Evaluation of Short-Season Soybean (Glycine max (L.) Merr.) Breeding Lines for Tofu Production
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Trials
2.2. Agronomic Traits
2.3. Seed Composition
2.4. Assessment of Tofu-Related Quality
2.5. Statistical Analysis
3. Results and Discussion
3.1. Agronomy Traits
3.2. Seed Composition and Tofu-Related Traits
3.3. GGEbiplot Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Agricultural Market Information Systems (AMIS). License: CC BY-NC-SA 3.0 IGO. 2024. Available online: https://www.fao.org/statistics/statistics/statistical-capacity-development/agricultural-market-information-system/en (accessed on 20 March 2024).
- Dilawari, R.; Kaur, N.; Priyadarshi, N.; Prakash, I.; Patra, A.; Mehta, S.; Singh, B.; Jain, P.; Islam, M.A. Soybean: A Key Player for Global Food Security. In Soybean Improvement: Physiological, Molecular and Genetic Perspectives; Wani, S.H., Sofi, N.u.R., Bhat, M.A., Lin, F., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 1–46. [Google Scholar] [CrossRef]
- Neupane, A.; Bulbul, I.; Wang, Z.; Lehman, R.M.; Nafziger, E.; Marzano, S.-Y.L. Long term crop rotation effect on subsequent soybean yield explained by soil and root-associated microbiomes and soil health indicators. Sci. Rep. 2021, 11, 9200. [Google Scholar] [CrossRef] [PubMed]
- Ali, F.; Tian, K.; Wang, Z.-X. Modern techniques efficacy on tofu processing: A review. Trends Food Sci. Technol. 2021, 116, 766–785. [Google Scholar] [CrossRef]
- Meng, S.; Chang, S.; Gillen, A.M.; Zhang, Y. Protein and quality analyses of accessions from the USDA soybean germplasm collection for tofu production. Food Chem. 2016, 213, 31–39. [Google Scholar] [CrossRef] [PubMed]
- Rotundo, J.L.; Miller-Garvin, J.E.; Naeve, S.L. Regional and Temporal Variation in Soybean Seed Protein and Oil across the United States. Crop Sci. 2016, 56, 797–808. [Google Scholar] [CrossRef]
- Skurray, G.; Cunich, J.; Carter, O. The effect of different varieties of soybean and calcium ion concentration on the quality of tofu. Food Chem. 1980, 6, 89–95. [Google Scholar] [CrossRef]
- Goel, R.; Kaur, A.; Singh, J. Varietal evaluation of soybean for tofu making. Asian J. Dairy Food Res. 2018, 37, 81–84. [Google Scholar] [CrossRef]
- Mujoo, R.; Trinh, D.T.; Ng, P.K.W. Characterization of storage proteins in different soybean varieties and their relationship to tofu yield and texture. Food Chem. 2003, 82, 265–273. [Google Scholar] [CrossRef]
- Toda, K.; Ono, T.; Kitamura, K.; Hajika, M.; Takahashi, K.; Nakamura, Y. Seed Protein Content and Consistency of Tofu Prepared with Different Magnesium Chloride Concentrations in Six Japanese Soybean Varieties. Breed. Sci. 2003, 53, 217–223. [Google Scholar] [CrossRef]
- Ort, N.W.W.; Morrison, M.J.; Cober, E.R.; McAndrew, D.; Lawley, Y.E. A comparison of soybean maturity groups for phenology, seed yield, and seed quality components between eastern Ontario and southern Manitoba. Can. J. Plant Sci. 2022, 102, 812–822. [Google Scholar] [CrossRef]
- Ndatsu, Y.; Olekan, A.A. Effects of Different Types of Coagulants on the Nutritional Quality Tofu Produced in the Northern Part of Nigeria. World J. Dairy Food Sci. 2012, 7, 135–141. [Google Scholar] [CrossRef]
- Shurtleff, W.; Aoyagi, A. Tofu & Soymilk Production: The Book of Tofu, Volume II, A Craft and Technical Manual, 3rd ed.; Soyinfo Center Publishing: Lafayette, CA, USA, 2000. [Google Scholar]
