Quality and Nutraceutical Features of Cicer arietinum L. Stored under Nitrogen Atmosphere
Abstract
:1. Introduction
2. Materials and Methods
2.1. Storage Conditions
2.2. Determination of Moisture Content and Germination Rate
2.3. Determination of Acidity
2.4. Quantification of Peroxides
2.5. Determination of Protein Content
2.6. Bacteria and Yeast/Mold Count
2.7. Determination of Fatty Acids (FAs)
2.8. Determination of α-Tocopherol
2.9. HPLC-MS Analyses of Quinic Acid, Indoleacetic, Benzoic Acid and Biochanin Derivatives
2.10. Statistics and Principal Component Analysis
3. Results
3.1. Physico-Chemical Parameters
3.2. Fatty Acid Content
3.3. α-Tocopherol Content
3.4. Targeted Metabolite Quantification
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Segev, A.; Badani, H.; Kapulnik, Y.; Shomer, I.; Oren-Shamir, M.; Galili, S. Determination of Polyphenols, Flavonoids, and Antioxidant Capacity in Colored Chickpea (Cicer arietinum L.). J. Food Sci. 2010, 75, S115–S119. [Google Scholar] [CrossRef] [PubMed]
- Ramirez, M.L.; Cendoya, E.; Nichea, M.J.; Zachetti, V.G.L.; Chulze, S.N. Impact of Toxigenic Fungi and Mycotoxins in Chickpea: A Review. Curr. Opin. Food Sci. 2018, 23, 32–37. [Google Scholar] [CrossRef]
- Jukanti, A.K.; Gaur, P.M.; Gowda, C.L.L.; Chibbar, R.N. Nutritional Quality and Health Benefits of Chickpea (Cicer arietinum L.): A Review. Br. J. Nutr. 2012, 108 (Suppl. S1), S11–S26. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, C.D.; Bubolz, V.K.; da Silva, J.; Dittgen, C.L.; Ziegler, V.; de Oliveira Raphaelli, C.; de Oliveira, M. Changes in the Chemical Composition and Bioactive Compounds of Chickpea (Cicer arietinum L.) Fortified by Germination. LWT 2019, 111, 363–369. [Google Scholar] [CrossRef]
- He, Y.; Shim, Y.Y.; Mustafa, R.; Meda, V.; Reaney, M.J. Chickpea Cultivar Selection to Produce Aquafaba with Superior Emulsion Properties. Foods 2019, 8, 685. [Google Scholar] [CrossRef]
- Summo, C.; De Angelis, D.; Ricciardi, L.; Caponio, F.; Lotti, C.; Pavan, S.; Pasqualone, A. Data on the Chemical Composition, Bioactive Compounds, Fatty Acid Composition, Physico-Chemical and Functional Properties of a Global Chickpea Collection. Data Brief 2019, 27, 104612. [Google Scholar] [CrossRef]
- Flores^1, T.S.H.; Alvarado, A.D.; Carrasco, P.R.; de Anda, E.M.L.; Contreras, M.G.M.; Chávez, C.P.M. Estudio de la composición proximal de variedades de garbanzo (Cicer arietinum L.) COSTA 2004 Y BLANORO. Cienc. Tecnol. Agropecu. México 2023, 2, 9–15. [Google Scholar]
- Nino-Medina, G.; Muy-Rangel, D.; de Jesus Garza-Juarez, A.; Alberto Vazquez-Rodriguez, J.; Mendez-Zamora, G.; Urias-Orona, V. Nutritional Composition, Phenolic Compounds and Antioxidant Capacity of Chickpea (Cicer arietinum) Husk. Arch. Latinoam. Nutr. 2017, 67, 68–73. [Google Scholar]
- Singh, B.; Singh, J.P.; Kaur, A.; Singh, N. Phenolic Composition and Antioxidant Potential of Grain Legume Seeds: A Review. Food Res. Int. 2017, 101, 1–16. [Google Scholar] [CrossRef]
- Arora, M.; Singh, S.; Kaur, P. Pharmacognostic & Phytochemical Evaluation of Selected Seeds of ‘Cicer arietinum’ Linn. Seeds from Roopnagar Punab. Int. J. Pharm. Sci. Invent 2013, 2, 18–29. [Google Scholar]
- Ibrikci, H.; Knewtson, S.J.; Grusak, M.A. Chickpea Leaves as a Vegetable Green for Humans: Evaluation of Mineral Composition. J. Sci. Food Agric. 2003, 83, 945–950. [Google Scholar] [CrossRef]
