Previous Issue
Volume 3, September
 
 

Meteorology, Volume 3, Issue 4 (December 2024) – 4 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
35 pages, 99630 KiB  
Article
Tornadic Storm over the Foothills of Central Nepal Himalaya
by Toshihiro Kitada, Sajan Shrestha, Sangeeta Maharjan, Suresh Bhattarai and Ram Prasad Regmi
Meteorology 2024, 3(4), 412-446; https://doi.org/10.3390/meteorology3040020 (registering DOI) - 1 Dec 2024
Viewed by 406
Abstract
On the evening of 31 March 2019, Parsa and Bara Districts in central Nepal were severely hit by a wind storm which was the first documented tornadic incidence in Nepal.In this paper, we investigate the background of the tornado formation via numerical simulations [...] Read more.
On the evening of 31 March 2019, Parsa and Bara Districts in central Nepal were severely hit by a wind storm which was the first documented tornadic incidence in Nepal.In this paper, we investigate the background of the tornado formation via numerical simulations with the WRF-ARW model. The results show that: (1) a flow situation favorable to the generation of mesocyclones was formed by a combination of local plain-to-mountain winds consisting of warm and humid southwesterly wind in the lower atmosphere and synoptic northwesterly wind aloft over the southern foothills of the Himalayan Mountain range, leading to significant vertical wind shear and strong buoyancy; (2) the generated mesocyclone continuously shed rain-cooled outflow with 600∼800 m depth above the ground into the Chitwan valley while moving southeastward along the Mahabharat Range at the northeastern rim of the Chitwan valley; (3) the cold outflow propagated in the valley, forming a front; and (4) the tornado was generated when this cold outflow passed over the Siwalik Hills bordering the southern rim of the Chitwan valley. At this point, descending flow around a high mountain generated positive vertical vorticity near the ground; blocking by this high mountain and channeling through a mountain pass enhanced updrafts at the front by forming a hydraulic jump. These updrafts amplified the positive vertical vorticity via stretching, and this interaction of the cold outflow with the Siwalik Hills contributed to tornadogenesis. The simulated location and time of the disaster showed generally good agreement with the reported location and time. Full article
Show Figures

Figure 1

21 pages, 21427 KiB  
Article
Evolution of Synoptic Systems Associated with Lake-Effect Snow Events over Northwestern Pennsylvania
by Jake Wiley and Christopher Elcik
Meteorology 2024, 3(4), 391-411; https://doi.org/10.3390/meteorology3040019 - 20 Nov 2024
Viewed by 769
Abstract
This study investigates the synoptic conditions associated with lake-effect snow (LES) over northwestern Pennsylvania with a focus on classifying cases based on the tracks of cyclones influencing the region, including Nor’easters (NEs), Alberta Clippers (ACs), Colorado Lows (COs), and Great Lakes Lows (GLs). [...] Read more.
This study investigates the synoptic conditions associated with lake-effect snow (LES) over northwestern Pennsylvania with a focus on classifying cases based on the tracks of cyclones influencing the region, including Nor’easters (NEs), Alberta Clippers (ACs), Colorado Lows (COs), and Great Lakes Lows (GLs). Synoptic composites were constructed using the North American Regional Reanalysis (NARR) for all cases, as well as each cyclone group, using an LES repository spanning from 2006–2020. Additionally, 95 percent bootstrapped confidence intervals were created for each cyclone track to compare the initial mesoscale environmental properties (i.e., surface lake/air temperature and wind direction/speed) and LES impact (i.e., duration, maximum snowfall, and property damage). Synoptic composites of all LES cases exhibited an archetypal LES synoptic pattern consisting of an upper-level low geopotential height anomaly over the Hudson Bay and surface dipole structure centered across the Great Lakes basin. Regarding the different tracks, NEs and COs featured dynamic support in the form of enhanced turbulent mixing and synoptic vertical forcing, while ACs and GLs had greater thermodynamic support in the form of higher lapse rates and heightened heat and moisture fluxes. However, the bootstrapping analysis revealed minimal differences in LES impact between the cyclone types. Full article
(This article belongs to the Special Issue Early Career Scientists' (ECS) Contributions to Meteorology (2024))
Show Figures