- Zhang, Q.; Wang, C.; Li, B.; Li, L.; Lin, D.; Chen, H.; Liu, Y.; Li, S.; Qin, W.; Liu, J.; et al. Research progress in tofu processing: From raw materials to processing conditions. Crit. Rev. Food Sci. Nutr. 2018, 58, 1448–1467. [Google Scholar] [CrossRef]
- Zhang, Q.; Zhou, S.; Chen, J.; Qin, W.; Liu, J.; Yang, W.; Zhang, L. Fabrication of whole soybean curd using three soymilk preparation techniques. LWT 2019, 104, 91–99. [Google Scholar] [CrossRef]
- Frégeau-Reid, J.A.; Cober, E.R. A small-scale tofu test for soybean breeding programs. Can. J. Plant Sci. 2019, 99, 50–55. [Google Scholar] [CrossRef]
- Mullin, W.J.; Fregeau-Reid, J.A.; Butler, M.; Poysa, V.; Woodrow, L.; Jessop, D.B.; Raymond, D. An interlaboratory test of a procedure to assess soybean quality for soymilk and tofu production. Food Res. Int. 2001, 34, 669–677. [Google Scholar] [CrossRef]
- Patterson, H.D.; Williams, E.R.; Hunter, E.A. Block designs for variety trials. J. Agric. Sci. 1978, 90, 395–400. [Google Scholar] [CrossRef]
- Yan, W. GGEbiplot—A Windows Application for Graphical Analysis of Multienvironment Trial Data and Other Types of Two-Way Data. Agron. J. 2001, 93, 1111–1118. [Google Scholar] [CrossRef]
- Cober, E.R.; Morrison, M.J. Soybean Yield and Seed Composition Changes in Response to Increasing Atmospheric CO2 Concentration in Short-Season Canada. Plants 2019, 8, 250. [Google Scholar] [CrossRef]
- Nakagawa, A.C.S.; Ario, N.; Tomita, Y.; Tanaka, S.; Murayama, N.; Mizuta, C.; Iwaya-Inoue, M.; Ishibashi, Y. High temperature during soybean seed development differentially alters lipid and protein metabolism. Plant Prod. Sci. 2020, 23, 504–512. [Google Scholar] [CrossRef]
- Islam, N.; Krishnan, H.B.; Natarajan, S. Quantitative proteomic analyses reveal the dynamics of protein and amino acid accumulation during soybean seed development. Proteomics 2022, 22, 2100143. [Google Scholar] [CrossRef]
- Bennett, J.O.; Krishnan, A.H.; Wiebold, W.J.; Krishnan, H.B. Positional Effect on Protein and Oil Content and Composition of Soybeans. J. Agric. Food Chem. 2003, 51, 6882–6886. [Google Scholar] [CrossRef]
- Chachalis, D.; Smith, M.L. Imbibition behavior of soybean (Glycine max (L.) Merrill) accessions with different testa characteristics. Seed Sci. Technol. 2000, 28, 321–331. [Google Scholar]
- Gerna, D.; Clara, D.; Antonielli, L.; Mitter, B.; Roach, T. Seed Imbibition and Metabolism Contribute Differentially to Initial Assembly of the Soybean Holobiont. Phytobiomes J. 2024, 8, 21–33. [Google Scholar] [CrossRef] [PubMed]
- Jang, S.J.; Sato, M.; Sato, K.; Jitsuyama, Y.; Fujino, K.; Mori, H.; Takahashi, R.; Benitez, E.R.; Liu, B.; Yamada, T.; et al. A Single-Nucleotide Polymorphism in an Endo-1,4-β-Glucanase Gene Controls Seed Coat Permeability in Soybean. PLoS ONE 2015, 10, e0128527. [Google Scholar] [CrossRef] [PubMed]
- Koizumi, M.; Kikuchi, K.; Isobe, S.; Ishida, N.; Naito, S.; Kano, H. Role of seed coat in imbibing soybean seeds observed by micro-magnetic resonance imaging. Ann. Bot. 2008, 102, 343–352. [Google Scholar] [CrossRef] [PubMed]
- Meyer, C.J.; Steudle, E.; Peterson, C.A. Patterns and kinetics of water uptake by soybean seeds. J. Exp. Bot. 2007, 58, 717–732. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.-g.; Yang, Y.; Piekoszewski, W.; Zeng, J.-h.; Guan, H.-n.; Wang, B.; Liu, L.-l.; Zhu, X.-q.; Chen, F.-l.; Zhang, N. Influence of four different coagulants on the physicochemical properties, textural characteristics and flavour of tofu. Int. J. Food Sci. Technol. 2020, 55, 1218–1229. [Google Scholar] [CrossRef]
- Poysa, V.; Woodrow, L.; Yu, K. Effect of soy protein subunit composition on tofu quality. Food Res. Int. 2006, 39, 309–317. [Google Scholar] [CrossRef]
- Stanojevic, S.P.; Barac, M.B.; Pesic, M.B.; Vucelic-Radovic, B.V. Assessment of Soy Genotype and Processing Method on Quality of Soybean Tofu. J. Agric. Food Chem. 2011, 59, 7368–7376. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.; Hua, Y.; Chen, Y.; Kong, X.; Zhang, C. Effect of 7S/11S ratio on the network structure of heat-induced soy protein gels: A study of probe release. RSC Adv. 2016, 6, 101981–101987. [Google Scholar] [CrossRef]
- Ono, T.; Onodera, Y.; Chen, Y.; Nakasato, K. Tofu structure is regulated by soymilk protein composition and coagulant concentration. In Chemistry, Texture, and Flavor of Soy; ACS Symposium Series; American Chemical Society: Washington, DC, USA, 2010; pp. 219–229. [Google Scholar]
- Chen, R.; Chang, S.K.C.; Gillen, A.M.; Chen, P.; Zhang, B. Relationships between protein and other chemical composition and texture of tofu made from soybeans grown in different locations. J. Food Sci. 2024, 89, 1428–1441. [Google Scholar] [CrossRef]
- Onodera, Y.; Ono, T.; Nakasato, K.; Toda, K. Homogeneity and Microstructure of Tofu Depends on 11S/7S Globulin Ratio in Soymilk and Coagulant Concentration. Food Sci. Technol. Res. 2009, 15, 265–274. [Google Scholar] [CrossRef]
- Kurasch, A.K.; Hahn, V.; Miersch, M.; Bachteler, K.; Würschum, T. Analysis of tofu-related traits by a bench-scale tofu production method and their relationship with agronomic traits in European soybean. Plant Breed. 2018, 137, 271–282. [Google Scholar] [CrossRef]
- Wilcox, J.R.; Cavins, J.F. Backcrossing High Seed Protein to a Soybean Cultivar. Crop Sci. 1995, 35, 1036–1041. [Google Scholar] [CrossRef]
- Cober, E.R.; Voldeng, H.D. Developing High-Protein, High-Yield Soybean Populations and Lines. Crop Sci. 2000, 40, 39–42. [Google Scholar] [CrossRef]
- Gupta, S.K.; Manjaya, J.G. Advances in improvement of soybean seed composition traits using genetic, genomic and biotechnological approaches. Euphytica 2022, 218, 99. [Google Scholar] [CrossRef]
- Prenger, E.M.; Yates, J.; Mian, M.A.R.; Buckley, B.; Boerma, H.R.; Li, Z. Introgression of a High Protein Allele into an Elite Soybean Cultivar Results in a High-Protein Near-Isogenic Line with Yield Parity. Crop Sci. 2019, 59, 2498–2508. [Google Scholar] [CrossRef]
- Sebolt, A.M.; Shoemaker, R.C.; Diers, B.W. Analysis of a Quantitative Trait Locus Allele from Wild Soybean That Increases Seed Protein Concentration in Soybean. Crop Sci. 2000, 40, 1438–1444. [Google Scholar] [CrossRef]
- Wang, J.; Mao, L.; Zeng, Z.; Yu, X.; Lian, J.; Feng, J.; Yang, W.; An, J.; Wu, H.; Zhang, M.; et al. Genetic mapping high protein content QTL from soybean ‘Nanxiadou 25’ and candidate gene analysis. BMC Plant Biol. 2021, 21, 388. [Google Scholar] [CrossRef] [PubMed]
- Clemente, T.E.; Cahoon, E.B. Soybean Oil: Genetic Approaches for Modification of Functionality and Total Content. Plant Physiol. 2009, 151, 1030–1040. [Google Scholar] [CrossRef]
