- Uçar, E.; Turgut, K. In Vitro propagation of some mountain tea (Sideritis) species. Ziraat Fakültesi Derg. Akdeniz Üniversitesi 2009, 22, 51–57. [Google Scholar]
- Petrova, A.; Vladimirov, V. Balkan endemics in the Bulgarian flora. Phytol. Balc. 2010, 16, 293–311. Available online: http://www.bio.bas.bg/~phytolbalcan/PDF/16_2/16_2_16_Petrova_&_Vladimirov.pdf (accessed on 30 April 2024).
- Todorova, M.; Trendafilova, A.; Evstatieva, L.; Antonova, D. Influence of Ecological Factors on the Essential Oil Composition of Sideritis scardica Griseb. In Proceedings of the 7th Conference on Medicinal and Aromatic Plants of Southeast European Countries, Subotica, Serbia, 27–31 May 2012; pp. 63–68. [Google Scholar]
- Kleczewski, N.M.; Herms, D.A.; Bonello, P. Effects of soil type, fertilization and drought on carbon allocation to root growth and partitioning between secondary metabolism and ectomycorrhizae of Betula papyrifera. Tree Physiol. 2010, 30, 807–817. [Google Scholar] [CrossRef]
- Rosental, L.; Nonogaki, H.; Fait, A. Activation and regulation of primary metabolism during seed germination. Seed Sci. Res. 2014, 24, 1–15. [Google Scholar] [CrossRef]
- Solano, C.J.; Hernández, J.A.; Suardíaz, J.; Barba-Espín, G. Impacts of LEDs in the red spectrum on the germination, early seedling growth and antioxidant metabolism of pea (Pisum sativum L.) and melon (Cucumis melo L.). Agriculture 2020, 10, 204. [Google Scholar] [CrossRef]
- Yang, L.; Liu, S.; Lin, R. The role of light in regulating seed dormancy and germination. J. Integr. Plant Biol. 2020, 62, 1310–1326. [Google Scholar] [CrossRef]
- de Wit, M.; Galvão, V.C.; Fankhauser, C. Light−mediated hormonal regulation of plant growth and development. Annu. Rev. Plant Biol. 2016, 67, 513–537. [Google Scholar] [CrossRef]
- Née, G.; Xiang, Y.; Soppe, W. The release of dormancy, a wake−up call for seeds to germinate. Curr. Opin. Plant Biol. 2017, 35, 8–14. [Google Scholar] [CrossRef]
- Farooq, M.A.; Ma, W.; Shen, S.; Gu, A. Underlying biochemical and molecular mechanisms for seed germination. Int. J. Mol. Sci. 2022, 23, 8502. [Google Scholar] [CrossRef]
- Papafotiou, M.; Kalantzis, A. Seed germination and in vitro propagation of Sideritis athoa. Acta Hortic. 2009, 813, 471–476. [Google Scholar] [CrossRef]
- Cornea-Cipcigan, M.; Pamfil, D.; Sisea, C.R.; Mărgăoan, R. Gibberellic acid can improve seed germination and ornamental quality of selected Cyclamen species grown under short and long days. Agronomy 2020, 10, 516. [Google Scholar] [CrossRef]
- Khuat, Q.V.; Kalashnikova, E.A.; Kirakosyan, R.N.; Nguyen, H.T.; Baranova, E.N.; Khaliluev, M.R. Improvement of in vitro seed germination and micropropagation of Amomum tsao-ko (Zingiberaceae Lindl.). Horticulturae 2022, 8, 640. [Google Scholar] [CrossRef]
- Aud, F.F.; Ferraz, I.D.K. Seed size influence on germination responses to light and temperature of seven pioneer tree species from the Central Amazon. An. Acad. Bras. Cienc. 2012, 84, 759–766. [Google Scholar] [CrossRef]
- Ouzounis, T.; Rosenqvist, E.; Ottosen, C.O. Spectral effects of artificial light on plant physiology and secondary metabolism: A review. HortScience 2015, 50, 1128–1135. [Google Scholar] [CrossRef]
- Wang, G.; Chen, Y.; Fan, H.; Huang, P. Effects of light-emitting diode (LED) red and blue light on the growth and photosynthetic characteristics of Momordica charantia L. J. Agric. Chem. Environ. 2021, 10, 1–15. [Google Scholar] [CrossRef]
- Kapoor, S.; Raghuvanshi, R.; Bhardwaj, P.; Sood, H.; Saxena, S.; Chaurasia, O.P. Influence of light quality on growth, secondary metabolites production and antioxidant activity in callus culture of Rhodiola imbricate. J. Photochem. Photobiol. B Biol. 2018, 183, 258–265. [Google Scholar] [CrossRef]
- Higuchi, Y.; Hisamatsu, T. Light acts as a signal for regulation of growth and development. In LED Lighting for Urban Agriculture; Kozai, T., Fujiwara, K., Runkle, E., Eds.; Springer: Singapore, 2016; pp. 57–73. [Google Scholar] [CrossRef]
- Paradiso, R.; Proietti, S. Light-quality manipulation to control plant growth and photomorphogenesis in greenhouse horticulture: The state of the art and the opportunities of modern LED systems. J. Plant Growth Regul. 2022, 41, 742–780. [Google Scholar] [CrossRef]