- Perez-Perez, L.M.; Huerta-Ocampo, J.Á.; Ruiz-Cruz, S.; Cinco-Moroyoqui, F.J.; Wong-Corral, F.J.; Rascón-Valenzuela, L.A.; Robles-García, M.A.; González-Vega, R.I.; Rosas-Burgos, E.C.; Corella-Madueño, M.A.G. Evaluation of Quality, Antioxidant Capacity, and Digestibility of Chickpea (Cicer arietinum L. Cv Blanoro) Stored under N2 and CO2 Atmospheres. Molecules 2021, 26, 2773. [Google Scholar] [CrossRef] [PubMed]
- Divya, P.; Durga, K.K.; Sunil, N.; Rajasri, M.; Keshavulu, K.; Udayababu, P. Modified Atmosphere Storage Technique for the Management of Pulse Beetle, Callosobruchus Chinensis in Horse Gram. Legume Res.-Int. J. 2016, 39, 474–478. [Google Scholar] [CrossRef]
- Hashem, M.Y.; Risha, E.-S.M. Post-Harvest Losses Caused by Southern Cowpea Beetle Callosobruchus maculatus (F.) in Faba Bean Vicia faba, and Its Control Using Modified Atmospheres/Lagerverluste Durch Den Vierfleckigen Bohnenkäfer (Callosbruchus maculatus (F.)) Bei Ackerbohnen (Vicia faba) Und Die Bekämfung Durch Modifizierte Atmosphären. Z. Pflanzenkrankh. Pflanzenschutz/J. Plant Dis. Prot. 2000, 107, 205–211. [Google Scholar]
- Ingabire, J.P.; Hategekimana, A.; Bhuvaneswari, K.; Mohan, S.; Ganapathy, S. Management of Pulse Beetle, Callosobruchus maculatus (F) Population by Nitrogen Based Modified Atmosphere. J. Entomol. Zool. Stud. 2013, 1, 48–52. [Google Scholar]
- Ingabire, J.P.; Hategekimana, A.; Bhuvaneswari, K.; Erler, F. Effectiveness of Various Combinations of Three Main Gases (Oxygen, Carbon Dioxide and Nitrogen) through Modified Atmospheres on Pulse Beetle, Callosobruchus maculatus (F) Population in Stored Green Grams. Int. J. Trop. Insect Sci. 2021, 41, 3233–3240. [Google Scholar] [CrossRef]
- Iturralde-García, R.D.; Borboa-Flores, J.; Cinco-Moroyoqui, F.J.; Riudavets, J.; Del Toro-Sánchez, C.L.; Rueda-Puente, E.O.; Martínez-Cruz, O.; Wong-Corral, F.J. Effect of Controlled Atmospheres on the Insect Callosobruchus maculatus Fab. in Stored Chickpea. J. Stored Prod. Res. 2016, 69, 78–85. [Google Scholar] [CrossRef]
- Kutbay, F.; Varol, İ.; Bayram, M.; Ozdemir, A. The Effect of Carbon Dioxide at High Pressure under Different Developmental Stages of Callosobruchus maculatus (F.) Hosting on Chickpeas. Afr. J. Biotechnol. 2011, 10, 2053–2057. [Google Scholar]
- Pascua, G.F.S.; Bayogan, E.R.V.; Salaipeth, L.; Photchanachai, S. Pretreating Callosobruchus maculatus (F.) Eggs in Mung Bean with Modified Atmosphere Conditions Influence Its Adult Emergence and Survival. J. Stored Prod. Res. 2021, 91, 101771. [Google Scholar] [CrossRef]
- Wong-Corral, F.J.; Castañé, C.; Riudavets, J. Lethal Effects of CO2-Modified Atmospheres for the Control of Three Bruchidae Species. J. Stored Prod. Res. 2013, 55, 62–67. [Google Scholar] [CrossRef]
- Moncini, L.; Simone, G.; Romi, M.; Cai, G.; Guerriero, G.; Whittaker, A.; Benedettelli, S.; Berni, R. Controlled Nitrogen Atmosphere for the Preservation of Functional Molecules during Silos Storage: A Case Study Using Old Italian Wheat Cultivars. J. Stored Prod. Res. 2020, 88, 101638. [Google Scholar] [CrossRef]
- Pisuttu, C.; Risoli, S.; Moncini, L.; Nali, C.; Pellegrini, E.; Sarrocco, S. Sustainable Strategies to Counteract Mycotoxins Contamination and Cowpea Weevil in Chickpea Seeds during Post-Harvest. Toxins 2023, 15, 61. [Google Scholar] [CrossRef] [PubMed]
- Moisture Measurement—Unground Grain and Seeds. Available online: https://dergipark.org.tr/tr/download/issue-full-file/41582 (accessed on 30 November 2023). [CrossRef]
- International Seed Testing Association. International Rules for Seed Testing; International Seed Testing Association: Wallisellen, Switzerland, 2024; Available online: https://www.seedtest.org/en/publications/international-rules-seed-testing.html (accessed on 8 December 2023).