Figure 1

37 pages, 34329 KiB  
Technical Note
The Cycle 46 Configuration of the HARMONIE-AROME Forecast Model
by Emily Gleeson, Ekaterina Kurzeneva, Wim de Rooy, Laura Rontu, Daniel Martín Pérez, Colm Clancy, Karl-Ivar Ivarsson, Bjørg Jenny Engdahl, Sander Tijm, Kristian Pagh Nielsen, Metodija Shapkalijevski, Panu Maalampi, Peter Ukkonen, Yurii Batrak, Marvin Kähnert, Tosca Kettler, Sophie Marie Elies van den Brekel, Michael Robin Adriaens, Natalie Theeuwes, Bolli Pálmason, Thomas Rieutord, James Fannon, Eoin Whelan, Samuel Viana, Mariken Homleid, Geoffrey Bessardon, Jeanette Onvlee, Patrick Samuelsson, Daniel Santos-Muñoz, Ole Nikolai Vignes and Roel Stappersadd Show full author list remove Hide full author list
Meteorology 2024, 3(4), 354-390; https://doi.org/10.3390/meteorology3040018 - 5 Nov 2024
Viewed by 1103
Abstract
The aim of this technical note is to describe the Cycle 46 reference configuration of the HARMONIE-AROME convection-permitting numerical weather prediction model. HARMONIE-AROME is one of the canonical system configurations that is developed, maintained, and validated in the ACCORD consortium, a collaboration of [...] Read more.
The aim of this technical note is to describe the Cycle 46 reference configuration of the HARMONIE-AROME convection-permitting numerical weather prediction model. HARMONIE-AROME is one of the canonical system configurations that is developed, maintained, and validated in the ACCORD consortium, a collaboration of 26 countries in Europe and northern Africa on short-range mesoscale numerical weather prediction. This technical note describes updates to the physical parametrizations, both upper-air and surface, configuration choices such as lateral boundary conditions, model levels, horizontal resolution, model time step, and databases associated with the model, such as for physiography and aerosols. Much of the physics developments are related to improving the representation of clouds in the model, including developments in the turbulence, shallow convection, and statistical cloud scheme, as well as changes in radiation and cloud microphysics concerning cloud droplet number concentration and longwave cloud liquid optical properties. Near real-time aerosols and the ICE-T microphysics scheme, which improves the representation of supercooled liquid, and a wind farm parametrization have been added as options. Surface-wise, one of the main advances is the implementation of the lake model FLake. An outlook on upcoming developments is also included. Full article
Show Figures

Figure 1

21 pages, 1988 KiB  
Article
Changes in Climatological Variables at Stations around Lake Erie and Lake Michigan
by Abhishek Kaul, Alex Paparas, Venkata K. Jandhyala and Stergios B. Fotopoulos
Meteorology 2024, 3(4), 333-353; https://doi.org/10.3390/meteorology3040017 - 9 Oct 2024
Viewed by 970
Abstract
Climatological variables undergo changes over time, and it is important to understand such dynamic changes at global, regional, and local levels. While global and regional studies are common in the study of climate, such studies at a local level are not as common. [...] Read more.
Climatological variables undergo changes over time, and it is important to understand such dynamic changes at global, regional, and local levels. While global and regional studies are common in the study of climate, such studies at a local level are not as common. The aim of this article is to study temporal changes in precipitation, snowfall, and temperature variables at specific stations located on the rims of Lake Erie and Lake Michigan. The identification of changes is carried out by applying change-point analysis to precipitation, snowfall, and temperature data from Buffalo, Erie, and Cleveland stations located on the rim of Lake Erie and at Chicago, Milwaukee, and Green Bay stations located on the rim of Lake Michigan. We adopt mainly the Bayesian information criterion (BIC) method to identify the number and locations of change points, and then we apply the generalized likelihood ratio statistic to test for the statistical significance of the identified change points. We follow this up by finding 95% confidence intervals for those change points that were found to be statistically significant. The results from the analysis show that there are significant changes in precipitation, snowfall, and temperature variables at all six rim stations. Changes in precipitation show consistently significant increases, whereas there is no similar consistency in snowfall increases. Temperature increases are generally quite sharp, and they occur consistently around 1985. Overall, upon combining the amounts of changes from all six stations, the average amount of change in annual average temperature is found to be 0.96 °C, the average percentage of change in precipitation is 16%, and the average percentage of change in snowfall is 17%. The changing local climatic conditions identified in the study are important for local city planners, as well as residents, so that they can be well prepared for changing climatic scenarios. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop