Effect of Culture Temperatures on the Initial Growth Performance of Seedlings Germinated from Cryostored Seeds of a Tropical Tree Parkia nitida Miq. (Fabaceae, Mimosoideae)
Abstract
:1. Introduction
2. Material and Method
2.1. Plant Materials
2.2. Cryostorage of Seeds
2.3. Priming Treatment and Seed Germination
2.4. Growth of Seedlings under Different Culture Temperatures
2.5. Data Analysis
3. Result
3.1. Seed Germination
3.2. Initial Growth and Biomass Partitioning
4. Discussion
4.1. Seed Germination
4.2. Initial Growth and Biomass Partitioning
5. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hopkins, H.C.F. Flora Neotropica Monograph 43, Parkia (Leguminosae: Mimosoideae); The New York Botanical Garden: New York, NY, USA, 1986; pp. 1–123. [Google Scholar]
- Hopkins, H.C. Floral biology and pollination ecology of the neotropical species of Parkia. J. Ecol. 1984, 72, 1–23. [Google Scholar] [CrossRef]
- Luckow, M.; Hopkins, H.C.F. A cladistic analysis of Parkia (Leguminosae:Mimosoideae). Am. J. Bot. 1995, 82, 1300–1320. [Google Scholar] [CrossRef]
- Peres, C.A. Identifying keystone plant resources in tropical forests: The case of gums from Parkia pods. J. Trop. Ecol. 2000, 16, 287–317. [Google Scholar] [CrossRef]
- Cardoso, G.; dos Santos, R.; do Amaral, M.; Vieira, M. Árvores do Sul do Amazonas: Guia de Especies de Interesse Economico e Ecologico, 2nd ed.; IDESAM: Manaus, Brazil, 2014; ISBN 978-85-64371-23-1. [Google Scholar]
- Moraes, G.J.V.P.; Ferraz, I.D.K.; Procópio, L.C. Physiological immaturity and hydropriming of Parkia nitida Miq. Seeds with physical dormancy. Ciência Florestal 2015, 25, 1053–1059. [Google Scholar] [CrossRef]
- Heymann, E.W.; Lüttmann, K.; Michalczyk, I.M.; Saboya, P.P.P.; Ziegenhagen, B.; Bialozyt, R. DNA fingerprinting validates seed dispersal curves from observational studies in the neotropical legume Parkia. PLoS ONE 2012, 7, e35480. [Google Scholar] [CrossRef]
- Moreira, F.M.S.; Franco, A.A. Goma extraida de vagens de Parkia nitida Miquel para inoculacao e revestimiento de sementes de leguminosas. Turrialba 1991, 41, 524–527. [Google Scholar]
- Saleh, M.S.M.; Jalil, J.; Zainalabidin, S.; Asmadi, A.Y.; Mustafa, N.H.; Kamisah, Y. Genus Parkia: Phytochemical, Medicinal Uses, and Pharmacological Properties. Int. J. Mol. Sci. 2021, 22, 618. [Google Scholar] [CrossRef] [PubMed]
- Saavedra, L. Estudio de Crecimiento y Productividad en Plantaciones de Cuatro Especies Forestales Heliofitas Durables en ultisols de Ucayali. Bachelor’s Thesis, Universidad Nacional de Ucayali, Pucallpa, Peru, 2004. [Google Scholar]
- Costa, K.; Silva, J.; Pinheiro, R.; Ferreira, M.; da Silva, T.; de Sousa, A.; Piotto, G. Estoques de biomassa e nutrients em três espécies de Parkia em plantios jovenes sobre área degradada na Amazônia central. Floresta 2014, 44, 637–646. [Google Scholar] [CrossRef]
- Tadeu, H.G.; Carbone, M.A.; Rodrigues, M.; Coutinho, L.; de Araújo, P.I.; Lopes, Á. Influence of Arbuscular Mycorrhizal Fungi and Phosphorus Doses in the Production of Parkia nitida (Miquel) in Seedling Nursery in the South of Amazonas. JEAI 2018, 28, 1–10. [Google Scholar] [CrossRef]
- Keller, E.R.J.; Kaczmarczyk, A.; Senula, A. Cryopreservation for plant genebanks—A matter between high expectations and cautions reservation. CroLetters 2008, 29, 53–62. [Google Scholar]
- Maruyama, T.E.; Hosoi, Y. Cryopreservation of seeds of some important tropical forest trees. Kanto Shinrin Kenkyu 2010, 61, 147–148. (In Japanese) [Google Scholar]
- Maruyama, E.; Ugamoto, M. Treatments for promoting germination of Parkia oppositifolia BENTH and Schizolobium amazonicum HUBER seeds. J. Jpn. For. Soc. 1989, 71, 209–211. [Google Scholar]
- Villiers, T.A. Seed dormancy. In Seed Biology; Kozlowski, T., Ed.; Academic Press: New York, NY, USA, 1972; Volume 2, pp. 219–281. [Google Scholar]