- Kim, H.K.; Kang, S.T. Identification of Quantitative Trait Loci (QTLs) Associated with Oil and Protein Contents in Soybean (Glycine max L.). LJournal Life Sci. 2004, 14, 453–458. [Google Scholar]
- Hou, Z.; Liu, B.; Kong, F. Chapter Two—Regulation of flowering and maturation in soybean. In Advances in Botanical Research; Lam, H.-M., Li, M.-W., Eds.; Academic Press: Cambridge, MA, USA, 2022; Volume 102, pp. 43–75. [Google Scholar]
- Cober, E.R.; Molnar, S.J.; Charette, M.; Voldeng, H.D. A New Locus for Early Maturity in Soybean. Crop Sci. 2010, 50, 524–527. [Google Scholar] [CrossRef]
- Wang, L.; Fang, C.; Liu, J.; Zhang, T.; Kou, K.; Su, T.; Li, S.; Chen, L.; Cheng, Q.; Dong, L.; et al. Identification of major QTLs for flowering and maturity in soybean by genotyping-by-sequencing analysis. Mol. Breed. 2020, 40, 99. [Google Scholar] [CrossRef]
MG/Year | Seed Weight (g/100 Seeds) | Seed Quality (1–5 Score *) | Protein (% DM) | Oil (% DM) | Carbohydrates (% DM) | Sugar (% DM) | Sucrose (% DM) | Raffinose and Stachyose (% DM) |
---|---|---|---|---|---|---|---|---|
MG0 | ||||||||
2018 | 20.3 ± 0.3 | 2.4 ± 0.1 | 43.6 ± 0.2 | 20.6 ± 0.1 | 17.4 ± 0.1 | 11.6 ± 0.1 | 5.9 ± 0.1 | 4.8 ± 0.0 |
2019 | 17.8 ± 0.3 | 2.3 ± 0.1 | 40.5 ± 0.3 | 20.9 ± 0.2 | 20.0 ± 0.1 | 12.7 ± 0.1 | 7.3 ± 0.1 | 4.3 ± 0.0 |
2020 | 21.9 ± 0.5 | 1.0 ± 0.0 | 44.7 ± 1.0 | 19.5 ± 0.5 | 19.1 ± 0.3 | 13.1 ± 0.1 | 7.0 ± 0.2 | 4.4 ± 0.1 |
2021 | 18.8 ± 0.4 | 3.2 ± 0.1 | 41.2 ± 0.4 | 21.9 ± 0.3 | 18.3 ± 0.1 | 11.4 ± 0.1 | 6.0 ± 0.1 | 4.8 ± 0.0 |
2022 | 22.3 ± 0.3 | 2.4 ± 0.1 | 44.4 ± 0.2 | 19.5 ± 0.1 | 18.0 ± 0.1 | 11.6 ± 0.1 | 6.5 ± 0.1 | 4.4 ± 0.0 |
MG00 | ||||||||
2018 | 24.2 ± 0.4 | 2.3 ± 0.1 | 44.1 ± 0.2 | 20.7 ± 0.1 | 16.8 ± 0.1 | 11.1 ± 0.1 | 5.7 ± 0.1 | 4.8 ± 0.0 |
2019 | 16.6 ± 0.2 | 2.1 ± 0.0 | 39.0 ± 0.2 | 21.9 ± 0.1 | 20.3 ± 0.1 | 12.5 ± 0.1 | 7.6 ± 0.1 | 4.1 ± 0.0 |
2020 | 21.1 ± 0.3 | 2.2 ± 0.1 | 44.1 ± 0.5 | 20.1 ± 0.2 | 17.1 ± 0.2 | 10.6 ± 0.1 | 5.9 ± 0.1 | 4.4 ± 0.0 |
2021 | 17.0 ± 0.1 | 1.6 ± 0.1 | 42.9 ± 0.3 | 20.9 ± 0.2 | 19.0 ± 0.1 | 11.5 ± 0.1 | 6.2 ± 0.1 | 4.4 ± 0.0 |
2022 | 20.6 ± 0.4 | 1.4 ± 0.1 | 42.1 ± 0.3 | 20.9 ± 0.2 | 18.9 ± 0.1 | 12.0 ± 0.1 | 6.9 ± 0.1 | 4.3 ± 0.0 |
MG000 | ||||||||
2019 | 15.8 ± 0.2 | 2.3 ± 0.1 | 38.8 ± 0.3 | 21.9 ± 0.2 | 20.4 ± 0.2 | 12.5 ± 0.1 | 7.4 ± 0.1 | 4.1 ± 0.0 |
2021 | 16.7 ± 0.2 | 1.9 ± 0.1 | 43.1 ± 0.4 | 20.9 ± 0.2 | 19.1 ± 0.1 | 11.5 ± 0.1 | 6.1 ± 0.1 | 4.4 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadinezhad, M.; Lackey, S.; Cober, E.R. Evaluation of Short-Season Soybean (Glycine max (L.) Merr.) Breeding Lines for Tofu Production. Seeds 2024, 3, 393-410. https://doi.org/10.3390/seeds3030028
Hadinezhad M, Lackey S, Cober ER. Evaluation of Short-Season Soybean (Glycine max (L.) Merr.) Breeding Lines for Tofu Production. Seeds. 2024; 3(3):393-410. https://doi.org/10.3390/seeds3030028
Chicago/Turabian StyleHadinezhad, Mehri, Simon Lackey, and Elroy R. Cober. 2024. "Evaluation of Short-Season Soybean (Glycine max (L.) Merr.) Breeding Lines for Tofu Production" Seeds 3, no. 3: 393-410. https://doi.org/10.3390/seeds3030028
APA StyleHadinezhad, M., Lackey, S., & Cober, E. R. (2024). Evaluation of Short-Season Soybean (Glycine max (L.) Merr.) Breeding Lines for Tofu Production. Seeds, 3(3), 393-410. https://doi.org/10.3390/seeds3030028