Critical Evaluation of the Cgrain Value™ as a Tool for Rapid Morphometric Phenotyping of Husked Oat (Avena sativa L.) Grains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Growing Conditions
2.2. Seed Counting and Thousand Grain Weight Analysis
2.3. MARVIN Image Analysis
2.4. Cgrain Image Analysis
2.5. Statistical Analysis
3. Results
3.1. Thousand Grain Weight
3.2. All Seeds—Grain Length
3.3. Plant Means—Grain Length, Width, Roundness, and Area
3.3.1. Grain Length
3.3.2. Grain Width
3.3.3. Grain Roundness
3.3.4. Grain Area
3.4. Cgrain Specific Traits: Grain Weight, Thickness, Cross-Sectional Roundness, and Volume
3.5. Cgrain: Repeatability of Geometric Measurements
3.6. Association between Grain Traits
3.7. Cgrain: Grain Colour
4. Discussion
4.1. Summary of Findings
4.2. Cgrain vs. MARVIN
4.3. Cgrain Repeatability
4.4. Grain Colour
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xiao, Q.; Bai, X.; Zhang, C.; He, Y. Advanced high-throughput plant phenotyping techniques for genome-wide association studies: A review. J. Adv. Res. 2022, 35, 215–230. [Google Scholar] [CrossRef]
- Gegas, V.C.; Nazari, A.; Griffiths, S.; Simmonds, J.; Fish, L.; Orford, S.; Sayers, L.; Doonan, J.H.; Snape, J.W. A Genetic Framework for Grain Size and Shape Variation in Wheat. Plant Cell 2010, 22, 1046–1056. [Google Scholar] [CrossRef]
- Schierenbeck, M.; Alqudah, A.M.; Lohwasser, U.; Tarawneh, R.A.; Simón, M.R.; Börner, A. Genetic dissection of grain architecture-related traits in a winter wheat population. BMC Plant Biol. 2021, 21, 417. [Google Scholar] [CrossRef]
- Lisker, A.; Maurer, A.; Schmutzer, T.; Kazman, E.; Cöster, H.; Holzapfel, J.; Pillen, K. A Haplotype-Based GWAS Identified Trait-Improving QTL Alleles Controlling Agronomic Traits under Contrasting Nitrogen Fertilization Treatments in the MAGIC Wheat Population WM-800. Plants 2022, 11, 3508. [Google Scholar] [CrossRef]
- Xu, X.; Sharma, R.; Tondelli, A.; Russell, J.; Comadran, J.; Schnaithmann, F.; Pillen, K.; Kilian, B.; Cattivelli, L.; Thomas, W.T.B.; et al. Genome-Wide Association Analysis of Grain Yield-Associated Traits in a Pan-European Barley Cultivar Collection. Plant Genome 2018, 11, 170073. [Google Scholar] [CrossRef]
- Shrestha, A.; Cosenza, F.; van Inghelandt, D.; Wu, P.-Y.; Li, J.; A Casale, F.; Weisweiler, M.; Stich, B. The double round-robin population unravels the genetic architecture of grain size in barley. J. Exp. Bot. 2022, 73, 7344–7361. [Google Scholar] [CrossRef]
- Neuweiler, J.E.; Maurer, H.P.; Würschum, T. Long-term trends and genetic architecture of seed characteristics, grain yield and correlated agronomic traits in triticale (xTriticosecale Wittmack). Plant Breed. 2020, 139, 717–729. [Google Scholar] [CrossRef]
- Cao, D.; Wang, D.; Li, S.; Li, Y.; Hao, M.; Liu, B. Genotyping-by-sequencing and genome-wide association study reveal genetic diversity and loci controlling agronomic traits in triticale. Theor. Appl. Genet. 2022, 135, 1705–1715. [Google Scholar] [CrossRef]
