In Silico Study of the Functional Effects of TNRC6B Polymorphic Loci Associated with the Risk of Developing Uterine Leiomyomas According to Genome-Wide Studies †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Selection of Polymorphisms
2.2. Bioinformatic Analysis
3. Results
3.1. Genomic Location of the SNPs
3.2. Regulatory Effects
3.3. Expression QTLs
3.4. The Alternative Splicing Traits (sQTL)
3.5. Pathway Analysis
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Donnez, J.; Dolmans, M.M. Uterine fibroid management: From the present to the future. Hum. Reprod. Update. 2016, 22, 665–686. [Google Scholar] [CrossRef]
- Drayer, S.M.; Catherino, W.H. Prevalence, morbidity, and current medical management of uterine leiomyomas. Int. J. Gynecol. Obstet. 2015, 131, 117–122. [Google Scholar] [CrossRef]
- Bulun, S.E. Uterine fibroids. N. Engl. J. Med. 2013, 369, 1344–1355. [Google Scholar] [CrossRef]
- Ponomarenko, I.; Reshetnikov, E.; Polonikov, A.; Verzilina, I.; Sorokina, I.; Yermachenko, A.; Dvornyk, V.; Churnosov, M. Candidate genes for age at menarche are associated with uterine leiomyoma. Front. Genet. 2021, 11, 512940. [Google Scholar] [CrossRef]
- Doherty, L.; Mutlu, L.; Sinclair, D.; Taylor, H. Uterine fibroids: Clinical manifestations and contemporary management. Reprod. Sci. 2014, 21, 1067–1092. [Google Scholar] [CrossRef]
- Gallagher, C.S.; Mäkinen, N.; Harris, H.R.; Rahmioglu, N.; Uimari, O.; Cook, J.P.; Shigesi, N.; Ferreira, T.; Velez-Edwards, D.R.; Edwards, T.L.; et al. Genome-wide association and epidemiological analyses reveal common genetic origins between uterine leiomyomata and endometriosis. Nat. Commun. 2019, 10, 4857. [Google Scholar] [CrossRef] [PubMed]
- Van Heertum, K.; Barmat, L. Uterine fibroids associated with infertility. Womens Health 2014, 10, 645–653. [Google Scholar] [CrossRef]
- Wise, L.A.; Laughlin-Tommaso, S.K. Epidemiology of uterine fibroids–from menarche to menopause. Clin. Obstet. Gynecol. 2016, 59, 2–24. [Google Scholar] [CrossRef] [PubMed]
- Pavone, D.; Clemenza, S.; Sorbi, F.; Fambrini, M.; Petraglia, F. Epidemiology and risk factors of uterine fibroids. Best Pract. Res. Clin. Obstet. Gynaecol. 2018, 46, 3–11. [Google Scholar] [CrossRef] [PubMed]
- Ciebiera, M.; Włodarczyk, M.; Słabuszewska-Jóźwiak, A.; Nowicka, G.; Jakiel, G. Influence of vitamin D and transforming growth factor β3 serum concentrations, obesity, and family history on the risk for uterine fibroids. Fertil. Steril. 2016, 106, 1787–1792. [Google Scholar] [CrossRef]
- Qin, H.; Lin, Z.; Vásquez, E.; Xu, L. The association between chronic psychological stress and uterine fibroids risk: A meta-analysis of observational studies. Stress Health 2019, 35, 585–594. [Google Scholar] [CrossRef] [PubMed]
- Meadows, K.L.; Andrews, D.M.; Xu, Z.; Carswell, G.K.; Laughlin, S.K.; Baird, D.D.; Taylor, J.A. Genome-wide analysis of loss of heterozygosity and copy number amplification in uterine leiomyomas using the 100K single nucleotide polymorphism array. Exp. Mol. Pathol. 2011, 91, 434–439. [Google Scholar] [CrossRef] [PubMed]
- Dehghan, A. Genome-Wide Association Studies. Methods Mol. Biol. 2018, 1793, 37–49. [Google Scholar]
- Chen, C.Y.; Chang, I.; Hsiung, C.A. Wasserman, W.W. On the identification of potential regulatory variants within genome wide association candidate SNP sets. BMC Medical Genom. 2014, 7, 1–5. [Google Scholar] [CrossRef]
- Herman, M.A.; Rosen, E.D. Making biological sense of GWAS data: Lessons from the FTO locus. Cell Metab. 2015, 22, 538–539. [Google Scholar] [CrossRef]
- Reshetnikov, E.A. Study of associations of candidate genes differentially expressing in the placenta with the development of placental insufficiency with fetal growth restriction. Res. Result Biomed. 2020, 6, 338–349. [Google Scholar]
- Cha, P.C.; Takahashi, A.; Hosono, N.; Low, S.K.; Kamatani, N.; Kubo, M.; Nakamura, Y. A genome-wide association study identifies three loci associated with susceptibility to uterine fibroids. Nat. Genet. 2011, 43, 447–450. [Google Scholar] [CrossRef]
- Sakai, K.; Tanikawa, C.; Hirasawa, A.; Chiyoda, T.; Yamagami, W.; Kataoka, F.; Susumu, N.; Terao, C.; Kamatani, Y.; Takahashi, A.; et al. Identification of a novel uterine leiomyoma GWAS locus in a Japanese population. Sci. Rep. 2020, 10, 1–8. [Google Scholar] [CrossRef]