- Cruz, E.D.; Carvalho, J.E.U.; Leâo, N.V.M. Methods for Overcoming Dormancy and Fruit and Seed Biometry in Parkia nitida Miquel. (Leguminosae—Mimosoideae). Acta Amaz. 2001, 31, 167–177. [Google Scholar] [CrossRef]
- Poorter, H.; Sack, L. Pitfalls and possibilities in the analysis of biomass allocation patterns in plants. Front. Plant Sci. 2012, 3, 1–10. [Google Scholar] [CrossRef]
- Agathokleous, E.; Belz, R.G.; Kitao, M.; Koike, T.; Calabrese, E.J. Does the root to shoot ratio show a hormetic response to stress? An ecological and environmental perspective. J. For. Res. 2019, 30, 1569–1580. [Google Scholar] [CrossRef]
- Mašková, T.; Herben, T. Root:shoot ratio in developing sedlings: How seedlings change their allocation in response to seed mass and ambient nutrient supply. Ecol. Evol. 2018, 18, 7143–7150. [Google Scholar] [CrossRef]
- McCarthy, M.C.; Enquist, B.J.; Kerkhoff, A.J. Organ partitioning and distribution across the seed plants: Assessing the relative importance of phylogeny and function. Int. J. Plant Sci. 2007, 168, 751–761. [Google Scholar] [CrossRef]
- Murashige, T.; Skoog, F. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol. Plant. 1962, 15, 473–497. [Google Scholar] [CrossRef]
- Nagao, A. Differences of flower initiation of Cryptomeria japonica under various alternating temperatures. J. Jap. For. Soc. 1983, 65, 335–338. (In Japanese) [Google Scholar]
- Monsi, M.; Saeki, T. On the factor light in plant communities and its importance for matter production. Ann. Bot. 2005, 95, 549–567. [Google Scholar] [CrossRef]
- Schloerke, B.; Cook, D.; Larmarange, J.; Briatte, F.; Marbach, M.; Thoen, E.; Elberg, A.; Crowley, J. GGally: Extension to ‘ggplot2’. R package version 2.2.1. 2024. [Google Scholar]
- Hothorn, T.; Bretz, F.; Westfall, P. Simultaneous inference in general parametric models. Biom. J. 2008, 50, 346–363. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2023; Available online: https://www.R-project.org/.
- Cruz, E.D.; Carvalho, J.E.U. Methods of overcoming dormancy in Schizolobium amazonicum Huber ex Ducke (Leguminosae-Caesalpinioideae) seeds. Revista Brasileira de Sementes 2006, 28, 108–115. [Google Scholar] [CrossRef]
- Poorter, H.; Niklas, K.J.; Reich, P.B.; Oleksyn, J.; Poot, P.; Mommer, L. Biomass allocation to leaves, stems and roots: Meta-analyses of interspecific variation and environmental control. New Phytol. 2012, 193, 30–50. [Google Scholar] [CrossRef] [PubMed]
- Kajimoto, T.; Matsuura, Y.; Osawa, A.; Abaimov, A.P.; Zyryanova, O.A.; Isaev, A.P.; Yefremov, D.P.; Mori, S.; Koike, T. Size-mass allometry and biomass allocation of two larch species growing on the continuous permafrost region in Siberia. For. Ecol. Manag. 2006, 222, 314–325. [Google Scholar] [CrossRef]
- Aikio, S.; Markkola, A.M. Optimality and phenotypic plasticity of shoot-to-root ratio under variable light and nutrient availabilities. Evolut. Ecol. 2002, 16, 67–76. [Google Scholar] [CrossRef]
- Monk, C. Ecological importance of root/shoot ratios. Bull. Torrey Bot. Club 1966, 93, 402. [Google Scholar] [CrossRef]
- Villar, R.; Veneklaas, E.J.; Jordano, P.; Lamber, H. Relative growth rate and biomass allocation in 20 Aegilops (Poaceae) species. New Phytol. 1998, 140, 425–437. [Google Scholar] [CrossRef] [PubMed]
- Bloom, A.J.; Chapin, F.S.; Mooney, H.A. Resource limitation in plants—An economic analogy. Annu. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Niinemets, U. Growth of young trees of Acer platanoides and Quercus robur along a gap-understory continuum: Interrelationships between allometry, biomass partitioning, nitrogen, and shade tolerance. Int. J. Plant. Sci. 1998, 159, 318–330. [Google Scholar] [CrossRef]
- Kruger, E.L.; Volin, J.C. Reexamining the empirical relation between plant growth and leaf photosynthesis. Funct. Plant Biol. 2006, 33, 421–429. [Google Scholar] [CrossRef] [PubMed]