- Howarth, C.J.; Martinez-Martin, P.M.J.; Cowan, A.A.; Griffiths, I.M.; Sanderson, R.; Lister, S.J.; Langdon, T.; Clarke, S.; Fradgley, N.; Marshall, A.H. Genotype and Environment Affect the Grain Quality and Yield of Winter Oats (Avena sativa L.). Foods 2021, 10, 2356. [Google Scholar] [CrossRef]
- Tao, Y.; Zhao, X.; Wang, X.; Hathorn, A.; Hunt, C.; Cruickshank, A.W.; van Oosterom, E.J.; Godwin, I.D.; Mace, E.S.; Jordan, D.R. Large-scale GWAS in sorghum reveals common genetic control of grain size among cereals. Plant Biotechnol. J. 2020, 18, 1093–1105. [Google Scholar] [CrossRef]
- Yu, H.; Hao, Y.; Li, M.; Dong, L.; Che, N.; Wang, L.; Song, S.; Liu, Y.; Kong, L.; Shi, S. Genetic architecture and candidate gene identification for grain size in bread wheat by GWAS. Front. Plant Sci. 2022, 13, 1072904. [Google Scholar] [CrossRef] [PubMed]
- Whan, A.P.; Smith, A.B.; Cavanagh, C.R.; Ral JP, F.; Shaw, L.M.; Howitt, C.A.; Bischof, L. GrainScan: A low cost, fast method for grain size and colour measurements. Plant Methods 2014, 10, 23. [Google Scholar] [CrossRef]
- Tanabata, T.; Shibaya, T.; Hori, K.; Ebana, K.; Yano, M. SmartGrain: High-Throughput Phenotyping Software for Measuring Seed Shape through Image Analysis. Plant Physiol. 2012, 160, 1871–1880. [Google Scholar] [CrossRef]
- Alemu, A.; Feyissa, T.; Tuberosa, R.; Maccaferri, M.; Sciara, G.; Letta, T.; Abeyo, B. Genome-wide association mapping for grain shape and color traits in Ethiopian durum wheat (Triticum turgidum ssp. durum). Crop. J. 2020, 8, 757–768. [Google Scholar] [CrossRef]
- Kabange, N.R.; Dzorkpe, G.D.; Park, D.S.; Kwon, Y.; Lee, S.B.; Lee, S.M.; Lee, J.H. Rice (Oryza sativa L.) Grain Size, Shape, and Weight-Related QTLs Identified Using GWAS with Multiple GAPIT Models and High-Density SNP Chip DNA Markers. Plants 2023, 12, 4044. [Google Scholar] [CrossRef] [PubMed]
- Jahnke, S.; Roussel, J.; Hombach, T.; Kochs, J.; Fischbach, A.; Huber, G.; Scharr, H. phenoSeeder—A Robot System for Automated Handling and Phenotyping of Individual Seeds. Plant Physiol. 2016, 172, 1358–1370. [Google Scholar] [CrossRef]
- Hughes, A.; Oliveira, H.R.; Fradgley, N.; Corke, F.M.K.; Cockram, J.; Doonan, J.H.; Nibau, C.; Hughes, N. μCT trait analysis reveals morphometric differences between domesticated temperate small grain cereals and their wild relatives. Plant J. 2019, 99, 98–111. [Google Scholar] [CrossRef]
- Legland, D.; Alvarado, C.; Badel, E.; Guillon, F.; King, A.; Le, T.D.Q.; Rivard, C.; Paré, L.; Chateigner-Boutin, A.-L.; Girousse, C. Synchrotron Based X-ray Microtomography Reveals Cellular Morphological Features of Developing Wheat Grain. Appl. Sci. 2022, 12, 3454. [Google Scholar] [CrossRef]
- Corcoran, E.; Siles, L.; Kurup, S.; Ahnert, S. Automated extraction of pod phenotype data from micro-computed tomography. Front. Plant Sci. 2023, 14, 1120182. [Google Scholar] [CrossRef]