- Rocha, P.S.G.; Oliveira, R.P.; Scivittaro, W.B. New light sources for in vitro potato micropropagation. Biosci. J. 2015, 31, 1312–1318. [Google Scholar] [CrossRef]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; p. 392. [Google Scholar] [CrossRef]
- Samuolienė, G.; Brazaityte, A.; Jankauskiene, J.; Virsile, A.; Sirtautas, R.; Novickovas, A.; Sakalauskiene, S.; Sakalauskaite, J.; Duchovskis, P. LED irradiance level afects growth and nutritional quality of Brassica microgreens. Cent. Eur. J. Biol. 2013, 8, 1241–1249. [Google Scholar] [CrossRef]
- Dong, C.; Yuming, F.; Guanghui, L.; Hong, L. Low light intensity efects on the growth, photosynthetic characteristics, antioxidant capacity, yield and quality of wheat (Triticum aestivum L.) at diferent growth stages in BLSS. Adv. Space Res. 2014, 53, 1557–1566. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, Y.; Zheng, Y. Integration of ABA, GA, and light signaling in seed germination through the regulation of ABI5. Front. Plant Sci. 2022, 13, 1000803. [Google Scholar] [CrossRef]
- Daud, N.; Faizal, A.; Geelen, D. Adventitious rooting of Jatropha curcas L. is stimulated by phloroglucinol and by red LED light. In Vitro Cell Dev. Biol.-Plant 2013, 49, 183–190. [Google Scholar] [CrossRef]
- Izzo, L.; Mele, B.H.; Vitale, L.; Vitale, E.; Arena, C. The role of monochromatic red and blue light in tomato early photomorphogenesis and photosynthetic traits. Environ. Exp. Bot. 2020, 179, 104195. [Google Scholar] [CrossRef]
- Simlat, M.; Ślęzak, P.; Moś, M.; Warchoł, M.; Skrzypek, E.; Ptak, A. The effect of light quality on seed germination, seedling growth and selected biochemical properties of Stevia rebaudiana Bertoni. Sci. Hortic. 2016, 211, 295–304. [Google Scholar] [CrossRef]
- Song, J.; Meng, Q.W.; Du, W.F.; He, D.X. Effects of light quality on growth and development of cucumber seedlings in controlled environment. Int. J. Agric. Biol. Eng. 2017, 10, 312–318. [Google Scholar] [CrossRef]
- He, R.; Gao, M.; Shi, R.; Song, S.; Zhang, Y.; Su, W.; Liu, H. The combination of selenium and LED light quality affects growth and nutritional properties of broccoli sprouts. Molecules 2020, 25, 4788. [Google Scholar] [CrossRef]
- Bourget, M.C. An introduction to light emitting diodes. HortScience 2008, 43, 1944–1946. [Google Scholar] [CrossRef]
- Massa, G.D.; Kim, H.H.; Wheeler, R.M.; Mitchell, C.A. Plant productivity in response to LED lighting. HortScience 2008, 43, 1951–1956. [Google Scholar] [CrossRef]
- Morrow, R.C. LED lighting in horticulture. HortScience 2008, 43, 1947–1950. [Google Scholar] [CrossRef]
- Bu, H.; Ge, W.; Zhou, X.; Wei, Q.I.; Liu, K.; Xu, D.; Wang, X.; Du, G. The effect of light and seed mass on seed germination of common herbaceous species from the eastern Qinghai-Tibet Plateau. Plant Species Biol. 2017, 32, 263–269. [Google Scholar] [CrossRef]
- Society for Ecological Restoration (SER); International Network for Seed Based Restoration (INSR); Royal Botanic Gardens Kew (RBGK). Seed Information Database (SID). RBG Kew, Wakehurst Place. 2023. Available online: https://ser-sid.org/ (accessed on 27 February 2023).
- Hagemann, J.M.; Earle, F.R.; Wolff, I.A.; Barclay, A.S. Search for new industrial oils. XIV. Seed oils of Labiatae. Lipids 1967, 2, 371–380. [Google Scholar] [CrossRef]
- Fredrick, C.; Muthuri, C.; Ngamau, K.; Sinclair, F. Provenance variation in seed morphological characteristics, germination and early seedling growth of Faidherbia albida. J. Hortic. For. 2015, 7, 127–140. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised method for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 1962, 15, 472–497. [Google Scholar] [CrossRef]
- International Seed Testing Association (ISTA). International rules for seed testing. Seed Sci. Technol. 1999, 27, 333. [Google Scholar]
- Soltani, A.; Galeshi, S.; Zeinali, E.; Latifi, N. Genetic variation for and interrelationships among seed vigor traits in wheat from the Caspian Sea coasts of Iran. Seed Sci. Technol. 2001, 29, 653–662. [Google Scholar]
- Maguire, J.D. Speed of germination-aid in selection and evaluation for seedling emergence and vigor. Crop. Sci. 1962, 2, 176–177. [Google Scholar] [CrossRef]
- International Seed Testing Association (ISTA). ISTA Handbook on Seedling Evaluation; ISTA: Bassersdorf, Switzerland, 2006; Available online: https://search.worldcat.org/title/international-rules-for-seed-testing/oclc/156467324 (accessed on 30 April 2024).