- Välimäki, N.; Kuisma, H.; Pasanen, A.; Heikinheimo, O.; Sjöberg, J.; Bützow, R.; Sarvilinna, N.; Heinonen, H.R.; Tolvanen, J.; Bramante, S.; et al. Genetic predisposition to uterine leiomyoma is determined by loci for genitourinary development and genome stability. Elife 2018, 7, e37110. [Google Scholar] [CrossRef]
- Rafnar, T.; Gunnarsson, B.; Stefansson, O.A.; Sulem, P.; Ingason, A.; Frigge, M.L.; Stefansdottir, L.; Sigurdsson, J.K.; Tragante, V.; Steinthorsdottir, V.; et al. Variants associating with uterine leiomyoma highlight genetic background shared by various cancers and hormone-related traits. Nat. Commun. 2018, 9, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Edwards, T.L.; Giri, A.; Hellwege, J.N.; Hartmann, K.E.; Stewart, E.A.; Jeff, J.M.; Bray, M.J.; Pendergrass, S.A.; Torstenson, E.S.; Keaton, J.M.; et al. A trans-ethnic genome-wide association study of uterine fibroids. Front. Genet. 2019, 10, 511. [Google Scholar] [CrossRef] [PubMed]
- Masuda, T.; Low, S.K.; Akiyama, M.; Hirata, M.; Ueda, Y.; Matsuda, K.; Kimura, T.; Murakami, Y.; Kubo, M.; Kamatani, Y.; et al. GWAS of five gynecologic diseases and cross-trait analysis in Japanese. Eur. J. Hum. Genet. 2020, 28, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Ward, L.D.; Kellis, M. HaploReg: A resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 2012, 40, D930–D934. [Google Scholar] [CrossRef] [PubMed]
- Westra, H.J.; Peters, M.J.; Esko, T.; Yaghootkar, H.; Schurmann, C.; Kettunen, J.; Christiansen, M.; Fairfax, B.P.; Schramm, K.; Powell, J.E.; et al. Systematic identification of trans eQTLs as putative drivers of known disease associations. Nat. Genet. 2013, 45, 1238–1243. [Google Scholar] [CrossRef] [PubMed]
- Gene Ontology Consortium. The gene ontology resource: 20 years and still GOing strong. Nucleic Acids Res. 2019, 47, D330–D338. [Google Scholar] [CrossRef]
- Watanabe, K.; Stringer, S.; Frei, O.; Umićević Mirkov, M.; de Leeuw, C.; Polderman, T.J.; van der Sluis, S.; Andreassen, O.A.; Neale, B.M.; Posthuma, D. A global overview of pleiotropy and genetic architecture in complex traits. Nat. Genet. 2019, 51, 1339–1348. [Google Scholar] [CrossRef]
Gene | SNPs (Pos.) | OR (Effect Allele), p (Ref.) | Regulatory Effects | eQTL |
---|---|---|---|---|
TNRC6B | rs4821939 (40263247) | OR = 1.08 (A), p = 7.8 × 10−16 [6] | Enhancer 11 tissues, DNAse 4 tissues, 5 protein bounds, 3 altered motifs | RP51042K10.10, FAM83F, TNRC6B, RP51042K10.13, SLC25A17, XPNPEP3 |
rs12484776 (40256869) | OR = 1.23 (G), p = 2.8 × 10−12 [17] | Enhancer 16 tissues, DNAse 4 tissues, 1 altered motif | RP51042K10.10, TNRC6B, FAM83F RP51042K10.13, XPNPEP3, SLC25A17 | |
OR = 0.89 (A), p = 4.6× 10−18 [18] | ||||
rs733381 (40273644) | OR = 1.10 (G), p = 5.7 × 10−11 [19] | Enhancer 11 tissues, DNAse 2 tissues, 1 protein bound, 2 altered motifs | RP51042K10.10, FAM83F, XPNPEP3 RP51042K10.13, TNRC6B, SLC25A17 | |
rs12484951 (40307071) | OR = 1.11 (G), p = 3.2 × 10−13 [20] | 2 altered motifs | RP5-1042K10.10, FAM83F, SLC25A17, RP5-1042K10.13, TNRC6B, XPNPEP3 | |
rs3830738 (40315223) | OR = 0.91 (A), p = 2.7 × 10−13 [21] | 5 altered motifs | RP5-1042K10.10, TNRC6B, FAM83F, RP5-1042K10.13, XPNPEP3 | |
rs17332320 (40315616) | OR = 1.15 (T), p = 1.6 × 10−12 [22] | DNAse 2 tissues, 2 altered motifs | RP51042K10.10, TNRC6B, SLC25A17, RP5-1042K10.13, XPNPEP3, FAM83F |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alali, O.M. In Silico Study of the Functional Effects of TNRC6B Polymorphic Loci Associated with the Risk of Developing Uterine Leiomyomas According to Genome-Wide Studies. Med. Sci. Forum 2023, 21, 32. https://doi.org/10.3390/msf2023021032
Alali OM. In Silico Study of the Functional Effects of TNRC6B Polymorphic Loci Associated with the Risk of Developing Uterine Leiomyomas According to Genome-Wide Studies. Medical Sciences Forum. 2023; 21(1):32. https://doi.org/10.3390/msf2023021032
Chicago/Turabian StyleAlali, Ola Mohamad. 2023. "In Silico Study of the Functional Effects of TNRC6B Polymorphic Loci Associated with the Risk of Developing Uterine Leiomyomas According to Genome-Wide Studies" Medical Sciences Forum 21, no. 1: 32. https://doi.org/10.3390/msf2023021032
APA StyleAlali, O. M. (2023). In Silico Study of the Functional Effects of TNRC6B Polymorphic Loci Associated with the Risk of Developing Uterine Leiomyomas According to Genome-Wide Studies. Medical Sciences Forum, 21(1), 32. https://doi.org/10.3390/msf2023021032