- Qin, Z.; Zhang, Z.; Hua, X.; Yang, W.; Liang, X.; Zhai, R.; Huang, C. Cereal grain 3D point cloud analysis method for shape extraction and filled/unfilled grain identification based on structured light imaging. Sci. Rep. 2022, 12, 3145. [Google Scholar] [CrossRef]
- Webster, F.H. Oats. In Cereal Grain Quality; Springer: Dordrecht, The Netherlands, 1996; pp. 179–203. [Google Scholar] [CrossRef]
- Coffman, F.A. Oat History: Identification and Classification; Technical Bulletins 158127; United States Department of Agriculture: Washington, DC, USA, 1977. [CrossRef]
- Strychar, R. Chapter 1: World Oat Production, Trade, and Usage. OATS: Chemistry and Technology; AACC International, Inc.: St. Paul, MN, USA, 2011; pp. 1–10. [Google Scholar] [CrossRef]
- Heuschele, D.J.; Catalano, D.; Martinson, K.; Wiersma, J. Consumer Knowledge and Horse Preference for Different Colored Oats. J. Equine Vet. Sci. 2018, 71, 6–12. [Google Scholar] [CrossRef]
- Zwer, P. Oats: Characteristics and quality requirements. In Cereal Grains: Assessing and Managing Quality; Woodhead Publishing: Cambridge, UK, 2010; pp. 163–182. [Google Scholar] [CrossRef]
- Inspecting Grain for Defects and Impurities|AHDB. Available online: https://ahdb.org.uk/knowledge-library/inspecting-grain-for-defects-and-impurities (accessed on 10 June 2024).
- Marshall, A.; Cowan, S.; Edwards, S.; Griffiths, I.; Howarth, C.; Langdon, T.; White, E. Crops that feed the world 9. Oats- a cereal crop for human and livestock feed with industrial applications. Food Secur. 2013, 5, 13–33. [Google Scholar] [CrossRef]
- Valentine, J. Chapter 2: Oat Breeding. OATS: Chemistry and Technology; AACC International, Inc.: St. Paul, MN, USA, 2011; pp. 11–30. [Google Scholar] [CrossRef]
- Leiva, F.; Zakieh, M.; Alamrani, M.; Dhakal, R.; Henriksson, T.; Singh, P.K.; Chawade, A. Phenotyping Fusarium head blight through seed morphology characteristics using RGB imaging. Front. Plant Sci. 2022, 13, 1010249. [Google Scholar] [CrossRef]
- Wang, K.; Taylor, D.; Ruan, Y.; Pozniak, C.J.; Izydorczyk, M.; Fu, B.X. Unveiling the factors affecting milling quality of durum wheat: Influence of kernel physical properties, grain morphology and intrinsic milling behaviours. J. Cereal Sci. 2023, 113, 103755. [Google Scholar] [CrossRef]
- Jammalamadaka, S.R.; SenGupta, A. Topics in Circular Statistics; World Scientific Pub Co Pte Ltd.: Singapore, 2001; Volume 5. [Google Scholar] [CrossRef]
- Bland, J.M.; Altman, D.G. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986, 327, 307–310. [Google Scholar] [CrossRef]
- Hyslop, N.P.; White, W.H. Estimating Precision Using Duplicate Measurements. J. Air Waste Manag. Assoc. 2009, 59, 1032–1039. [Google Scholar] [CrossRef]
- Gabriel, K.R. The biplot graphic display of matrices with application to principal component analysis. Biometrika 1971, 58, 453–467. [Google Scholar] [CrossRef]
- May, W.E.; Brandt, S.; Hutt-Taylor, K. Response of oat grain yield and quality to nitrogen fertilizer and fungicides. Agron. J. 2020, 112, 1021–1034. [Google Scholar] [CrossRef]
