Effect of Melatonin on Germination and Seedling Growth in Aging Seeds or under Drought Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant and Chemical Materials
2.2. Study of the Effect of Melatonin Treatment on Aging Seeds
2.3. Study of the Effect of Melatonin Treatment on Sorghum Seeds Subjected to Drought Stress
2.4. Determination of Parameters and Indices of Germination
2.5. Determination of Seedling Growth
2.6. Stress Tolerance Index (STI)
2.7. Statistical Analyses
3. Results
3.1. Bioassay I
3.1.1. Germination Study of the Effect of Melatonin Treatment on Aging Seeds
3.1.2. Effect of Melatonin Treatment on Seedling Growth
3.2. Bioassay II
3.2.1. Germination Study of the Effect of Melatonin in Drought Stress Conditions
3.2.2. Melatonin Effect on Sorghum Seedling Growth in Drought Stress Conditions
3.2.3. Stress Tolerance Index (STI) in Melatonin-Primed Sorghum Seeds
4. Discussion
5. Conclusions
- The exogenous application of melatonin in aging seeds has a biostimulator effect; this effect depends on the seed under study and the concentration of melatonin applied.
- As occurs in other cases applying phytoregulators, the effectiveness of melatonin depends on the tissue sensitivity, observing induction or inhibition of growing in different tissues (stem and roots) at similar melatonin concentrations.
- In relation to the aged seeds of rice, barley and sorghum tested, the most effective melatonin concentration, especially in the germination parameters and vigor index, has been 20, 0.05 and 1 µM respectively.
- PEG-induced drought stress in sorghum is alleviated by almost all melatonin concentrations (50, 100 and 200 µM) tested, but the 200 µM concentration stands out for being the most effective in improving parameters of germination, early growth and stress.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, A.S.; Elozeiri, A.A.; Ali, A.S.; Elozeiri, A.A. Metabolic Processes During Seed Germination. In Advances in Seed Biology; IntechOpen: London, UK, 2017; ISBN 978-953-51-3622-4. [Google Scholar]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Structure and Composition. In Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H., Eds.; Springer: New York, NY, USA, 2013; pp. 1–25. ISBN 978-1-4614-4693-4. [Google Scholar]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Longevity, Storage, and Deterioration. In Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Bewley, J.D., Bradford, K.J., Hilhorst, H.W.M., Nonogaki, H., Eds.; Springer: New York, NY, USA, 2013; pp. 341–376. ISBN 978-1-4614-4693-4. [Google Scholar]
- Bewley, J.D. Seed Germination and Dormancy. Plant Cell 1997, 9, 1055–1066. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, S.; Ahmad, R.; Ashraf, M.; Ashraf, M.; Waraich, E. Sunflower (Helianthus annuus L.) Response to Drought Stress at Germination and Seedling Growth Stages. Pak. J. Bot. 2009, 41, 647–654. [Google Scholar]