- Bewley, J.D.; Black, M. Seeds. Physiology of Development and Germination, 2nd ed.; Springer: New York, NY, USA, 1994; p. 445. [Google Scholar] [CrossRef]
- Chen, G.; Sun, W. The role of botanical gardens in scientific research, conservation, and citizen science. Plant Divers. 2018, 40, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Chokheli, V.A.; Dmitriev, P.A.; Rajput, V.D.; Bakulin, S.D.; Azarov, A.S.; Varduni, T.V.; Stepanenko, V.V.; Tarigholizadeh, S.; Singh, R.K.; Verma, K.K.; et al. Recent development in micropropagation techniques for rare plant species. Plants 2020, 9, 1733. [Google Scholar] [CrossRef]
- Bertsouklis, K.; Theodorou, P.; Aretaki, P.E. In vitro propagation of the Mount Parnitha endangered species Sideritis raeseri subsp. attica. Horticulturae 2022, 8, 1114. [Google Scholar] [CrossRef]
- Thanos, C.A.; Doussi, M.A. Ecophysiology of seed germination in endemic Labiates of Crete. Isr. J. Plant Sci. 1995, 43, 227–237. [Google Scholar] [CrossRef]
- Arabaci, O.; Öğretmen, N.G.; Tan, U.; Yaşa, F. Effect of some seed treatments on germination of Sideritis perfoliata L. Trakya Univ. J. Nat. Sci. 2014, 15, 83–87. [Google Scholar]
- Gümüşçü, A. Seed germination of some endemic Sideritis species under different treatments. Med. Aromat. Plants Res. J. 2014, 2, 1–5. [Google Scholar]
- Kaya, M.D.; Kulan, E.G.; Gümüşçü, G.; Gümüşçü, A. Factors affecting germination performance of four endemic Sideritis species in Turkey. Tarım Bilim. Derg–J. Agric. Sci. 2015, 21, 406–413. [Google Scholar] [CrossRef]
- Sota, V.; Shuka, D.; Bekheet, S.; Kongjika, E. Establishment of an in vitro method for micropropagation of ironwort (Sideritis raeseri Boiss. & Heldr.). Acta Agric. Slov. 2023, 119, 1–10. [Google Scholar] [CrossRef]
- Kozuharova, E. New ex situ collection of rare and threatened medicinal plants in the Pirin Mts. (Bulgaria). Ekoloji Derg. 2009, 18, 32–44. [Google Scholar] [CrossRef]
- Estrelles, E.; Albert, F.; Navarro, A.; Prieto, J.; Ibars, A.M. Germination Behaviour of Labiatae SW Distributed in the Iberian Peninsula. In Proceedings of the 4th European Conference on the Conservation of Wild Plants, Planta Europa IV, Valencia, Spain, 17–20 September 2004. [Google Scholar]
- Cristaudo, A.; Catara, S.; Mingo, A.; Restuccia, A.; Onofri, A. Temperature and storage time strongly affect the germination success of perennial Euphorbia species in Mediterranean regions. Ecol. Evol. 2019, 9, 10984–10999. [Google Scholar] [CrossRef] [PubMed]
- Gómez, C.; Izzo, L.G. Increasing efficiency of production with LEDs. AIMS Agric. Food 2018, 3, 135–153. [Google Scholar] [CrossRef]
- Smith, H.L.; McAusland, L.; Murchie, E.H. Don’t ignore the green light: Exploring diverse role in plant processes. J. Exp. Bot. 2017, 68, 2099–2119. [Google Scholar] [CrossRef]
- Yuanchun, M.A.; Xu, A.; Cheng, Z.M. Effects of light emitting diode lights on plant growth, development and traits a meta-analysis. Hortic. Plant J. 2021, 3, 1–20. [Google Scholar] [CrossRef]
- Wei, Y.; Wang, S.; Yu, D. The role of light quality in regulating early seedling development. Plants 2023, 12, 2746. [Google Scholar] [CrossRef]
- Ouzounis, T.; Fretté, X.C.; Rosenqvist, E.; Ottosen, C.O. Spectral effects of supplementary lighting on the secondary metabolites in roses, chrysanthemums, and campanulas. J. Plant Physiol. 2014, 171, 1491–1499. [Google Scholar] [CrossRef]
- Li, H.; Xu, Z.; Tang, C. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (Gossypium hirsutum L.) plantlets in vitro. Plant Cell Tiss. Organ. Cult. 2010, 103, 155–163. [Google Scholar] [CrossRef]
- Lim, C.H.; Guan, T.S.; Hong, E.C.; Chow, Y.L.; Lynn, C.B.; Subramaniam, S. Effect of different LED lights spectrum on the in vitro germination of gac seed (Momordica cochinchinensis). Aust. J. Crop. Sci. 2020, 14, 1715–1722. [Google Scholar] [CrossRef]
- Lim, M.J.; Murthy, H.N.; Song, H.Y.; Lee, S.Y.; Park, S.Y. Influence of white, red, blue, and combination of LED lights on in vitro multiplication of shoots, rooting, and acclimatization of Gerbera jamesonii cv. ‘Shy Pink’ plants. Agronomy 2023, 13, 2216. [Google Scholar] [CrossRef]
- Marcos Filho, J. Fisiologia de Sementes de Plantas Cultivadas, 2nd ed.; Abrates: Londrina, Brazil, 2015; p. 659. [Google Scholar]
- Cho, J.N.; Ryu, J.Y.; Jeong, Y.M.; Park, J.; Song, J.J.; Amasino, R.M.; Noh, B.; Noh, Y.S. Control of seed germination by light-induced histone arginine demethylation activity. Dev. Cell 2012, 22, 736–748. [Google Scholar] [CrossRef]
- de Paiva, E.P.; Torres, S.B.; da Silva, F.V.; Nogueira, N.W.; de Freitas, R.M.O.; de Sousa Leite, M. Light regime and temperature on seed germination in Salvia hispanica L. Acta Sci. Agron. 2018, 38, 513–519. [Google Scholar] [CrossRef]
- Dissanayake, P.; George, D.L.; Gupta, M.L. Effect of light, gibberellic acid and abscisic acid on germination of guayule (Parthenium argentatum Gray) seed. Ind. Crop. Prod. 2010, 32, 111–117. [Google Scholar] [CrossRef]
- Nadeem, M.; Al-Qurainy, F.; Khan, S.; Tarroum, M.; Ashraf, M. Effect of some chemical treatments on seed germination and dormancy breaking in an important medicinal plant Ochradenus arabicus Chaudhary, Hill C. & A.G. Mill. Pak. J. Bot. 2012, 44, 1037–1040. Available online: https://www.pakbs.org/pjbot/PDFs/44(3)/28.pdf (accessed on 30 April 2024).