- Buerstmayr, H.; Krenn, N.; Stephan, U.; Grausgruber, H.; Zechner, E. Agronomic performance and quality of oat (Avena sativa L.) genotypes of worldwide origin produced under Central European growing conditions. Field Crop. Res. 2007, 101, 343–351. [Google Scholar] [CrossRef]
- Finnan, J.; Burke, B.; Spink, J. The effect of nitrogen timing and rate on radiation interception, grain yield and grain quality in autumn sown oats. Field Crop. Res. 2019, 231, 130–140. [Google Scholar] [CrossRef]
- Doehlert, D.C. Quality Improvement in Oat. J. Crop. Prod. 2002, 5, 165–189. [Google Scholar] [CrossRef]
- Doehlert, D.C.; McMullen, M.S.; Riveland, N.R. Sources of Variation in Oat Kernel Size. Cereal Chem. 2002, 79, 528–534. [Google Scholar] [CrossRef]
- Doehlert, D.C.; Jannink, J.-L.; McMullen, M.S. Size Distributions of Different Orders of Kernels within the Oat Spikelet. Crop. Sci. 2008, 48, 298–304. [Google Scholar] [CrossRef]
- Kim, J.; Savin, R.; Slafer, G.A. Weight of individual wheat grains estimated from high-throughput digital images of grain area. Eur. J. Agron. 2021, 124, 126237. [Google Scholar] [CrossRef]
- Shah, A.; Masoodi, F.A.; Gani, A.; Ashwar, B.A. Geometrical, functional, thermal, and structural properties of oat varieties from temperate region of India. J. Food Sci. Technol. 2016, 53, 1856–1866. [Google Scholar] [CrossRef]
- Lapveteläinen, A.; Alho-Lehto, P.; Sinn, L.; Laukkanen, T.; Lindman, T.; Kallio, H.; Kaitaranta, J.; Katajisto, J. Relationships of Selected Physical, Chemical, and Sensory Parameters in Oat Grain, Rolled Oats, and Cooked Oatmeal—A Three-Year Study with Eight Cultivars. Cereal Chem. 2001, 78, 322–329. [Google Scholar] [CrossRef]
- Aprodu, I.; Banu, I. Milling, functional and thermo-mechanical properties of wheat, rye, triticale, barley and oat. J. Cereal Sci. 2017, 77, 42–48. [Google Scholar] [CrossRef]
- Sadras, V.O. Evolutionary aspects of the trade-off between seed size and number in crops. Field Crop. Res. 2007, 100, 125–138. [Google Scholar] [CrossRef]
- Peltonen-Sainio, P.; Kangas, A.; Salo, Y.; Jauhiainen, L. Grain number dominates grain weight in temperate cereal yield determination: Evidence based on 30 years of multi-location trials. Field Crop. Res. 2007, 100, 179–188. [Google Scholar] [CrossRef]
- Vahamidis, P.; Stefopoulou, A.; Kotoulas, V.; Bresta, P.; Nikolopoulos, D.; Karabourniotis, G.; Mantonanakis, G.; Vlachos, C.; Dercas, N.; Economou, G. Grain size variation in two-rowed malt barley under Mediterranean conditions: Phenotypic plasticity and relevant trade-offs. Field Crop. Res. 2022, 279, 108454. [Google Scholar] [CrossRef]
- Kruszelnicka, W.; Chen, Z.; Ambrose, K. Moisture-Dependent Physical-Mechanical Properties of Maize, Rice, and Soybeans as Related to Handling and Processing. Materials 2022, 15, 8729. [Google Scholar] [CrossRef] [PubMed]
- Gerald Winter Oat—Senova. Available online: https://www.senova.uk.com/gerald (accessed on 10 June 2024).
- Mascani Winter Oat—Senova. Available online: https://www.senova.uk.com/mascani (accessed on 10 June 2024).
