Antimicrobial Resistance and Virulence in Escherichia coli from Broiler Production Unit: Genetic Insights for One Health †
Abstract
1. Introduction
2. Methodology
2.1. Study Design and Sample Collection
2.2. Genomic DNA Extraction
2.3. Polymerase Chain Reaction-Based Genetic Analysis
3. Results and Discussion
3.1. Antibiotic Resistance Genes and Phylogenetic Groups
3.2. Virulence-Associated Genes and Integrases
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hedman, H.D.; Vasco, K.A.; Zhang, L. A Review of Antimicrobial Resistance in Poultry Farming within Low-resource Settings. Animals 2020, 10, 1264. [Google Scholar] [CrossRef] [PubMed]
- Instituto Nacional de Estatística. Boletim Mensal da Agricultura e Pescas; Instituto Nacional de Estatística: Lisboa, Portugal, 2024.
- Redman-White, C.J.; Moran, D.; Peters, A.R.; Muwonge, A. A Review of the Predictors of Antimicrobial Use and Resistance in European Food Animal Production. Front. Antibiot. 2023, 2, 1209552. [Google Scholar] [CrossRef] [PubMed]
- European Food Safety Authority. The European Union Summary Report on Antimicrobial Resistance in Zoonotic and Indicator Bacteria from Humans, Animals and Food in 2022–2023. EFSA J. 2025, 23, e9237. [Google Scholar] [CrossRef]
- Handal, N.; Whitworth, J.; Nakrem Lyngbakken, M.; Berdal, J.E.; Dalgard, O.; Bakken Jørgensen, S. Mortality and Length of Hospital Stay after Bloodstream Infections Caused by ESBL-Producing Compared to Non-ESBL-Producing E. coli. Infect. Dis. 2024, 56, 19–31. [Google Scholar] [CrossRef]
- Abad-Fau, A.; Sevilla, E.; Oro, A.; Martín-Burriel, I.; Moreno, B.; Morales, M.; Bolea, R. Multidrug Resistance in Pathogenic Escherichia coli Isolates from Urinary Tract Infections in Dogs, Spain. Front. Vet. Sci. 2024, 11, 1325072. [Google Scholar] [CrossRef] [PubMed]
- Custódio, D.A.d.C.; Pereira, C.R.; Gonçalves, M.S.; Costa, A.C.T.R.B.; de Oliveira, P.F.R.; da Silva, B.H.P.; Carneiro, G.B.; Coura, F.M.; Lage, A.P.; Heinemann, M.B.; et al. Antimicrobial Resistance and Public and Animal Health Risks Associated with Pathogenic Escherichia coli Isolated from Calves. Comp. Immunol. Microbiol. Infect. Dis. 2024, 107, 102149. [Google Scholar] [CrossRef]
- Ribeiro, J.; Silva, V.; Monteiro, A.; Vieira-Pinto, M.; Igrejas, G.; Reis, F.S.; Barros, L.; Poeta, P. Antibiotic Resistance among Gastrointestinal Bacteria in Broilers: A Review Focused on Enterococcus spp. and Escherichia coli. Animals 2023, 13, 1362. [Google Scholar] [CrossRef]
- Watts, A.; Wigley, P. Avian Pathogenic Escherichia Coli: An Overview of Infection Biology, Antimicrobial Resistance and Vaccination. Antibiotics 2024, 13, 809. [Google Scholar] [CrossRef]
- Koratkar, S.; Bhutada, P.; Giram, P.; Verma, C.; Saroj, S.D. Bacteriophages Mediating Effective Elimination of Multidrug-Resistant Avian Pathogenic Escherichia coli. PHAGE Ther. Appl. Res. 2024, 5, 76–83. [Google Scholar] [CrossRef]
- Tivendale, K.A.; Logue, C.M.; Kariyawasam, S.; Jordan, D.; Hussein, A.; Li, G.; Wannemuehler, Y.; Nolan, L.K. Avian-Pathogenic Escherichia coli Strains Are Similar to Neonatal Meningitis E. coli Strains and Are Able to Cause Meningitis in the Rat Model of Human Disease. Infect. Immun. 2010, 78, 3412–3419. [Google Scholar] [CrossRef]
- Wang, P.; Zhang, J.; Chen, Y.; Zhong, H.; Wang, H.; Li, J.; Zhu, G.; Xia, P.; Cui, L.; Li, J.; et al. Colibactin in Avian Pathogenic Escherichia coli Contributes to the Development of Meningitis in a Mouse Model. Virulence 2021, 12, 2382–2399. [Google Scholar] [CrossRef] [PubMed]
- Jamali, H.; Akrami, F.; Bouakkaz, S.; Dozois, C.M. Prevalence of Specific Serogroups, Antibiotic Resistance and Virulence Factors of Avian Pathogenic Escherichia coli (APEC) Isolated from Clinical Cases: A Systematic Review and Meta-Analysis. Microb. Pathog. 2024, 194, 106843. [Google Scholar] [CrossRef]