- Anjum, S.A.; Ashraf, U.; Zohaib, A.; Tanveer, M.; Naeem, M.; Ali, I.; Tabassum, T.; Nazir, U. Growth and Developmental Responses of Crop Plants under Drought Stress: A Review. Zemdirb.-Agric. 2017, 104, 267–276. [Google Scholar] [CrossRef]
- Chazen, O.; Hartung, W.; Neumann, P.M. The Different Effects of PEG 6000 and NaCI on Leaf Development Are Associated with Differential Inhibition of Root Water Transport. Plant Cell Ent. 1995, 18, 727–735. [Google Scholar] [CrossRef]
- Hajihashemi, S.; Sofo, A. The Effect of Polyethylene Glycol-Induced Drought Stress on Photosynthesis, Carbohydrates and Cell Membrane in Stevia Rebaudiana Grown in Greenhouse. Acta Physiol. Plant. 2018, 40, 142. [Google Scholar] [CrossRef]
- Kozlowski, T.T. Germination Control. Metabolism, and Pathology, 1st ed.; Elsevier: Amsterdam, The Netherlands, 1972; ISBN 978-0-12-424303-3. [Google Scholar]
- Anderson, J.D.; Baker, J.E. Deterioration of Seeds during Aging. Phytopathology 1983, 73, 321–325. [Google Scholar] [CrossRef]
- Rajjou, L.; Debeaujon, I. Seed Longevity: Survival and Maintenance of High Germination Ability of Dry Seeds. Comptes Rendus Biol. 2008, 331, 796–805. [Google Scholar] [CrossRef]
- Abid, M.; Hakeem, A.; Shao, Y.; Liu, Y.; Zahoor, R.; Fan, Y.; Suyu, J.; Ata-Ul-Karim, S.T.; Tian, Z.; Jiang, D.; et al. Seed Osmopriming Invokes Stress Memory against Post-Germinative Drought Stress in Wheat (Triticum aestivum L.). Environ. Exp. Bot. 2018, 145, 12–20. [Google Scholar] [CrossRef]
- Domokos-Szabolcsy, E.; Marton, L.; Sztrik, A.; Babka, B.; Prokisch, J.; Fari, M. Accumulation of Red Elemental Selenium Nanoparticles and Their Biological Effects in Nicotiniatabacum. Plant Growth Regul. 2012, 68, 525–531. [Google Scholar] [CrossRef]
- Lerner, A.B.; Case, J.D.; Takahashi, Y.; Lee, T.H.; Mori, W. Isolation of Melatonin, the Pineal Gland Factor That Lightens Melanocytes. J. Am. Chem. Soc. 1958, 80, 2587. [Google Scholar] [CrossRef]
- Dubbels, R.; Reiter, R.J.; Klenke, E.; Goebel, A.; Schnakenberg, E.; Ehlers, C.; Schiwara, H.W.; Schloot, W. Melatonin in Edible Plants Identified by Radioimmunoassay and by HPLC-MS. J. Pineal Res. 1995, 18, 28–31. [Google Scholar] [CrossRef]
- Hattori, A.; Migitaka, H.; Iigo, M.; Itoh, M.; Yamamoto, K.; Ohtani-Kaneko, R.; Hara, M.; Suzuki, T.; Reiter, R.J. Identification of Melatonin in Plants and Its Effects on Plasma Melatonin Levels and Binding to Melatonin Receptors in Vertebrates. Biochem. Mol. Biol. Int. 1995, 35, 627–634. [Google Scholar] [PubMed]
- Kolar, J.; Machackova, I.; Illnerova, H.; Prinsen, E.; van Dongen, W.; van Onckelen, H. Melatonin in Higher Plant Determined by Radioimmunoassay and Liquid Chromatography-Mass Spectrometry. Biol. Rhythm. Res. 1995, 26, 406–409. [Google Scholar]