- Komyshev, E.G.; Genaev, M.A.; Afonnikov, D.A. Analysis of color and texture characteristics of cereals on digital images. Vavilov J. Genet. Breed. 2020, 24, 340–347. [Google Scholar] [CrossRef] [PubMed]
- Brabec, D.; Guttieri, M.; Pearson, T.; Carsrud, B. Effectiveness of an image-based sorter to select for kernel color within early segregating hard winter wheat (Triticum aestivum L.) Populations. Cereal Res. Commun. 2017, 45, 488–499. [Google Scholar] [CrossRef]
Measurement | Units | Definition | Machine Capability | |
---|---|---|---|---|
MARVIN | Cgrain | |||
Whole Sample | ||||
Grain count | n/a | Total number of grains detected in the sample. | Y | Y |
TGW | g | Estimation of the total weight of 1000 representative grains of the sample. | Y | Y |
Individual Grains | ||||
Grain weight | mg | Estimation of the weight of the grain. | N | Y |
Grain length | mm | Longest continuous linear distance between two points on the outermost edge of the grain. | Y | Y |
Grain width | mm | Longest continuous linear distance between two points on the outermost edge of the grain, perpendicular to the length measurement. | Y | Y |
Grain area | mm2 | Area of background obscured by a single image of the grain. | Y | Y |
Grain thickness | mm | The shortest maximum width of the grain in any orientation about the length axis, i.e., the smallest possible width slot (of infinite length) through which the grain can fully pass. | N | Y |
Grain volume | mm3 | Total apparent volume in space occupied by the grain, which is assumed continuously solid. | N | Y |
Grain colour | RGB/HSL | Average pixel colour of segmented grain image | N | Y |
Measurement | r | Wilcoxon Signed Rank Test p-Value | Median Paired Difference 1 | Median Difference 95% Confidence Interval 2 | 95% Limits of Agreement 3 | Coefficient of Variation (CV) (%) |
---|---|---|---|---|---|---|
Mean grain weight (mg) | 0.94 | <0.0001 | −0.35 | −0.48, −0.23 | −3.8, +3.8 | 2.2 |
Grain length (mm) | 0.96 | 0.13 | −0.01 | −0.02, +0.00 | −0.4, +0.3 | 1.0 |
Grain width (mm) | 0.95 | <0.0001 | −0.016 | −0.020, −0.014 | −0.04, +0.10 | 0.9 |
Grain roundness | 0.94 | <0.0001 | −0.0012 | −0.0016, −0.0008 | −0.008, +0.010 | 1.3 |
Grain thickness (mm) | 0.96 | <0.0001 | −0.009 | −0.012, −0.006 | −0.05, +0.08 | 0.7 |
Cross-sectional grain roundness | 0.82 | <0.001 | +0.0015 | +0.0007, +0.0023 | −0.016, +0.015 | 0.7 |
Grain area (mm2) | 0.95 | <0.0001 | −0.14 | −0.18, −0.09 | −1.0, +1.2 | 1.4 |
Grain volume (mm3) | 0.98 | <0.0001 | −0.34 | −0.44, −0.24 | −1.5, +3.0 | 1.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Evershed, D.; Durkan, E.J.; Hasler, R.; Corke, F.; Doonan, J.H.; Howarth, C.J. Critical Evaluation of the Cgrain Value™ as a Tool for Rapid Morphometric Phenotyping of Husked Oat (Avena sativa L.) Grains. Seeds 2024, 3, 436-455. https://doi.org/10.3390/seeds3030030
Evershed D, Durkan EJ, Hasler R, Corke F, Doonan JH, Howarth CJ. Critical Evaluation of the Cgrain Value™ as a Tool for Rapid Morphometric Phenotyping of Husked Oat (Avena sativa L.) Grains. Seeds. 2024; 3(3):436-455. https://doi.org/10.3390/seeds3030030
Chicago/Turabian StyleEvershed, David, Eamon J. Durkan, Rachel Hasler, Fiona Corke, John H. Doonan, and Catherine J. Howarth. 2024. "Critical Evaluation of the Cgrain Value™ as a Tool for Rapid Morphometric Phenotyping of Husked Oat (Avena sativa L.) Grains" Seeds 3, no. 3: 436-455. https://doi.org/10.3390/seeds3030030
APA StyleEvershed, D., Durkan, E. J., Hasler, R., Corke, F., Doonan, J. H., & Howarth, C. J. (2024). Critical Evaluation of the Cgrain Value™ as a Tool for Rapid Morphometric Phenotyping of Husked Oat (Avena sativa L.) Grains. Seeds, 3(3), 436-455. https://doi.org/10.3390/seeds3030030