- Taiz, L.; Zeiger, E.; Moller, I.M.; Murphy, A. Fisiologia e Desenvolvimento Vegetal, 6th ed.Artmed: Porto Alegre, Brazil, 2017; p. 858. [Google Scholar]
- Ahmad, B.; Jaleel, H.; Shabbir, A.; Masroor, M.; Khan, A.; Sadiq, Y. Concomitant application of depolymerized chitosan and GA3 modulates photosynthesis, essential oil and menthol production in peppermint (Mentha piperita L.). Sci. Hortic. 2019, 246, 371–379. [Google Scholar] [CrossRef]
- Xu, Y.; Liang, Y.; Yang, M. Effect of composite LED light on root growth and antioxidant capacity of Cunnighamia lanceolata tissue culture seedlings. Sci. Rep. 2019, 9, 9766. [Google Scholar] [CrossRef]
- Rocha, P.S.G.; Oliveira, R.P.; Scivittaro, W.B. LED—New light source for multiplication and rooting in vitro of raspberry. Pesq. Agrop Gaúcha 2014, 19, 98–105. [Google Scholar]
- Choi, H.; Cho, H. Root hairs enhance Arabidopsis seedling survival upon soil disruption. Sci. Rep. 2019, 9, 11181. [Google Scholar] [CrossRef]
- Metallo, R.M.; Kopsell, D.A.; Sams, C.E.; Bumgarner, N.R. Influence of blue/red vs. white LED light treatments on biomass, shoot morphology, and quality parameters of hydroponically grown kale. Sci. Hortic. 2018, 235, 189–197. [Google Scholar] [CrossRef]
- Wang, Y.; Folta, K.M. Contributions of green light to plant growth and development. Am. J. Bot. 2013, 100, 70–78. [Google Scholar] [CrossRef]
- Van Iersel, M.W.; Gianino, D. An adaptive control approach for light-emitting diode lights can reduce the energy costs of supplemental lighting in greenhouses. Am. Soc. Hortic. Sci. 2017, 52, 72–77. [Google Scholar] [CrossRef]
- Araújo, R.C.; Rodrigues, F.A.; Dória, J.; Pasqual, M. In vitro germination of Adenium obesum under the effects of culture medium and light emitting diodes of different colors. Plant Cell Tiss. Organ. Cult. 2021, 149, 523–533. [Google Scholar] [CrossRef]
- Chen, C.; Huang, M.; Lin, K.; Wong, S.; Huang, W.; Yang, C. Effects of light quality on the growth, development and metabolism of rice seedlings (Oryza sativa L.). Res. J. Biotechnol. 2014, 9, 15–24. [Google Scholar]
- Silva, M.M.A.; Oliveira, A.L.B.; Oliveira-Filho, R.A.; Camara, T.J.R.; Willadino, L.G.; Gouveia-Neto, A.S. Effect of blue/red LED light combination on growth and morphogenesis of Saccharum officinarum plantlets In Vitro. Imaging Manip. Anal. Biomol. Cells 2014, 8947, 1–8. [Google Scholar] [CrossRef]
- Silva, M.M.A.; Oliveira, A.L.B.; Oliveira-Filho, R.A.; Camara, T.; Willadino, L.; Gouveia-Neto, A.S. The effect of spectral light quality on in vitro culture of sugarcane. Acta Sci. Biol. Sci. 2016, 38, 157–161. [Google Scholar] [CrossRef]
- Singh, B.; Saklani, K.P.; Bhatt, B.P. Provenance variation in seed and seedlings attributes of Quercus glauca Thunb. in Garhwal Himalaya, India. Dendrobiology 2010, 63, 59–63. Available online: https://www.idpan.poznan.pl/images/stories/dendrobiology/vol63/63_59_63.pdf (accessed on 30 April 2024).
