Evaluation of the Coagulation Dysfunction in Multiple Sclerosis from the Perspective of IgG Antibodies against Thrombus-Related Components †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. Preliminary Investigation of IgG Antibodies upon Astrocyte Activation
2.3. Statistical Analysis
3. Results
3.1. Expression of PAR-1 and ERK1/2 in Activated U87 Astrocytic Cell Line
3.2. Activation of PAR-1 and ERK1/2 upon Stimulation of Human Primary Astrocytes
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ghasemi, N.; Razavi, S.; Nikzad, E. Multiple Sclerosis: Pathogenesis, Symptoms, Diagnoses and Cell-Based Therapy. Cell J. 2017, 19, 1–10. [Google Scholar] [PubMed]
- Maghzi, A.H.; Borazanci, A.; McGee, J.; Steven Alexander, J.; Gonzalez-Toledo, E.; Minagar, A. Multiple Sclerosis: Pathophysiology, Clinical Features, Diagnosis, and Management. In Neuroinflammation; Elsevier: Amsterdam, The Netherlands, 2011; ISBN 9780123849137. [Google Scholar]
- Compston, A.; Coles, A. Multiple Sclerosis. Lancet 2002, 372, 1502–1517. [Google Scholar] [CrossRef] [PubMed]
- Koudriavtseva, T. Thrombotic Processes in Multiple Sclerosis as Manifestation of Innate Immune Activation. Front. Neurol. 2014, 5, 119. [Google Scholar] [CrossRef] [PubMed]
- Göbel, K.; Kraft, P.; Pankratz, S.; Gross, C.C.; Korsukewitz, C.; Kwiecien, R.; Mesters, R.; Kehrel, B.E.; Wiendl, H.; Kleinschnitz, C.; et al. Prothrombin and Factor X Are Elevated in Multiple Sclerosis Patients. Ann. Neurol. 2016, 80, 946–951. [Google Scholar] [CrossRef] [PubMed]
- Parsons, M.E.; O’Connell, K.; Allen, S.; Egan, K.; Szklanna, P.B.; McGuigan, C.; Ní Áinle, F.; Maguire, P.B. Thrombin Generation Correlates with Disease Duration in Multiple Sclerosis (MS): Novel Insights into the MS-Associated Prothrombotic State. Mult. Scler. J.—Exp. Transl. Clin. 2017, 3, 2055217317747624. [Google Scholar] [CrossRef] [PubMed]
- Göbel, K.; Pankratz, S.; Asaridou, C.M.; Herrmann, A.M.; Bittner, S.; Merker, M.; Ruck, T.; Glumm, S.; Langhauser, F.; Kraft, P.; et al. Blood Coagulation Factor XII Drives Adaptive Immunity during Neuroinflammation via CD87-Mediated Modulation of Dendritic Cells. Nat. Commun. 2016, 7, 11626. [Google Scholar] [CrossRef] [PubMed]
- Sárváry, A.; Szucs, S.; Balogh, I.; Becsky, Á.; Bárdos, H.; Kávai, M.; Seligsohn, U.; Egbring, R.; Lopaciuk, S.; Muszbek, L.; et al. Possible Role of Factor XIII Subunit A in Fcγ and Complement Receptor-Mediated Phagocytosis. Cell. Immunol. 2004, 228, 81–90. [Google Scholar] [CrossRef] [PubMed]
- Ziliotto, N.; Bernardi, F.; Jakimovski, D.; Zivadinov, R. Coagulation Pathways in Neurological Diseases: Multiple Sclerosis. Front. Neurol. 2019, 10, 409. [Google Scholar] [CrossRef] [PubMed]
- Yates, R.L.; Esiri, M.M.; Palace, J.; Jacobs, B.; Perera, R.; DeLuca, G.C. Fibrin(Ogen) and Neurodegeneration in the Progressive Multiple Sclerosis Cortex. Ann. Neurol. 2017, 82, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Davalos, D.; Baeten, K.M.; Whitney, M.A.; Mullins, E.S.; Friedman, B.; Olson, E.S.; Ryu, J.K.; Smirnoff, D.S.; Petersen, M.A.; Bedard, C.; et al. Early Detection of Thrombin Activity in Neuroinflammatory Disease. Ann. Neurol. 2014, 82, 259–270. [Google Scholar] [CrossRef] [PubMed]
- Beilin, O.; Karussis, D.M.; Korczyn, A.D.; Gurwitz, D.; Aronovich, R.; Hantai, D.; Grigoriadis, N.; Mizrachi-Kol, R.; Chapman, J. Increased Thrombin Inhibition in Experimental Autoimmune Encephalomyelitis. J. Neurosci. Res. 2005, 79, 351–359. [Google Scholar] [CrossRef] [PubMed]