- ISO 4833-1:2013; Microbiology of the Food Chain. Horizontal Method for the Enumeration of Microorganisms. Part 1: Colony Count at 30 °C by the Pour Plate Technique. ISO: Geneva, Switzerland, 2013. Available online: https://www.iso.org/standard/53728.html (accessed on 30 November 2023).
- ISO 21527-2:2008; Microbiology of Food and Animal Feeding Stuffs. Horizontal Method for the Enumeration of Yeasts and Moulds. Part 2: Colony Count Technique in Products with Water Activity Less than or Equal to 0.95. ISO: Geneva, Switzerland, 2008. Available online: https://www.iso.org/standard/38276.html (accessed on 30 November 2023).
- Al-mentafji, H.N. Official Methods of Analysis of Aoac International; AOAC: Washington, DC, USA, 2005. [Google Scholar]
- Metsalu, T.; Vilo, J. ClustVis: A Web Tool for Visualizing Clustering of Multivariate Data Using Principal Component Analysis and Heatmap. Nucleic Acids Res. 2015, 43, W566–W570. [Google Scholar] [CrossRef] [PubMed]
- Babu, S.R.; Raju, S.V.S.; Dhanapal, R.; Sharma, K.R. Storage of Chickpea Grains (Cicer arietinum L.) in Triple Layer Bags Prevent Losses Caused by Callosobruchus maculatus (F.) (Coleoptera: Chrysomelidae) under Laboratory Conditions. J. Stored Prod. Res. 2020, 88, 101685. [Google Scholar] [CrossRef]
- Bhattarai, B.; Walker, C.K.; Wallace, A.J.; Nuttall, J.G.; Hepworth, G.; Panozzo, J.F.; Partington, D.L.; Fitzgerald, G.J. Modified Storage Atmosphere Prevents the Degradation of Key Grain Quality Traits in Lentil. Agronomy 2023, 13, 2160. [Google Scholar] [CrossRef]
- Al-Haidari, R.A.; Al-Oqail, M.M. New Benzoic Acid Derivatives from Cassia Italica Growing in Saudi Arabia and Their Antioxidant Activity. Saudi Pharm. J. 2020, 28, 1112–1117. [Google Scholar] [CrossRef] [PubMed]
- Sun, P.; Huang, Y.; Yang, X.; Liao, A.; Wu, J. The Role of Indole Derivative in the Growth of Plants: A Review. Front. Plant Sci. 2023, 13, 1120613. [Google Scholar] [CrossRef] [PubMed]
- Luo, X.; Xu, J.; Zheng, C.; Yang, Y.; Wang, L.; Zhang, R.; Ren, X.; Wei, S.; Aziz, U.; Du, J.; et al. Abscisic Acid Inhibits Primary Root Growth by Impairing ABI4-Mediated Cell Cycle and Auxin Biosynthesis. Plant Physiol 2023, 191, 265–279. [Google Scholar] [CrossRef]
- Senaratna, T.; Merritt, D.; Dixon, K.; Bunn, E.; Touchell, D.; Sivasithamparam, K. Benzoic Acid May Act as the Functional Group in Salicylic Acid and Derivatives in the Induction of Multiple Stress Tolerance in Plants. Plant Growth Regul. 2003, 39, 77–81. [Google Scholar] [CrossRef]