- Elmagboul, H.; Mahgoup, S.; Eldoma, A. Variation in seed morphometric characteristics and germination of Acacia tortilis subspecies raddiana and subspecies spirocarpa among three provenances in Sudan. Global J. Bio-Sci. Biotechnol. 2014, 3, 191–196. [Google Scholar]
- Takuathung, C.N.; Pipatwattanakul, D.; Bhumibhamon, S. Provenance variation in seed morphometric traits and growth performance of Senna siamea (Lam.) Erwin et Barneby at lad krating plantation, Chachoengsao Province, Thailand. Kasetsart J. Nat. Sci. 2012, 46, 394–407. Available online: https://www.thaiscience.info/Journals/Article/TKJN/10898192.pdf (accessed on 30 April 2024).
- Pearson, T.H.R.; Burslem, D.F.R.P.; Mullins, C.E.; Dalling, J.W. Germination ecology of neotropical pioneers: Interacting effects of environmental conditions and seed size. Ecology 2002, 83, 2798–2807. [Google Scholar] [CrossRef]
- Jankowska-Blaszczuk, M.; Daws, M.I. Impact of red:far red ratios on germination of temperate forest herbs in relation to shade tolerance, seed mass and persistence in the soil. Funct. Ecol. 2007, 21, 1055–1062. [Google Scholar] [CrossRef]
- Islam, A.K.M.M.; Kato-Noguchi, H. Phytotoxic activity of Ocimum tenuiflorum extracts on germination and seedling growth of different plant species. Sci. World J. 2014, 2014, 676242. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Puri, S.; Jamwal, A.; Sharma, S. Studies on seed germination and seedling growth in Kalmegh (Andrographis paniculata Wall. Ex Nees) under abiotic stress conditions. Int. J. Sci. Environ. Technol. 2012, 1, 197–204. [Google Scholar]
- Windauer, L.B.; Martinez, J.; Rapoport, D.; Wassner, D.; Benech-Arnold, R. Germination responses to temperature and water potential in Jatropha curcas seeds: A hydrotime model explains the difference between dormancy expression and dormancy induction at different incubation temperatures. Ann. Bot. 2012, 109, 265–273. [Google Scholar] [CrossRef] [PubMed]
- Gutterman, Y. Maternal effects on seeds during development. In Seeds: The Ecology of Regeneration in Plant Communities, 2nd ed.; Fenner, M., Ed.; CABI Publishing: Wallingford, UK, 2000; pp. 59–84. [Google Scholar] [CrossRef]
- Fandohan, B.; Assogbadjo, A.E.; Kakaï, R.G.; Sinsin, B. Variation in seed morphometric traits, germination and early seedling growth performances of Tamarindus indica L. Int. J. Biol. Chem. Sci. 2010, 4, 1102–1109. [Google Scholar] [CrossRef]
- Reed, R.C.; Bradford, K.J.; Khanday, I. Seed germination and vigor: Ensuring crop sustainability in a changing climate. Heredity 2022, 128, 450–459. [Google Scholar] [CrossRef]
Seed Morphology and Quality Traits in S. clandestina subsp. pelopponesiaca and S. scardica | |
---|---|
Diaspore | Partial fruit (mericarp) |
Fruit type | Microbasarium |
Embryo type | Axial-spatulate |
Embryo colour | White |
Dispersal aids | None |
Diaspore colour | Brown |
Diaspore surface | Rough (verrucose) |
Perisperm present | No |
Endosperm ruminate | 0 |
Seed configuration | Anatropous |
Relative size embryo | Dominant (3/4 plus) |
Diaspore size remarks | Diaspore is one-seeded mericarp |
Mechanical protection of seed | Pericarp |
Seed oil content | 28–38% |
Seed protein content | 14–23% |
Diaspore shape | Ovoid with flat ventral side (S. clandestina)/Obovoid (S. scardica) |
Diaspore size length | 2.1–2.4 mm (S. clandestina subsp. pelopponesiaca)/2.0–2.5 mm (S. scardica) |
Diaspore size width | 1.5–1.8 mm (S. clandestina subsp. pelopponesiaca)/1.6–1.7 mm (S. scardica) |
Diaspore size thickness (or height) | 1.1–1.2 mm (S. clandestina subsp. pelopponesiaca)/1.4–1.7 mm (S. scardica) |