- Lusk, C.H.; Contreras, O.; Figueroa, J. Growth, biomass allocation and plant nitrogen concentration in Chilean temperate rainforest tree seedlings: Effects of nutrient availability. Oecologia 1997, 109, 49–58. [Google Scholar] [CrossRef] [PubMed]
- Sanquetta, C.R.; Corte, A.P.D.; da Silva, F. Biomass expansion factor and root-to-shoot ratio for Pinus in Brazil. Carb. Bal. Manag. 2011, 6, 6. [Google Scholar] [CrossRef] [PubMed]
- Drew, A.P.; Ledig, F.T. Episodic growth and relative shoot: Root balance in loblolly pine seedlings. Ann. Bot. 1980, 45, 143–148. [Google Scholar] [CrossRef]
- Cannell, M.G.R.; Willett, S.C. Shoot growth phenology, dry matter distribution and Root: Shoot ratios of provenances of Populus trichocarpa, Picea sitchensis and Pinus contorta growing in Scotland. Silvae Genet. 1976, 25, 49–59. [Google Scholar]
- Cornelissen, J.H.S.; Castro, P.; Hunt, R. Seedling growth, allocation and leaf attributes in a wide range of woody plant species and types. J. Ecol. 1996, 84, 755–765. [Google Scholar] [CrossRef]
- Brouwer, R. Some Aspects of the Equilibrium between Overground and Underground Plant Parts; Jaarboek van het Instituut voor Biologisch en Scheikundig onderzoek aan Landbouwgewassen: Wageningen, The Netherlands, 1963; pp. 31–39. [Google Scholar]
- Walters, M.B.; Kruger, E.L.; Reich, P.B. Relative growth rate in relation to physiological and morphological traits for northern hardwood tree seedlings: Species, light environment and ontogenetic considerations. Oecologia 1993, 96, 219–231. [Google Scholar] [CrossRef] [PubMed]
- Portsmuth, A.; Niinemets, U.; Truus, L.; Pensa, M. Biomass allocation and growth rates in Pinus sylvestris are interactively modified by nitrogen and phosphorus availabilities and by tree size and age. Can. J. For. Res. 2005, 35, 2346–2359. [Google Scholar] [CrossRef]
- Davidson, R.L. Effects of soil nutrients and moisture on root/shoot ratios in Lolium perenne L. and Trifolium repens L. Ann. Bot. 1969, 33, 571–577. [Google Scholar] [CrossRef]
- Koike, T.; Kitao, M.; Quoreshi, A.M.; Matsuura, Y. Growth characteristics of root–shoot relations of three birch seedlings raised under different water regimes. Plant Soil 2003, 255, 303–310. [Google Scholar] [CrossRef]
- Kirschbaum, M.U.F.; David, W.; Bellingham, D.W.; Cromer, R.N. Growth analysis of the effect of phosphorus nutrition on seedings of Eucalyptus grandis. Aust. J. Plant Physiol. 1992, 19, 55–66. [Google Scholar] [CrossRef]
- Poorter, H.; VandeVijver, C.A.D.M.; Boot, R.G.A.; Lambers, H. Growth and carbon economy of a fast-growing and as low-growing grass species as dependent on nitrate supply. Plant Soil 1995, 171, 217–227. [Google Scholar] [CrossRef]
- Ågren, G.I.; Franklin, O. Root: Shoot ratios, optimization and nitrogen productivity. Ann. Bot. 2003, 92, 795–800. [Google Scholar] [CrossRef]
- Qu, L.; Quoreshi, A.M.; Koike, T. Root growth characteristics, biomass and nutrient dynamics of seedlings of two larch species raised under different fertilization regimes. Plant Soil 2003, 255, 293–302. [Google Scholar] [CrossRef]
- Baraloto, C.; Bonal, D.; Goldberg, D.E. Differential seedling growth response to soil resource availability among nine neotropical tree species. J. Trop. Ecol. 2006, 22, 487–497. [Google Scholar] [CrossRef]
- Grossman, J.D.; Rice, K.J. Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evol. Appl. 2012, 5, 850. [Google Scholar] [CrossRef] [PubMed]
- Domisch, T.; Finér, L.; Letho, T. Effects of soil temperature on biomass and carbohydrate allocation in Scots pine (Pinus sylvestris) seedlings at the beginning of the growing season. Tree Physiol. 2001, 21, 465–472. [Google Scholar] [CrossRef] [PubMed]
- Landhäusser, S.M.; DesRochers, A.; Lieffers, V.J. A comparison of growth and physiology in Picea glauca and Populus tremuloides at different soil temperatures. Can. J. For. Res. 2001, 31, 1922–1929. [Google Scholar] [CrossRef]