- Mirali, M.; Purves, R.W.; Vandenberg, A. Phenolic Profiling of Green Lentil (Lens culinaris Medic.) Seeds Subjected to Long-Term Storage. Eur. Food Res. Technol. 2016, 242, 2161–2170. [Google Scholar] [CrossRef]
- Lindemann, I.d.S.; Lang, G.H.; Ferreira, C.D.; Colussi, R.; Elias, M.C.; Vanier, N.L. Cowpea Storage under Nitrogen-Modified Atmosphere at Different Temperatures: Impact on Grain Structure, Cooking Quality, in Vitro Starch Digestibility, and Phenolic Extractability. J. Food Process. Preserv. 2020, 44, e14368. [Google Scholar] [CrossRef]
- Vanier, N.L.; Rupollo, G.; Paraginski, R.T.; de Oliveira, M.; Elias, M.C. Effects of Nitrogen-Modified Atmosphere Storage on Physical, Chemical and Technological Properties of Carioca Bean. Curr. Agric. Sci. Technol. 2014, 20, 10–20. [Google Scholar]
- Nasar-Abbas, S.M.; Plummer, J.A.; Siddique, K.H.M.; White, P.F.; Harris, D.; Dods, K. Nitrogen Retards and Oxygen Accelerates Colour Darkening in Faba Bean (Vicia faba L.) during Storage. Postharvest Biol. Technol. 2008, 47, 113–118. [Google Scholar] [CrossRef]
Parameters | Time 0 | 3 Months | 6 Months | 9 Months | 12 Months | ||||
---|---|---|---|---|---|---|---|---|---|
Cntrl | CA | Cntrl | CA | Cntrl | CA | Cntrl | CA | ||
Acidity (mL H2SO4) | 0.04 ± 0.001 | 0.03 ± 0.01 | 0.03 ± 0.005 | 0.03 ± 0.001 | 0.03 ± 0.001 | 0.02 ± 0.001 | 0.02 ± 0.001 | 0.04 ± 0.04 | 0.04 ± 0.01 |
Peroxides (mEq O2/kg) | 0.10 ± 0.001 | 0.60 ± 0.17 | 0.67 ± 0.29 | 0.40 ± 0.001 | 0.43 ± 0.06 | 0.50 ± 0.10 | 0.43 ± 0.06 | 0.50 ± 0.00 | 0.43 ± 0.06 |
Proteins (g/100 g) | 22.99 ± 0.04 | 22.04 ± 0.31 | 22.05 ± 0.53 | 22.22 ± 1.00 | 21.54 ± 1.51 | 22.93 ± 0.09 | 21.98 ± 1.87 | 21.66 ± 0.44 | 21.64 ± 0.2 |
Fatty acids (g/100 g) | 3.16 ± 0.18 | 3.35 ± 0.12 | 3.03 ± 0.22 | 3.23 ± 0.14 | 2.95 ± 0.17 | 3.08 ± 0.09 | 2.86 ± 0.33 | 2.94 ± 0.22 | 2.84 ± 0.18 |
Moisture content (g/100 g) | 12.84 ± 0.30 | 11.87 ± 0.47 | 12.10 ± 0.20 | 12.27 ± 0.11 | 12.63 ± 0.12 | 9.83 ± 0.45 | 10.68 ± 0.45 | 8.31 ± 0.08 | 9.62 ± 0.33 * |
Bacterial count (CFU/g) | 936.66 ± 170.39 | 170.00 ± 65.57 | 313.33 ± 65.57 * | 146.67 ± 11.54 | 146.67 ± 11.55 | 126.67 ± 80.83 | 233.33 ± 153 | 17.00 ± 3.61 | 15.00 ± 3.46 |
Yeast/mould count (CFU/g) | 1150 ± 174.73 | 213.33 ± 70.94 | 280 ± 70.95 | 80 ± 69.28 | 83.33 ± 21.10 | 80 ± 21.21 | 83.33 ± 21.18 | <10 | <10 |
FAs (g/100 g) | Time 0 | 3 Months | 6 Months | 9 Months | 12 Months | ||||
---|---|---|---|---|---|---|---|---|---|