Seed size (length × width × thickness) | 3.5–5.2 mm (S. clandestina subsp. pelopponesiaca)/4.5–7.2 mm (S. scardica) |
Absolute mass (weight of 1000 seeds) | 0.6067 g (S. clandestina subsp. pelopponesiaca)/0.9533 g (S. scardica) |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Lighting Conditions | Photoperiod Regime | Light Absorption Wavelength Spectrum (nm) | Light Spectral Composition (%) | Light Spectral Composition Ratio | Light Intensity (μmol m−2 s−1) | GA3 (mg L−1) | Treatment Code |
WFL-BG-40 | 16 h light/ 8 h dark | 400–700 | 36%G:32%B:9%Y:9%O:9%R:5%V * | 4G:4B:1Y:1O:1R:1/2V (mainly blue-green, 1B:1G) | 40 | 250 | WFL-BG-40-250GA3 |
500 | WFL-BG-40-500GA3 | ||||||
LED-BGYOR-40 | 16 h light/ 8 h dark | 430–690 | 33%G: 22%B: 22%R: 11%O: 9%Y | 3G: 2B: 2R: 1O: 1Y (mainly blue: green: red, 1B:2G:1R) | 40 | 250 | LED-BGYOR-40-250GA3 |
500 | LED-BGYOR-40-500GA3 | ||||||
LED-BR-40 | 16 h light/ 8 h dark | 430–690 | 63%R: 21%B: 7%G: 7%O: 2%Y | 9R:3B:1G:1O:¼Y (mainly blue-red, 1B:3R) | 40 | 250 | LED-BR-40-250GA3 |
500 | LED-BR-40-500GA3 | ||||||
LED-BR-80 | 16 h light/ 8 h dark | 430–690 | 63%R: 21%B: 7%G: 7%O: 2%Y | 9R:3B:1G:1O:¼Y (mainly blue-red, 1B:3R) | 80 | 250 | LED-BR-80-250GA3 |
500 | LED-BR-80-500GA3 | ||||||
24 h dark | complete darkness | - | - | - | - | 250 | 24 h dark-250GA3 |
500 | 24 h dark-500GA3 |
Treatments | |||||||
---|---|---|---|---|---|---|---|
Lighting Conditions | Photoperiod Regime | Light Absorption Wavelength Spectrum (nm) | Light Spectral Composition (%) | Light Spectral Composition Ratio | Light Intensity (μmol m−2 s−1) | GA3 (mg L−1) | Treatment Code |
WFL-BG-40 | 16 h light/ 8 h dark | 400–700 | 36%G:32%B:9%Y:9%O:9%R:5%V * | 4G:4B:1Y:1O:1R:1/2V (mainly blue-green, 1B:1G) | 40 | 250 | WFL-BG-40-250GA3 |
LED-BGYOR-40 | 16 h light/ 8 h dark | 430–690 | 33%G: 22%B: 22%R: 11%O: 9%Y | 3G: 2B: 2R: 1O: 1Y (mainly blue: green: red, 1B:2G:1R) | 40 | 250 | LED-BGYOR-40-250GA3 |
LED-BR-80 | 16 h light/ 8 h dark | 430–690 | 63%R: 21%B: 7%G: 7%O: 2%Y | 9R:3B:1G:1O:¼Y (mainly blue-red, 1B:3R) | 80 | 250 | LED-BR-40-250GA3 |
LED-BR-120 | 16 h light/ 8 h dark | 430–690 | 63%R: 21%B: 7%G: 7%O: 2%Y | 9R:3B:1G:1O:¼Y (mainly blue-red, 1B:3R) | 120 | 250 | LED-BR-80-250GA3 |
Treatment | Initial Number of Seeds | Number of Disinfected Seeds | Number of Infected Seeds | Disinfection Success (%) | Total Infections (%) | Fungal Infections (%) | Bacteria Infections (%) | ||
---|---|---|---|---|---|---|---|---|---|
Lighting Type | GA3 Concentration (mg L−1) | Treatment Code | |||||||
WFL-BG-40 | 250 | WFL-BG-40-250GA3 | 25 | 25 | 0 | 100 | 0 | 0 | 0 |
500 | WFL-BG-40-500GA3 | 25 | 25 | 0 | 100 | 0 | 0 | 0 | |
LED-BGYOR-40 | 250 | LED-BGYOR-40-250GA3 | 25 | 25 | 0 | 100 | 0 | 0 | 0 |
500 | LED-BGYOR-40-500GA3 | 25 | 20 | 5 | 80 | 20 | 20 | 0 | |
LED-BR-40 | 250 | LED-BR-40-250GA3 | 25 | 20 | 5 | 80 | 20 | 20 | 0 |
500 | LED-BR-40-500GA3 | 25 | 20 | 5 | 80 | 20 | 20 | 0 | |
LED-BR-80 | 250 | LED-BR-80-250GA3 | 25 | 20 | 5 | 80 | 20 | 0 | 20 |
500 | LED-BR-80-500GA3 | 25 | 15 | 10 | 60 | 40 | 20 | 20 | |
24 h dark | 250 | 24 h dark-250GA3 | 25 | 15 | 10 | 60 | 40 | 20 | 20 |
500 | 24 h dark-500GA3 | 25 | 20 | 5 | 80 | 20 | 0 | 20 | |
Mean value | 82 | 18 | 10 | 8 |
Analysis of Variance (ANOVA) | Germination (%) | ||
---|---|---|---|
Total | Only Radicle | Radicle + Sprout | |
p-values (2-way ANOVA/General Linear Model): WFL-BG-40 | |||
Culture period in days (A) | 0.983 ns | 0.965 ns | 0.986 ns |
GA3 concentration (B) | 0.000 *** | 0.000 *** | 0.011 * |
(A)*(B) | 0.993 ns | 0.965 ns | 0.999 ns |
p-values (2-way ANOVA/General Linear Model): LED-BGYOR-40 | |||
Culture period in days (A) | 1.000 ns | 0.181 ns | 0.881 ns |
GA3 concentration (B) | 0.000 *** | 0.035 * | 0.000 *** |
(A)*(B) | 1.000 ns | 0.181 ns | 0.955 ns |
p-values (2-way ANOVA/General Linear Model): LED-BR-40 | |||
Culture period in days (A) | 0.004 ** | 0.542 ns | 0.074 ns |
GA3 concentration (B) | 0.000 *** | 0.005 ** | 0.002 ** |
(A)*(B) | 0.729 ns | 0.542 ns | 0.970 ns |
p-values (2-way ANOVA/General Linear Model): LED-BR-80 | |||
Culture period in days (A) | 0.000 *** | 0.472 ns | 0.000 *** |
GA3 concentration (B) | 0.000 *** | 0.000 *** | 0.000 *** |
(A)*(B) | 0.000 *** | 0.472 ns | 0.000 *** |
p-values (2-way ANOVA/General Linear Model): 24 h dark | |||
Culture period in days (A) | 0.020 * | 0.155 ns | 0.001 ** |
GA3 concentration (B) | 0.027 * | 0.002 ** | 0.371 ns |
(A)*(B) | 0.946 ns | 0.719 ns | 0.428 ns |
p-values (2-way ANOVA/General Linear Model): 250 mg L−1 GA3 | |||
Lighting type (A) | 0.000 *** | 0.000 *** | 0.000 *** |
Culture period in days (B) | 0.000 *** | 0.498 ns | 0.000 *** |
(A)*(B) | 0.387 ns | 0.732 ns | 0.107 ns |
p-values (2-way ANOVA/General Linear Model): 500 mg L−1 GA3 | |||
Lighting type (A) | 0.000 *** | 0.000 *** | 0.000 *** |
Culture period in days (B) | 0.000 *** | 0.296 ns | 0.001 ** |
(A)*(B) | 0.283 ns | 0.774 ns | 0.692 ns |
p-values (3-way ANOVA/General Linear Model) | |||
Lighting type (A) | 0.000 *** | 0.000 *** | 0.000 *** |
Culture period in days (B) | 0.000 *** | 0.291 ns | 0.000 *** |
GA3 concentration (C) | 0.000 *** | 0.000 *** | 0.000 *** |
(A)*(B) | 0.657 ns | 0.736 ns | 0.722 ns |
(A)*(C) | 0.000 *** | 0.000 *** | 0.000 *** |
(B)*(C) | 0.077 ns | 0.661 ns | 0.023 * |
(A)*(B)*(C) | 0.154 ns | 0.751 ns | 0.014 * |
Treatments | Maximum total Germination (%) | Day of Maximum Germination | Germination Onset Day | t50 | GSI | GE (%) | Energy Period (in Days) | MGT (in Days) | ||
---|---|---|---|---|---|---|---|---|---|---|
Lighting Regime | GA3 (mg L−1) | Treatment Code | ||||||||
WFL-BG-40 | 250 | WFL-BG-40-250GA3 | 12 | 15 | 15 | 14 | 0.47 | 50 | 27 | 49.10 |
500 | WFL-BG-40-500GA3 | 4 | 100 | 100 | 85 | 0.02 | 100 | 100 | 107.5 | |
LED-BGYOR-40 | 250 | LED-BGYOR-40-250GA3 | 8 | 13 | 13 | 13 | 0.52 | 50 | 20 | 45.82 |
500 | LED-BGYOR-40-500GA3 | 5 | 115 | 115 | 107.5 | 0.01 | 100 | 115 | 115 | |
LED-BR-40 | 250 | LED-BR-40-250GA3 | 10 | 70 | 41 | 41 | 0.06 | 50 | 55 | 83.25 |
500 | LED-BR-40-500GA3 | 15 | 27 | 13 | 23.5 | 0.40 | 50 | 41 | 53.92 | |
LED-BR-80 | 250 | LED-BR-80-250GA3 | 40 | 31 | 15 | 17 | 0.66 | 16.67 | 550 | 56.35 |
500 | LED-BR-80-500GA3 | 0 | - | - | - | 0 | 0 | - | - | |
24 h dark | 250 | 24 h dark-250GA3 | 13.33 | 27 | 20 | 20 | 0.15 | 100 | 27 | 59.86 |
500 | 24 h dark-500GA3 | 10 | 55 | 31 | 31 | 0.08 | 50 | 80 | 80.11 |
Treatments | Multiple Shoot Induction (%) | Number of New Shoots/Seedling | Height of Seedling (cm) | Shoot Proliferation Rate | Root Number | Root Length (cm) | ||
---|---|---|---|---|---|---|---|---|
Lighting Regime | GA3 (mg L−1) | Treatment Code | ||||||
WFL-BG-40 | 250 | WFL-BG-40-250GA3 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 2.00 ± 0.27 d | 1.33 ± 0.07 e | 3.00 ± 0.15 b | 2.50 ± 0.33 c |
500 | WFL-BG-40-500GA3 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 1.00 ± 0.40 e | 1.00 ± 0.05 f | 1.00 ± 0.05 d | 0.50 ± 0.03 e | |
LED-BGYOR-40 | 250 | LED-BGYOR-40-250GA3 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 8.00 ± 0.40 a | 5.33 ± 0.27 a | 5.00 ± 0.25 a | 6.00 ± 0.60 a |
500 | LED-BGYOR-40-500GA3 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 2.50 ± 0.21 d | 1.67 ± 0.08 d | 1.50 ± 0.50 cd | 1.50 ± 0.35 d | |