- Thomrongsuwannakij, T.; Blackall, P.J.; Djordjevic, S.P.; Cummins, M.L.; Chansiripornchai, N. A Comparison of Virulence Genes, Antimicrobial Resistance Profiles and Genetic Diversity of Avian Pathogenic Escherichia coli (APEC) Isolates from Broilers and Broiler Breeders in Thailand and Australia. Avian Pathol. 2020, 49, 457–466. [Google Scholar] [CrossRef]
- Xue, M.; Li, Z.; Zhang, P.; Lei, W. Genomic Characteristics of ETT2 Gene Clusters in Avian Pathogenic Escherichia coli Identified by Whole-Genome Sequencing. Pak. Vet. J. 2024, 44, 833–839. [Google Scholar] [CrossRef]
- Miles, T.D.; McLaughlin, W.; Brown, P.D. Antimicrobial Resistance of Escherichia coli Isolates from Broiler Chickens and Humans. BMC Vet. Res. 2006, 2, 7. [Google Scholar] [CrossRef]
- Braykov, N.P.; Eisenberg, J.N.S.; Grossman, M.; Zhang, L.; Vasco, K.; Cevallos, W.; Muñoz, D.; Acevedo, A.; Moser, K.A.; Marrs, C.F.; et al. Antibiotic Resistance in Animal and Environmental Samples Associated with Small-Scale Poultry Farming in Northwestern Ecuador. mSphere 2016, 1, e00021-15. [Google Scholar] [CrossRef] [PubMed]
- Clermont, O.; Bonacorsi, P.; Bingen, E. Rapid and Simple Determination of the Escherichia coli Phylogenetic Group. Appl. Environ. Microbiol. 2000, 66, 4555–4558. [Google Scholar] [CrossRef]
- Silva, N.; Costa, L.; Gonçalves, A.; Sousa, M.; Radhouani, H.; Brito, F.; Igrejas, G.; Poeta, P. Genetic Characterisation of Extended-Spectrum β-Lactamases in Escherichia coli Isolated from Retail Chicken Products Including CTX-M-9 Containing Isolates: A Food Safety Risk Factor. Br. Poult. Sci. 2012, 53, 747–755. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.; Leão, C.; Clemente, L.; Albuquerque, T.; Amaro, A. Antibiotic Susceptibility Profiles and Resistance Mechanisms to β-Lactams and Polymyxins of Escherichia coli from Broilers Raised under Intensive and Extensive Production Systems. Microorganisms 2022, 10, 2044. [Google Scholar] [CrossRef]
- The European Parliament Regulation (EU). Regulation (Eu) 2019/4 of the European Parliament and of the Council on the Manufacture, Placing on the Market and Use of Medicated Feed, Amending Regulation (EC) No 183/2005 of the European Parliament and of the Council and Repealing Council Directive 90/167/EEC. EU: Strasbourg, France, 2019. [Google Scholar]
- Cavicchio, L.; Dotto, G.; Giacomelli, M.; Giovanardi, D.; Grilli, G.; Franciosini, M.P.; Trocino, A.; Piccirillo, A. Class 1 and Class 2 Integrons in Avian Pathogenic Escherichia coli from Poultry in Italy. Poult. Sci. 2015, 94, 1202–1208. [Google Scholar] [CrossRef]
- Di Francesco, A.; Salvatore, D.; Sakhria, S.; Catelli, E.; Lupini, C.; Abbassi, M.S.; Bessoussa, G.; Ben Yahia, S.; Ben Chehida, N. High Frequency and Diversity of Tetracycline Resistance Genes in the Microbiota of Broiler Chickens in Tunisia. Animals 2021, 11, 377. [Google Scholar] [CrossRef] [PubMed]
- Salerno, B.; Furlan, M.; Sabatino, R.; Di Cesare, A.; Leati, M.; Volanti, M.; Barco, L.; Orsini, M.; Losasso, C.; Cibin, V. Antibiotic Resistance Genes Load in an Antibiotic Free Organic Broiler Farm. Poult. Sci. 2022, 101, 101675. [Google Scholar] [CrossRef]
- Manaia, C.M.; Donner, E.; Vaz-Moreira, I.; Hong, P. Antibiotic Resistance in the Environment: A Worldwide Overview. In The Handbook of Environmental Chemistry; Springer Nature: Cham, Switzerland, 2020; Volume 91. [Google Scholar]
- Lee, S.; Yu, J.K.; Park, K.; Oh, E.-J.; Kim, S.-Y.; Park, Y.-J. Phylogenetic Groups and Virulence Factors in Pathogenic and Commensal Strains of Escherichia coli and Their Association with BlaCTX-M. Ann. Clin. Lab. Sci. 2010, 40, 361–367. [Google Scholar] [PubMed]
- Dale, A.P.; Woodford, N. Extra-Intestinal Pathogenic Escherichia coli (ExPEC): Disease, Carriage and Clones. J. Infect. 2015, 71, 615–626. [Google Scholar] [CrossRef]