Cntrl | CA | Cntrl | CA | Cntrl | CA | Cntrl | CA | ||
UFAs | 2.65 ± 0.16 | 2.79 ± 0.10 | 2.51 ± 0.18 | 2.68 ± 0.10 | 2.45 ± 0.15 | 2.59 ± 0.09 | 2.41 ± 0.28 | 2.43 ± 0.19 | 2.36 ± 0.15 |
SFAs | 0.37 ± 0.02 | 0.42 ± 0.01 | 0.39 ± 0.02 | 0.41 ± 0.03 | 0.37 ± 0.02 | 0.36 ± 0.01 | 0.33 ± 0.04 | 0.38 ± 0.03 | 0.35 ± 0.03 |
PUFAs | 1.65 ± 0.10 | 1.74 ± 0.04 * | 1.52 ± 0.14 | 1.66 ± 0.07 | 1.52 ± 0.10 | 1.63 ± 0.07 | 1.51 ± 0.18 | 1.48 ± 0.15 | 1.46 ± 0.10 |
MFAs | 1.01 ± 0.05 | 1.05 ± 0.07 | 0.99 ± 0.06 | 1.02 ± 0.05 | 0.93 ± 0.06 | 0.96 ± 0.02 | 0.89 ± 0.10 | 0.94 ± 0.05 | 0.90 ± 0.05 |
ω-6 | 1.56 ± 0.10 | 1.66 ± 0.04 * | 1.46 ± 0.12 | 1.59 ± 0.10 | 1.46 ± 0.07 | 1.53 ± 0.05 | 1.44 ± 0.18 | 1.40 ± 0.14 | 1.37 ± 0.10 |
ω-9 | 0.98 ± 0.05 | 1.03 ± 0.06 | 0.97 ± 0.06 | 1.00 ± 0.05 | 0.90 ± 0.05 | 0.90 ± 0.02 | 0.84 ± 0.10 | 0.91 ± 0.05 | 0.86 ± 0.06 |
PA | 0.28 ± 0.01 | 0.32 ± 0.01 | 0.29 ± 0.02 | 0.30 ± 0.02 * | 0.28 ± 0.01 | 0.27 ± 0.01 | 0.26 ± 0.03 | 0.28 ± 0.02 | 0.26 ± 0.02 |
OA | 0.98 ± 0.05 | 1.03 ± 0.06 | 0.97 ± 0.06 | 0.99 ± 0.05 | 0.90 ± 0.04 | 0.90 ± 0.02 | 0.84 ± 0.10 | 0.91 ± 0.05 | 0.87 ± 0.07 |
LA | 1.56 ± 0.10 | 1.66 ± 0.04 * | 1.46 ± 0.12 | 1.56 ± 0.06 | 1.43 ± 0.09 | 1.53 ± 0.05 | 1.44 ± 0.17 | 1.40 ± 0.14 | 1.37 ± 0.10 |
SA | 0.05 ± 0.001 | 0.05 ± 0.005 | 0.05 ± 0.001 | 0.05 ± 0.01 | 0.04 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 | 0.05 ± 0.01 |
α-LA | 0.07 ± 0.005 | 0.08 ± 0.005 | 0.06 ± 0.03 | 0.05 ± 0.03 | 0.05 ± 0.04 | 0.08 ± 0.01 | 0.07 ± 0.01 | 0.08 ± 0.01 | 0.07 ± 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moncini, L.; Guerriero, G.; Simone, G.; Vita, C.; Berni, R. Quality and Nutraceutical Features of Cicer arietinum L. Stored under Nitrogen Atmosphere. Seeds 2024, 3, 16-25. https://doi.org/10.3390/seeds3010002
Moncini L, Guerriero G, Simone G, Vita C, Berni R. Quality and Nutraceutical Features of Cicer arietinum L. Stored under Nitrogen Atmosphere. Seeds. 2024; 3(1):16-25. https://doi.org/10.3390/seeds3010002
Chicago/Turabian StyleMoncini, Lorenzo, Gea Guerriero, Gabriele Simone, Chiara Vita, and Roberto Berni. 2024. "Quality and Nutraceutical Features of Cicer arietinum L. Stored under Nitrogen Atmosphere" Seeds 3, no. 1: 16-25. https://doi.org/10.3390/seeds3010002
APA StyleMoncini, L., Guerriero, G., Simone, G., Vita, C., & Berni, R. (2024). Quality and Nutraceutical Features of Cicer arietinum L. Stored under Nitrogen Atmosphere. Seeds, 3(1), 16-25. https://doi.org/10.3390/seeds3010002