- Arnao, M.B. Phytomelatonin: Discovery, Content, and Role in Plants. Adv. Bot. 2014, 2014, e815769. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Phytomelatonin, Natural Melatonin from Plants as a Novel Dietary Supplement: Sources, Activities and World Market. J. Funct. Foods 2018, 48, 37–42. [Google Scholar] [CrossRef]
- Arnao, M.B.; Cano, A.; Hernández-Ruiz, J. Phytomelatonin: An Unexpected Molecule with Amazing Performances in Plants. J. Exp. Bot. 2022, 73, 5779–5800. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: A New Plant Hormone and/or a Plant Master Regulator? Trends Plant Sci. 2019, 24, 38–48. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin: Plant Growth Regulator and/or Biostimulator during Stress? Trends Plant Sci. 2014, 19, 789–797. [Google Scholar] [CrossRef]
- Wei, J.; Li, D.-X.; Zhang, J.-R.; Shan, C.; Rengel, Z.; Song, Z.-B.; Chen, Q. Phytomelatonin Receptor PMTR1-Mediated Signaling Regulates Stomatal Closure in Arabidopsis thaliana. J. Pineal Res. 2018, 65, e12500. [Google Scholar] [CrossRef]
- Byeon, Y.; Lee, H.Y.; Lee, K.; Park, S.; Back, K. Cellular Localization and Kinetics of the Rice Melatonin Biosynthetic Enzymes SNAT and ASMT. J. Pineal Res. 2014, 56, 107–114. [Google Scholar] [CrossRef] [PubMed]
- Byeon, Y.; Yool Lee, H.; Choi, D.-W.; Back, K. Chloroplast-Encoded Serotonin N-Acetyltransferase in the Red Alga Pyropia Yezoensis: Gene Transition to the Nucleus from Chloroplasts. J. Exp. Bot. 2015, 66, 709–717. [Google Scholar] [CrossRef]
- Tan, D.-X.; Reiter, R.J. An Evolutionary View of Melatonin Synthesis and Metabolism Related to Its Biological Functions in Plants. J. Exp. Bot. 2020, 71, 4677–4689. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Yu, Y.; Shen, Y.; Liu, Q.; Zhao, Z.; Sharma, R.; Reiter, R.J. Melatonin Synthesis and Function: Evolutionary History in Animals and Plants. Front. Endocrinol. 2019, 10, 249. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Ruiz, J.; Giraldo-Acosta, M.; El Mihyaoui, A.; Cano, A.; Arnao, M.B. Melatonin as a Possible Natural Anti-Viral Compound in Plant Biocontrol. Plants 2023, 12, 781. [Google Scholar] [CrossRef] [PubMed]
- Back, K. Melatonin Metabolism, Signaling and Possible Roles in Plants. Plant J. 2021, 105, 376–391. [Google Scholar] [CrossRef] [PubMed]
- Back, K.; Tan, D.-X.; Reiter, R.J. Melatonin Biosynthesis in Plants: Multiple Pathways Catalyze Tryptophan to Melatonin in the Cytoplasm or Chloroplasts. J. Pineal Res. 2016, 61, 426–437. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.-X.; Hardeland, R.; Back, K.; Manchester, L.C.; Alatorre-Jimenez, M.A.; Reiter, R.J. On the Significance of an Alternate Pathway of Melatonin Synthesis via 5-Methoxytryptamine: Comparisons across Species. J. Pineal Res. 2016, 61, 27–40. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.-X.; Manchester, L.C.; Esteban-Zubero, E.; Zhou, Z.; Reiter, R.J. Melatonin as a Potent and Inducible Endogenous Antioxidant: Synthesis and Metabolism. Molecules 2015, 20, 18886–18906. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.-Y.; Shi, X.-C.; Wang, R.; Wang, H.-L.; Liu, F.; Laborda, P. Melatonin in Fruit Production and Postharvest Preservation: A Review. Food Chem. 2020, 320, 126642. [Google Scholar] [CrossRef] [PubMed]