- Isidro-Coxca, M.I.; Ortiz-Jiménez, S.; Puente, J.L. Type 1 Fimbria and P Pili: Regulatory Mechanisms of the Prototypical Members of the Chaperone-Usher Fimbrial Family. Arch. Microbiol. 2024, 206, 373. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Wang, X.; Xu, H.; Xu, Y.; Ling, J.; Zhang, D.; Gao, S.; Liu, X. Roles of Iron Acquisition Systems in Virulence of Extraintestinal Pathogenic Escherichia coli: Salmochelin and Aerobactin Contribute More to Virulence than Heme in a Chicken Infection Model. BMC Microbiol. 2012, 12, 143. [Google Scholar] [CrossRef]
- Bhat, B.A.; Mir, R.A.; Qadri, H.; Dhiman, R.; Almilaibary, A.; Alkhanani, M.; Mir, M.A. Integrons in the Development of Antimicrobial Resistance: Critical Review and Perspectives. Front. Microbiol. 2023, 14, 1231938. [Google Scholar] [CrossRef]
- Kashif, J.; Buriro, R.; Memon, J.; Yaqoob, M.; Soomro, J.; Dongxue, D.; Jinhu, H.; Liping, W.; Buriro, R.; Memon, J.; et al. Detection of Class 1 and 2 Integrons, β-Lactamase Genes and Molecular Characterization of Sulfonamide Resistance in Escherichia coli Isolates Recovered from Poultry in China. Pak. Vet. J. 2013, 33, 321–324. [Google Scholar]
- Racewicz, P.; Majewski, M.; Biesiada, H.; Nowaczewski, S.; Wilczyński, J.; Wystalska, D.; Kubiak, M.; Pszczoła, M.; Madeja, Z.E. Prevalence and Characterisation of Antimicrobial Resistance Genes and Class 1 and 2 Integrons in Multiresistant Escherichia coli Isolated from Poultry Production. Sci. Rep. 2022, 12, 6062. [Google Scholar] [CrossRef]
- Ivana, D.; Petrikkos, G.; Dimitrijević, V.; Ekatherini, C. Multidrug Resistance and Integrons in Escherichia coli Isolated from Chicken in Greece. Acta Vet. Brno 2011, 61, 575–584. [Google Scholar] [CrossRef]
Isolate | Genotype | Phylogroup |
---|---|---|
JR6 | ampC, blaVIM | B1 |
JR7 | ampC, blaCTX-M | A |
JR8 | ampC, blaCTX-M, tetA, qnrS | A |
JR9 | ampC, blaSHV, blaTEM, aadA5 | B1 |
JR10 | ampC, blaCTX-M, tetA, qnrS | A |
JR11 | ampC, blaSHV, blaVIM, blaIMP, blaTEM, aadA1, tetA, qnrS | A |
JR12 | ampC, blaCTX-M, blaVIM, tetA, qnrS | A |
JR13 | ampC, blaCTX-M, blaVIM, tetA, qnrS | A |
JR14 | ampC, blaSHV, blaTEM, aadA5, tetA, sul2, qnrS | B1 |
JR15 | - | B1 |
JR16 | ampC, blaSHV, blaTEM, blaCTX-M-9, tetA, sul2, strB | B1 |
JR17 | ampC, blaCTX-M, tetA | A |
JR18 | ampC, blaCTX-M, tetA | A |
JR19 | ampC, blaCTX-M, tetA | A |
JR20 | ampC, blaCTX-M, tetA | A |
JR21 | ampC, blaCTX-M, tetA | A |
JR22 | ampC, aac(3)-II, aadA1 | A |
JR23 | - | D |
JR24 | ampC, blaSHV, blaTEM, aadA1, tetA, sul1, sul2, strB, qnrS | D |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ribeiro, J.; Silva, V.; Igrejas, G.; Heleno, S.A.; Reis, F.S.; Poeta, P. Antimicrobial Resistance and Virulence in Escherichia coli from Broiler Production Unit: Genetic Insights for One Health. Med. Sci. Forum 2025, 35, 2. https://doi.org/10.3390/msf2025035002
Ribeiro J, Silva V, Igrejas G, Heleno SA, Reis FS, Poeta P. Antimicrobial Resistance and Virulence in Escherichia coli from Broiler Production Unit: Genetic Insights for One Health. Medical Sciences Forum. 2025; 35(1):2. https://doi.org/10.3390/msf2025035002
Chicago/Turabian StyleRibeiro, Jessica, Vanessa Silva, Gilberto Igrejas, Sandrina A. Heleno, Filipa S. Reis, and Patrícia Poeta. 2025. "Antimicrobial Resistance and Virulence in Escherichia coli from Broiler Production Unit: Genetic Insights for One Health" Medical Sciences Forum 35, no. 1: 2. https://doi.org/10.3390/msf2025035002
APA StyleRibeiro, J., Silva, V., Igrejas, G., Heleno, S. A., Reis, F. S., & Poeta, P. (2025). Antimicrobial Resistance and Virulence in Escherichia coli from Broiler Production Unit: Genetic Insights for One Health. Medical Sciences Forum, 35(1), 2. https://doi.org/10.3390/msf2025035002