- Mukherjee, J.R.; Jones, T.A.; Monaco, T.A.; Adler, P.B. The relationship between seed mass and young-seedling growth and morphology among nine bluebunch wheatgrass populations. Rangel. Ecol. Manag. 2019, 72, 283–291. [Google Scholar] [CrossRef]
- Kaelke, C.M.; Kruger, E.L.; Reich, P.B. Trade-offs in seedling survival, growth, and physiology among hardwood species of contrasting successional status along a light availability gradient. Can. J. For. Res. 2001, 31, 1602–1616. [Google Scholar] [CrossRef]
- Poorter, L.; Simmoné, A.R. Light-dependent changes in the relationship between seed mass and seedling traits: A meta-analysis for rain forest tree species. Oecologia 2005, 142, 378–387. [Google Scholar] [CrossRef] [PubMed]
- Lusk, C.H.; Sendall, K.M.; Clarke, P.J. Seedling growth rates and light requirements of subtropical rainforest trees associated with basaltic and rhyolitic soils. Aust. J. Bot. 2014, 62, 48–55. [Google Scholar] [CrossRef]
- Khan, A.; Zarif, N.; Yang, L.; Clothier, B.; Rewald, B. Correlation of Leaf and Root Traits of Two Angiosperm Tree Species in Northeast China under Contrasting Light and Nitrogen Availabilities. Forests 2021, 12, 596. [Google Scholar] [CrossRef]
- Müller, I.; Schmid, B.; Weiner, J. The effect of nutrient availability on biomass allocation patterns in 27 species of herbaceous plants. Perspect. Plant Ecol. Evol. Syst. 2000, 3, 115–127. [Google Scholar] [CrossRef]
- McCarthy, M.C.; Enquist, B.J. Consistency between an allometric approach and optimal partitioning theory in global patterns of plant biomass allocation. Funct. Ecol. 2007, 21, 713–720. [Google Scholar] [CrossRef]
- Zobel, M.; Zobel, K. Studying plant competition: From root biomass to general aims. J. Ecol. 2002, 90, 578–580. [Google Scholar] [CrossRef]
- Enquist, B.J.; Niklas, K.J. Global allocation rules for patterns of biomass partitioning in seed plants. Science 2002, 295, 1517–1520. [Google Scholar] [CrossRef] [PubMed]
- Niklas, K.J.; Enquist, B.J. On the vegetative biomass partitioning of seed plant leaves, stems, and roots. Am. Nat. 2002, 159, 482–497. [Google Scholar] [CrossRef] [PubMed]
- Fusco, G.; Minelli, A. Phenotypic plasticity in development and evolution: Facts and concepts. Phil. Trans. R. Soc. B 2010, 365, 547–556. [Google Scholar] [CrossRef] [PubMed]
- Gratani, L. Plant Phenotypic Plasticity in Response to Environmental Factors. Adv. Bot. 2014, 2014, 208747. [Google Scholar] [CrossRef]
- Grossnickle, S.C. Why seedlings survive: Influence of plant attributes. New For. 2012, 43, 711–738. [Google Scholar] [CrossRef]
- Grossnickle, S.C.; MacDonald, J.E. Why seedlings grow: Influence of plant attributes. New For. 2018, 49, 1–34. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Maruyama, T.E.; Tsuruta, M.; Mori, T. Effect of Culture Temperatures on the Initial Growth Performance of Seedlings Germinated from Cryostored Seeds of a Tropical Tree Parkia nitida Miq. (Fabaceae, Mimosoideae). Seeds 2024, 3, 381-392. https://doi.org/10.3390/seeds3030027
Maruyama TE, Tsuruta M, Mori T. Effect of Culture Temperatures on the Initial Growth Performance of Seedlings Germinated from Cryostored Seeds of a Tropical Tree Parkia nitida Miq. (Fabaceae, Mimosoideae). Seeds. 2024; 3(3):381-392. https://doi.org/10.3390/seeds3030027
Chicago/Turabian StyleMaruyama, Tsuyoshi E., Momi Tsuruta, and Tokunori Mori. 2024. "Effect of Culture Temperatures on the Initial Growth Performance of Seedlings Germinated from Cryostored Seeds of a Tropical Tree Parkia nitida Miq. (Fabaceae, Mimosoideae)" Seeds 3, no. 3: 381-392. https://doi.org/10.3390/seeds3030027
APA StyleMaruyama, T. E., Tsuruta, M., & Mori, T. (2024). Effect of Culture Temperatures on the Initial Growth Performance of Seedlings Germinated from Cryostored Seeds of a Tropical Tree Parkia nitida Miq. (Fabaceae, Mimosoideae). Seeds, 3(3), 381-392. https://doi.org/10.3390/seeds3030027