- Xu, T.; Chen, Y.; Kang, H. Melatonin is a potential target for improving post-harvest preservation of fruits and vegetables. Front. Plant Sci. 2019, 10, 1388. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin as a Regulatory Hub of Plant Hormone Levels and Action in Stress Situations. Plant Biol. 2021, 23, 7–19. [Google Scholar] [CrossRef]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin and Its Relationship to Plant Hormones. Ann. Bot. 2018, 121, 195–207. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Chen, Z.; Yu, X.; Cui, W.; Pan, J.; Zhao, G.; Xu, S.; Wang, R.; Shen, W. Melatonin Confers Plant Tolerance against Cadmium Stress via the Decrease of Cadmium Accumulation and Reestablishment of microRNA-Mediated Redox Homeostasis. Plant Sci. 2017, 261, 28–37. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Rosales-Corral, S.; Tan, D.X.; Jou, M.J.; Galano, A.; Xu, B. Melatonin as a Mitochondria-Targeted Antioxidant: One of Evolution’s Best Ideas. Cell. Mol. Life Sci. 2017, 74, 3863–3881. [Google Scholar] [CrossRef] [PubMed]
- Moustafa-Farag, M.; Almoneafy, A.; Mahmoud, A.; Elkelish, A.; Arnao, M.B.; Li, L.; Ai, S. Melatonin and Its Protective Role against Biotic Stress Impacts on Plants. Biomolecules 2020, 10, 54. [Google Scholar] [CrossRef] [PubMed]
- Posmyk, M.M.; Balabusta, M.; Wieczorek, M.; Sliwinska, E.; Janas, K.M. Melatonin Applied to Cucumber (Cucumis sativus L.) Seeds Improves Germination during Chilling Stress. J. Pineal Res. 2009, 46, 214–223. [Google Scholar] [CrossRef] [PubMed]
- Posmyk, M.M.; Kuran, H.; Marciniak, K.; Janas, K.M. Presowing Seed Treatment with Melatonin Protects Red Cabbage Seedlings against Toxic Copper Ion Concentrations. J. Pineal Res. 2008, 45, 24–31. [Google Scholar] [CrossRef] [PubMed]
- Bewley, J.D.; Bradford, K.J.; Hilhorst, H.W.M.; Nonogaki, H. Seeds: Physiology of Development, Germination and Dormancy, 3rd ed.; Springer: New York, NY, USA, 2013; ISBN 978-1-4614-4692-7. [Google Scholar]
- Jincya, M.; Prasad, V.B.R.; Jeyakumara, P.; Senthila, A.; Manivannan, N. Evaluation of Green Gram Genotypes for Drought Tolerance by PEG (Polyethylene Glycol) Induced Drought Stress at Seedling Stage. Legume Res. 2019, 44, 684–691. [Google Scholar] [CrossRef]
- Megala, R.; Kalarani, M.K.; Jeyakumar, P.; Senthil, N.; Pushpam, R.; Umapathi, M. Standardization of Optimum Melatonin Concentration for Drought Tolerance at Germination and Early Development Stage in Rice (CO-54). J. Appl. Nat. Sci. 2022, 14, 1022–1030. [Google Scholar] [CrossRef]
- Wang, G.; Yang, Y.; Kong, Y.; Ma, R.; Yuan, J.; Li, G. Key Factors Affecting Seed Germination in Phytotoxicity Tests during Sheep Manure Composting with Carbon Additives. J. Hazard. Mater. 2022, 421, 126809. [Google Scholar] [CrossRef]