LED-BR-40 | 250 | LED-BR-40-250GA3 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 1.50 ± 0.10 e | 1.00 ± 0.05 f | 1.00 ± 0.35 d | 1.00 ± 0.15 d |
500 | LED-BR-40-500GA3 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 5.00 ± 0.25 b | 3.33 ± 0.17 b | 2.00 ± 0.40 c | 2.00 ± 0.20 c | |
LED-BR-80 | 250 | LED-BR-80-250GA3 | 50.0 ± 0.0 a | 3.0 ± 0.2 a | 3.00 ± 0.10 c | 5.00 ± 0.25 a | 2.50 ± 0.50 c | 3.00 ± 0.30 b |
500 | LED-BR-80-500GA3 | - | - | - | - | - | - | |
24 h dark | 250 | 24 h dark-250GA3 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 2.00 ± 0.20 d | 1.33 ± 0.07 e | 1.00 ± 0.08 d | 0.50 ± 0.00 e |
500 | 24 h dark-500GA3 | 0.0 ± 0.0 b | 0.0 ± 0.0 b | 2.50 ± 0.30 d | 1.67 ± 0.08 d | 1.00 ± 0.12 d | 0.50 ± 0.00 e |
Treatment | Initial Number of Seeds | Number of Disinfected Seeds | Number of Infected Seeds | Disinfection Success (%) | Total Infected Seeds (%) | Fungal Infected Seeds (%) | Bacteria Infected Seeds (%) | ||
---|---|---|---|---|---|---|---|---|---|
Lighting Type | GA3 Concentration (mg L−1) | Treatment Code | |||||||
WFL-BG-40 | 250 | WFL-BG-40-250GA3 | 64 | 12 | 52 | 18.75 | 81.25 | 50.00 | 31.25 |
LED-BGYOR-40 | 250 | LED-BGYOR-40-250GA3 | 64 | 20 | 44 | 31.25 | 68.75 | 31.25 | 37.50 |
LED-BR-80 | 250 | LED-BR-80-250GA3 | 64 | 16 | 48 | 25.00 | 75.00 | 43.75 | 31.25 |
LED-BR-120 | 250 | LED-BR-120-250GA3 | 64 | 20 | 44 | 31.25 | 68.75 | 37.50 | 31.25 |
Mean value | 26.56 | 73.44 | 40.63 | 32.81 |
Treatments | Maximum Total Germination (%) | Day of Maximum Germination | Germination Onset Day | t50 | GSI | GE (%) | Energy Period (in Days) | MGT (in Days) |
---|---|---|---|---|---|---|---|---|
WFL-BG-40 | 0 | 106 | - | - | 0 | 0 | - | - |
LED-BGYOR-40 | 80 | 42 | 21 | 25.5 | 0.74 | 25 | 42 | 61.95 |
LED-BR-80 | 50 | 30 | 21 | 21 | 0.38 | 100 | 30 | 61.50 |
LED-BR-120 | 60 | 47 | 21 | 25.5 | 0.48 | 66.67 | 47 | 63.53 |
Treatments | Height of Seedling (cm) | Shoot Proliferation Rate | Root Number | Root Length (cm) |
---|---|---|---|---|
WFL-BG-40 | 0.00 ± 0.00 c | 0.00 ± 0.00 c | 0.00 ± 0.00 d | 0.00 ± 0.00 c |
LED-BGYOR-40 | 4.13 ± 0.21 b | 2.50 ± 0.23 b | 1.75 ± 0.09 b | 3.54 ± 0.18 b |
LED-BR-80 | 3.75 ± 0.19 b | 2.00 ± 0.20 b | 1.00 ± 0.05 c | 4.50 ± 0.23 a |
LED-BR-120 | 6.33 ± 0.32 a | 4.00 ± 0.40 a | 3.67 ± 0.18 a | 3.60 ± 0.18 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sarropoulou, V.; Grigoriadou, K.; Maloupa, E.; Chatzopoulou, P. Enhancement of In Vitro Seed Germination, Growth, and Root Development in Two Sideritis Species through GA3 Application and Diverse LED Light Conditions. Seeds 2024, 3, 411-435. https://doi.org/10.3390/seeds3030029
Sarropoulou V, Grigoriadou K, Maloupa E, Chatzopoulou P. Enhancement of In Vitro Seed Germination, Growth, and Root Development in Two Sideritis Species through GA3 Application and Diverse LED Light Conditions. Seeds. 2024; 3(3):411-435. https://doi.org/10.3390/seeds3030029
Chicago/Turabian StyleSarropoulou, Virginia, Katerina Grigoriadou, Eleni Maloupa, and Paschalina Chatzopoulou. 2024. "Enhancement of In Vitro Seed Germination, Growth, and Root Development in Two Sideritis Species through GA3 Application and Diverse LED Light Conditions" Seeds 3, no. 3: 411-435. https://doi.org/10.3390/seeds3030029
APA StyleSarropoulou, V., Grigoriadou, K., Maloupa, E., & Chatzopoulou, P. (2024). Enhancement of In Vitro Seed Germination, Growth, and Root Development in Two Sideritis Species through GA3 Application and Diverse LED Light Conditions. Seeds, 3(3), 411-435. https://doi.org/10.3390/seeds3030029