- Artim-Esen, B.; Pericleous, C.; Mackie, I.; Ripoll, V.M.; Latchman, D.; Isenberg, D.; Rahman, A.; Ioannou, Y.; Giles, I. Anti-Factor Xa Antibodies in Patients with Antiphospholipid Syndrome and Their Effects upon Coagulation Assays. Arthritis Res. Ther. 2015, 17, 47. [Google Scholar] [CrossRef] [PubMed]
- Hadjiagapiou, M.S.; Krashias, G.; Deeba, E.; Christodoulou, C.; Pantzaris, M.; Lambrianides, A. Antibodies to Blood Coagulation Components Are Implicated in Patients with Multiple Sclerosis. Mult. Scler. Relat. Disord. 2022, 62, 103775. [Google Scholar] [CrossRef] [PubMed]
- Ishida, Y.; Nagai, A.; Kobayashi, S.; Kim, S.U. Upregulation of Protease-Activated Receptor-1 in Astrocytes in Parkinson Disease: Astrocyte-Mediated Neuroprotection through Increased Levels of Glutathione Peroxidase. J. Neuropathol. Exp. Neurol. 2006, 65, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Jiang, Z.; Zhang, Y.; Chen, X.; Lam, P.Y.; Yang, H.; Xu, Q.; Yu, A.C.H. Activation of Erk1/2 and Akt in Astrocytes under Ischemia. Biochem. Biophys. Res. Commun. 2002, 294, 726–733. [Google Scholar] [CrossRef] [PubMed]
- Szydlowska, K.; Gozdz, A.; Dabrowski, M.; Zawadzka, M.; Kaminska, B. Prolonged Activation of ERK Triggers Glutamate-Induced Apoptosis of Astrocytes: Neuroprotective Effect of FK506. J. Neurochem. 2010, 113, 904–918. [Google Scholar] [CrossRef] [PubMed]
- Pedrazzi, M.; Patrone, M.; Passalacqua, M.; Ranzato, E.; Colamassaro, D.; Sparatore, B.; Pontremoli, S.; Melloni, E. Selective Proinflammatory Activation of Astrocytes by High-Mobility Group Box 1 Protein Signaling. J. Immunol. 2007, 179, 8525–8532. [Google Scholar] [CrossRef] [PubMed]
- Bobe, R.; Yin, X.; Roussanne, M.C.; Stepien, O.; Polidano, E.; Faverdin, C.; Marche, P. Evidence for ERK1/2 Activation by Thrombin That Is Independent of EGFR Transactivation. Am. J. Physiol.—Heart Circ. Physiol. 2003, 285, H745–H754. [Google Scholar] [CrossRef] [PubMed]
MSP Samples | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Activity to | FXa | FVIIa | plasmin | Plasmin FXa FXII | Plasmin FXa | Plasmin FXa | Plasmin FXa Thr. | Plasmin PT FXII PC | FXII | PC | Thr. | PT | Thr. | FVIIa | FXII |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hadjiagapiou, M.S.; Krashias, G.; Christodoulou, C.; Pantzaris, M.; Lambrianides, A. Evaluation of the Coagulation Dysfunction in Multiple Sclerosis from the Perspective of IgG Antibodies against Thrombus-Related Components. Med. Sci. Forum 2023, 21, 41. https://doi.org/10.3390/ECB2023-14092
Hadjiagapiou MS, Krashias G, Christodoulou C, Pantzaris M, Lambrianides A. Evaluation of the Coagulation Dysfunction in Multiple Sclerosis from the Perspective of IgG Antibodies against Thrombus-Related Components. Medical Sciences Forum. 2023; 21(1):41. https://doi.org/10.3390/ECB2023-14092
Chicago/Turabian StyleHadjiagapiou, Maria S., George Krashias, Christina Christodoulou, Marios Pantzaris, and Anastasia Lambrianides. 2023. "Evaluation of the Coagulation Dysfunction in Multiple Sclerosis from the Perspective of IgG Antibodies against Thrombus-Related Components" Medical Sciences Forum 21, no. 1: 41. https://doi.org/10.3390/ECB2023-14092
APA StyleHadjiagapiou, M. S., Krashias, G., Christodoulou, C., Pantzaris, M., & Lambrianides, A. (2023). Evaluation of the Coagulation Dysfunction in Multiple Sclerosis from the Perspective of IgG Antibodies against Thrombus-Related Components. Medical Sciences Forum, 21(1), 41. https://doi.org/10.3390/ECB2023-14092