- Hernández-Herrera, R.M.; Santacruz-Ruvalcaba, F.; Ruiz-López, M.A.; Norrie, J.; Hernández-Carmona, G. Effect of Liquid Seaweed Extracts on Growth of Tomato Seedlings (Solanum lycopersicum L.). J. Appl. Phycol. 2014, 26, 619–628. [Google Scholar] [CrossRef]
- Kamran, M.; Wang, D.; Xie, K.; Lu, Y.; Shi, C.; EL Sabagh, A.; Gu, W.; Xu, P. Pre-Sowing Seed Treatment with Kinetin and Calcium Mitigates Salt Induced Inhibition of Seed Germination and Seedling Growth of Choysum (Brassica rapa Var. Parachinensis). Ecotoxicol. Environ. Saf. 2021, 227, 112921. [Google Scholar] [CrossRef] [PubMed]
- Amin, H.; Arain, B.A.; Amin, F.; Surhio, M.A. Phytotoxicity of Chromium on Germination, Growth and Biochemical Attributes of Hibiscus esculentus L. Am. J. Plant Sci. 2013, 4, 2431–2439. [Google Scholar] [CrossRef]
- García-Sánchez, S.; Cano, A.; Hernández-Ruiz, J.; Arnao, M.B. Effects of Temperature and Light on the Germination-Promoting Activity by Melatonin in Almond Seeds without Stratification. Agronomy 2022, 12, 2070. [Google Scholar] [CrossRef]
- Hernández-Ruiz, J.; Cano, A.; Arnao, M.B. Melatonin: A Growth-Stimulating Compound Present in Lupin Tissues. Planta 2004, 220, 140–144. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, A. The Effects of Seed Treatment with Melatonin on Germination and Emergence Performance of Pepper Seeds under Chilling Stress. Tarim Bilim. Derg.-J. Agric. Sci. 2017, 23, 167–176. [Google Scholar]
- Lv, Y.; Pan, J.; Wang, H.; Reiter, R.J.; Li, X.; Mou, Z.; Zhang, J.; Yao, Z.; Zhao, D.; Yu, D. Melatonin Inhibits Seed Germination by Crosstalk with Abscisic Acid, Gibberellin, and Auxin in Arabidopsis. J. Pineal Res. 2021, 70, e12736. [Google Scholar] [CrossRef] [PubMed]
- Simlat, M.; Ptak, A.; Skrzypek, E.; Warchoł, M.; Morańska, E.; Piórkowska, E. Melatonin Significantly Influences Seed Germination and Seedling Growth of Stevia Rebaudiana Bertoni. PeerJ 2018, 6, e5009. [Google Scholar] [CrossRef] [PubMed]
- Xiao, S.; Liu, L.; Wang, H.; Li, D.; Bai, Z.; Zhang, Y.; Sun, H.; Zhang, K.; Li, C. Exogenous Melatonin Accelerates Seed Germination in Cotton (Gossypium hirsutum L.). PLoS ONE 2019, 14, e0216575. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Liu, S.; Tong, S.; Zhang, D.; Qi, Q.; Wang, Y.; Wang, X.; An, Y.; Lu, X. Effects of Melatonin Priming on Suaeda Corniculata Seed Germination, Antioxidant Defense, and Reserve Mobilization: Implications for Salinized Wetland Restoration. Front. Ecol. Evol. 2022, 10, 941032. [Google Scholar] [CrossRef]
- Hernández-Ruiz, J.; Cano, A.; Arnao, M.B. Melatonin Acts as a Growth-Stimulating Compound in Some Monocot Species: Melatonin as Growth Promoter in Plants. J. Pineal Res. 2005, 39, 137–142. [Google Scholar] [CrossRef]
- Chen, Q.; Qi, W.; Reiter, R.J.; Wei, W.; Wang, B. Exogenously Applied Melatonin Stimulates Root Growth and Raises Endogenous Indoleacetic Acid in Roots of Etiolated Seedlings of Brassica juncea. J. Plant Physiol. 2009, 166, 324–328. [Google Scholar] [CrossRef]
- Li, L.; Verstraeten, I.; Roosjen, M.; Takahashi, K.; Rodriguez, L.; Merrin, J.; Chen, J.; Shabala, L.; Smet, W.; Ren, H.; et al. Cell Surface and Intracellular Auxin Signalling for H+ Fluxes in Root Growth. Nature 2021, 599, 273–277. [Google Scholar] [CrossRef] [PubMed]
- Arnao, M.B.; Hernández-Ruiz, J. Melatonin Promotes Adventitious- and Lateral Root Regeneration in Etiolated Hypocotyls of Lupinus albus L. J. Pineal Res. 2007, 42, 147–152. [Google Scholar] [CrossRef] [PubMed]
- Ren, S.; Rutto, L.; Katuuramu, D. Melatonin Acts Synergistically with Auxin to Promote Lateral Root Development through Fine Tuning Auxin Transport in Arabidopsis thaliana. PLoS ONE 2019, 14, e0221687. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Gao, C.; Xu, L.; Niu, H.; Liu, Q.; Huang, Y.; Lv, G.; Yang, H.; Li, M. Melatonin and Indole-3-Acetic Acid Synergistically Regulate Plant Growth and Stress Resistance. Cells 2022, 11, 3250. [Google Scholar] [CrossRef] [PubMed]
- Merritt, D.J.; Senaratna, T.; Touchell, D.H.; Dixon, K.W.; Sivasithamparam, K. Seed Ageing of Four Western Australian Species in Relation to Storage Environment and Seed Antioxidant Activity. Seed Sci. Res. 2003, 13, 155–165. [Google Scholar] [CrossRef]
- Rajjou, L.; Lovigny, Y.; Groot, S.P.C.; Belghazi, M.; Job, C.; Job, D. Proteome-Wide Characterization of Seed Aging in Arabidopsis: A Comparison between Artificial and Natural Aging Protocols. Plant Physiol. 2008, 148, 620–641. [Google Scholar] [CrossRef] [PubMed]
- Ratajczak, E.; Małecka, A.; Bagniewska-Zadworna, A.; Kalemba, E.M. The Production, Localization and Spreading of Reactive Oxygen Species Contributes to the Low Vitality of Long-Term Stored Common Beech (Fagus sylvatica L.) Seeds. J. Plant Physiol. 2015, 174, 147–156. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Tanveer, M.; Wang, H.; Arnao, M.B. Melatonin as a Key Regulator in Seed Germination under Abiotic Stress. J. Pineal Res. 2024, 76, e12937. [Google Scholar] [CrossRef] [PubMed]
- Korkmaz, A.; Köklü, S.; Yakupoglu, G. Investigating the Effects of Melatonin Application on the Ageing Process of Pepper Seeds. In Proceedings of the Acta Horticulturae; International Society for Horticultural Science (ISHS), Leuven, Belgium, 30 June 2018; pp. 9–16. [Google Scholar]
- Yakupoglu, G.; Köklü, S.; Karaca, A.; Düver, E.; Reiter, J.R.; Korkmaz, A. Fluctuations in Melatonin Content and Its Effects on the Ageing Process of Lettuce Seeds during Storage. Acta Sci. Pol. Hortorum Cultus 2021, 20, 77–88. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, N.; Yang, R.; Wang, L.; Sun, Q.; Li, D.; Cao, Y.; Weeda, S.; Zhao, B.; Ren, S.; et al. Melatonin Promotes Seed Germination under High Salinity by Regulating Antioxidant Systems, ABA and GA 4 Interaction in Cucumber (Cucumis sativus L.). J. Pineal Res. 2014, 57, 269–279. [Google Scholar] [CrossRef]
- Rosińska, A.; Andrzejak, R.; Kakkerla, V. Effect of Osmopriming with Melatonin on Germination, Vigor and Health of Daucus Carota L. Seeds. Agriculture 2023, 13, 749. [Google Scholar] [CrossRef]
- Zhang, M.; He, S.; Qin, B.; Jin, X.; Wang, M.; Ren, C.; Cao, L.; Zhang, Y. Exogenous Melatonin Reduces the Inhibitory Effect of Osmotic Stress on Antioxidant Properties and Cell Ultrastructure at Germination Stage of Soybean. PLoS ONE 2020, 15, e0243537. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Li, D.; Liu, L.; Sun, H.; Zhu, L.; Zhang, K.; Zhao, H.; Zhang, Y.; Li, A.; Bai, Z.; et al. Seed Priming with Melatonin Promotes Seed Germination and Seedling Growth of Triticale hexaploide L. Under PEG-6000 Induced Drought Stress. Front. Plant Sci. 2022, 13, 932912. [Google Scholar] [CrossRef] [PubMed]
Rice Seeds | ||||||
---|---|---|---|---|---|---|
Treatments (µM) | Germination (%) | Germination Potential (%) | Relative Seed Germination (%) | Relative Root Length (%) | Germination Index | Vigor Index |
0 | 58.3 ± 5.0 b,* | 48.3 ± 9.3 c | 100.0 ± 4.1 b | 100.0 ± 21.9 b | 104.7 ± 25.8 b | 1.9 ± 0.5 a |
0.05 | 55.0 ± 0.1 b | 18.3 ± 1.7 a | 101.6 ± 0.1 bc | 69.3 ± 11.8 a | 70.3 ± 12.0 a | 1.2 ± 0.2 a |
0.1 | 61.7 ± 9.3 c | 31.7 ± 6.7 b | 113.9 ± 17.1 c | 69.7 ± 12.0 a | 83.4 ± 27.0 bc | 1.4 ± 0.4 a |
0.2 | 61.7 ± 6.0 c | 30.0 ± 2.9 b | 114.6 ± 11.3 c | 70.6 ± 12.5 a | 81.7 ± 18.5 bc | 1.4 ± 0.2 a |
1 | 66.7 ± 4.4 cd | 60.0 ± 2.5 d | 111.4 ± 8.6 bc | 154.7 ± 10.2 c | 172.5 ± 18.1 c | 3.1 ± 0.4 b |
20 | 68.3 ± 6.7 d | 61.7 ± 2.5 d | 114 ± 14.3 c | 155.8 ± 9.1 c | 180.4 ± 30.9 c | 3.8 ± 0.3 b |
50 | 48.3 ± 1.7 a | 38.3 ± 1.7 b | 77.1 ± 4.9 a | 88.0 ± 4.5 b | 68.3 ± 7.4 a | 1.5 ± 0.1 a |
Barley | ||||||
---|---|---|---|---|---|---|
Treatments (µM) | Germination (%) | Germination Potential (%) | Relative Seed Germination (%) | Relative Root Length (%) | Germination Index | Vigor Index |
0 | 75.0 ± 0.1 b,* | 61.7 ± 6.0 b | 100.0 ± 0.1 b | 100.0 ± 4.3 d | 100.0 ± 4.3 d | 5.2 ± 0.1 c |
0.05 | 91.7 ± 4.4 d | 85.0 ± 5.0 d | 122.2 ± 5.9 d | 82.7 ± 2.4 c | 101.0 ± 4.8 d | 6.1 ± 0.3 d |
0.1 | 73.3 ± 6.0 ab | 70.0 ± 8.7 c | 97.8 ± 8.0 ab | 87.2 ± 0.5 d | 85.2 ± 6.4 c | 4.9 ± 0.3 c |
0.2 | 75.0 ± 2.9 b | 65.0 ± 5.0 bc | 100.0 ± 3.8 b | 90.0 ± 0.9 d | 90.1 ± 4.4 c | 5.0 ± 0.2 c |
1 | 81.7 ± 4.4 c | 80.0 ± 2.5 d | 108.9 ± 5.9 c | 79.4 ± 1.0 c | 86.4 ± 4.3 c | 4.8 ± 0.4 c |
20 | 71.7 ± 4.4 ab | 65.0 ± 12.5 bc | 96.7 ± 10.0 ab | 73.3 ± 4.8 b | 70.0 ± 5.7 b | 4.0 ± 0.5 b |
50 | 68.3 ± 6.0 a | 51.7 ± 3.3 a | 91.1 ± 8.0 a | 54.0 ± 3.4 a | 49.3 ± 5.7 a | 2.5 ± 0.3 a |
Sorghum | ||||||
---|---|---|---|---|---|---|
Treatments (µM) | Germination (%) | Germination Potential (%) | Relative Seed Germination (%) | Relative Root Length (%) | Germination Index | Vigor Index |
0 | 61.7 ± 1.7 a,* | 62.5 ± 2.5 a | 100.0 ± 3.6 a | 100.0 ± 11.1 a | 100.5 ± 14.2 a | 2.0 ± 0.1 a |
0.05 | 71.7 ± 3.3 b | 70.0 ± 2.9 b | 116.2 ± 5.4 b | 118.7 ± 15.2 a | 139.3 ± 22.7 b | 2.7 ± 0.5 b |
0.1 | 61.7 ± 8.8 a | 58.3 ± 9.3 a | 100.0 ± 14.3 a | 181.5 ± 8.0 b | 179.4 ± 19.3 c | 3.1 ± 0.3 bc |
0.2 | 66.7 ± 3.3 ab | 58.3 ± 6.7 a | 108.1 ± 5.4 ab | 186.4 ± 4.3 b | 201.1 ± 6.2 c | 3.4 ± 0.2 c |
1 | 65.0 ± 7.6 ab | 58.3 ± 11.7 a | 105.4 ± 12.4 ab | 178.9 ± 38.9 b | 197.2 ± 62.7 c | 4.1 ± 0.9 d |
20 | 65.0 ± 5.0 ab | 60.0 ± 12.5 a | 101.4 ± 12.2 ab | 103.9 ± 0.3 a | 109.6 ± 8.6 ab | 2.5 ± 0.4 ab |
50 | 71.7 ± 6.0 b | 70.0 ± 5.8 b | 116.2 ± 9.7 b | 105.1 ± 8.0 a | 123.5 ± 18.1 ab | 2.8 ± 0.4 b |
Sorghum + PEG 18% | ||||||
---|---|---|---|---|---|---|
Treatments (µM) | Germination (%) | Germination Potential (%) | Relative Seed Germination (%) | Relative Root Length (%) | Germination Index | Vigor Index |
CK | 68.3 ± 10.1 bc,* | 68.3 ± 10.1 bc | 100.0 ± 14.8 bc | 100.2 ± 2.8 e | 100.2 ± 15.5 e | 1.7 ± 0.4 d |
P | 53.3 ± 10.9 a | 53.3 ± 10.9 a | 77.9 ± 16.0 a | 37.6 ± 3.9 a | 28.1 ± 2.9 a | 0.4 ± 0.1 a |
PM50 | 66.7 ± 4.4 b | 66.7 ± 4.4 b | 97.3 ± 6.4 bc | 61.0 ± 5.7 c | 58.7 ± 2.0 c | 0.8 ± 0.1 bc |
PM100 | 73.3 ± 6.0 bc | 73.3 ± 6.0 bc | 104.1 ± 10.0 bc | 61.3 ± 6.2 c | 65.0 ± 13.0 c | 0.9 ± 0.2 c |
PM200 | 76.7 ± 6.0 c | 76.7 ± 7.5 c | 111.9 ± 8.8 c | 70.7 ± 4.2 d | 79.1 ± 8.2 d | 1.0 ± 0.1 c |
PM300 | 65.0 ± 2.9 b | 65.0 ± 2.9 b | 94.9 ± 7.3 b | 48.4 ± 6.1 b | 45.6 ± 5.3 b | 0.5 ± 0.1 ab |
Sorghum +PEG 18% | ||
---|---|---|
Treatments (µM) | Stress Tolerance Index in Shoot (%) | Stress Tolerance Index in Root (%) |
CK | 100.0 ± 19.0 b,* | 100.0 ± 2.9 e |
P | 20.6 ± 3.2 a | 37.6 ± 3.9 a |
PM50 | 33.6 ± 3.4 a | 61.0 ± 6.2 c |
PM100 | 33.0 ± 5.5 a | 61.3 ± 5.7 c |
PM200 | 32.7 ± 6.7 a | 70.7 ± 4.2 d |
PM300 | 24.2 ± 4.0 a | 48.4 ± 6.1 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Cánovas, I.; Giraldo-Acosta, M.; Cano, A.; Arnao, M.B.; Hernández-Ruiz, J. Effect of Melatonin on Germination and Seedling Growth in Aging Seeds or under Drought Conditions. Seeds 2024, 3, 341-356. https://doi.org/10.3390/seeds3030025
García-Cánovas I, Giraldo-Acosta M, Cano A, Arnao MB, Hernández-Ruiz J. Effect of Melatonin on Germination and Seedling Growth in Aging Seeds or under Drought Conditions. Seeds. 2024; 3(3):341-356. https://doi.org/10.3390/seeds3030025
Chicago/Turabian StyleGarcía-Cánovas, Isabel, Manuela Giraldo-Acosta, Antonio Cano, Marino B. Arnao, and Josefa Hernández-Ruiz. 2024. "Effect of Melatonin on Germination and Seedling Growth in Aging Seeds or under Drought Conditions" Seeds 3, no. 3: 341-356. https://doi.org/10.3390/seeds3030025
APA StyleGarcía-Cánovas, I., Giraldo-Acosta, M., Cano, A., Arnao, M. B., & Hernández-Ruiz, J. (2024). Effect of Melatonin on Germination and Seedling Growth in Aging Seeds or under Drought Conditions. Seeds, 3(3), 341-356. https://doi.org/10.3390/seeds3030025