In Vitro and In Vivo Effects of Conventional and Chitosan Nanoparticle-Encapsulated Miltefosine Drug for Treatment of Cutaneous Leishmaniasis †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Parasites and Animals
2.3. Promastigote Culturing
2.4. Synthesis of MLCNPs
2.5. Characterization of MLCNPs
2.6. In Vitro Drug Release Assay
2.7. Hemolysis Assay
2.8. Anti-Promastigote Assay
2.9. In Vivo Experiment
2.10. Statistical Analysis
3. Results
3.1. Synthesis and Characterization of NPs
3.2. In Vitro Drug Release Assay
3.3. Hemolysis Assay
3.4. MTT Assay
3.5. In Vivo Study
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ballart, C.; Torrico, M.C.; Vidal, G.; Torrico, F.; Lozano, D.; Gállego, M.; Pinto, L.; Rojas, E.; Aguilar, R.; Dobaño, C.; et al. Clinical and immunological characteristics of tegumentary leishmaniasis cases in Bolivia. PLoS Negl. Trop. Dis. 2021, 15, e0009223. [Google Scholar] [CrossRef]
- Garrido-Jareño, M.; Sahuquillo-Torralba, A.; Chouman-Arcas, R.; Castro-Hernández, I.; Molina-Moreno, J.M.; Llavador-Ros, M.; Gómez-Ruiz, M.D.; López-Hontangas, J.L.; Botella-Estrada, R.; Salavert-Lleti, M.; et al. Cutaneous and mucocutaneous leishmaniasis: Experience of a Mediterranean hospital. Parasites Vectors 2020, 13, 24. [Google Scholar] [CrossRef]
- Khan, R.U.; Khan, M.; Sohail, A.; Ullah, R.; Iqbal, A.; Ahmad, B.; Khan, I.U.; Tariq, A.; Ahmad, M.; Said, A.; et al. Efficacy of pentamidine-loaded chitosan nanoparticles as a novel drug delivery system for Leishmania tropica. Trop. Biomed. 2022, 39, 1–7. [Google Scholar]
- Alves, F.; Bilbe, G.; Blesson, S.; Goyal, V.; Monnerat, S.; Mowbray, C.; Muthoni Ouattara, G.; Pécoul, B.; Rijal, S.; Rode, J.; et al. Recent Development of Visceral Leishmaniasis Treatments: Successes, Pitfalls, and Perspectives. Clin. Microbiol. Rev. 2018, 31, e00048-18. [Google Scholar] [CrossRef]
- Khan, N.H.; Bari, A.U.; Hashim, R.; Khan, I.; Muneer, A.; Shah, A.; Wahid, S.; Yardley, V.; O’Neil, B.; Sutherland, C.J. Cutaneous Leishmaniasis in Khyber Pakhtunkhwa Province of Pakistan: Clinical Diversity and Species-Level Diagnosis. Am. J. Trop. Med. Hyg. 2016, 95, 1106–1114. [Google Scholar] [CrossRef] [PubMed]
- Mostafavi, M.; Farajzadeh, S.; Sharifi, I.; Khazaeli, P.; Sharifi, H. Leishmanicidal effects of amphotericin B in combination with selenium loaded on niosome against Leishmania tropica. J. Parasit. Dis. Off. Organ Indian Soc. Parasitol. 2019, 43, 176–185. [Google Scholar] [CrossRef] [PubMed]
- Neira, L.F.; Mantilla, J.C.; Escobar, P. Anti-leishmanial activity of a topical miltefosine gel in experimental models of New World cutaneous leishmaniasis. J. Antimicrob. Chemother. 2019, 74, 1634–1641. [Google Scholar] [CrossRef]
- Ware, J.M.; O’Connell, E.M.; Brown, T.; Wetzler, L.; Talaat, K.R.; Nutman, T.B.; Nash, T.E. Efficacy and Tolerability of Miltefosine in the Treatment of Cutaneous Leishmaniasis. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2021, 73, e2457–e2562. [Google Scholar] [CrossRef]
- Baranwal, A.; Chiranjivi, A.K.; Kumar, A.; Dubey, V.K.; Chandra, P. Design of commercially comparable nanotherapeutic agent against human disease-causing parasite, Leishmania. Sci. Rep. 2018, 8, 8814. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, S.S.; Ferreira, C.S.; Branquinha, M.H.; Santos, A.L.; Chaud, M.V.; Jain, S.; Cardoso, J.C.; Kovačević, A.B.; Souto, E.B.; Severino, P. Overcoming multi-resistant leishmania treatment by nanoencapsulation of potent antimicrobials. J. Chem. Technol. Biotechnol. 2021, 96, 2123–2140. [Google Scholar] [CrossRef]
- Esboei, B.R.; Mohebali, M.; Mousavi, P.; Fakhar, M.; Akhoundi, B. Potent antileishmanial activity of chitosan against Iranian strain of Leishmania major (MRHO/IR/75/ER): In vitro and in vivo assay. J. Vector Borne Dis. 2018, 55, 111–115. [Google Scholar] [CrossRef]
- Lazaridou, M.; Christodoulou, E.; Nerantzaki, M.; Kostoglou, M.; Lambropoulou, D.A.; Katsarou, A.; Pantopoulos, K.; Bikiaris, D.N. Formulation and In-Vitro Characterization of Chitosan-Nanoparticles Loaded with the Iron Chelator Deferoxamine Mesylate (DFO). Pharmaceutics 2020, 12, 238. [Google Scholar] [CrossRef]
- Siripattanapipong, S.; Boontanom, P.; Leelayoova, S.; Mungthin, M.; Tan-Ariya, P. In vitro growth characteristics and morphological differentiation of Leishmania martiniquensis promastigotes in different culture media. Acta Trop. 2019, 197, 105039. [Google Scholar] [CrossRef]
- Sharma, M.; Sharma, R.; Jain, D.K.; Saraf, A. Enhancement of oral bioavailability of poorly water soluble carvedilol by chitosan nanoparticles: Optimization and pharmacokinetic study. Int. J. Biol. Macromol. 2019, 135, 246–260. [Google Scholar] [CrossRef] [PubMed]
- Sethi, A.; Ahmad, M.; Huma, T.; Khalid, I.; Ahmad, I. Evaluation of Low Molecular Weight Cross Linked Chitosan Nanoparticles, to Enhance the Bioavailability of 5-Flourouracil. Dose-Response 2021, 19, 15593258211025353. [Google Scholar] [CrossRef]
- Esfandiari, F.; Motazedian, M.H.; Asgari, Q.; Morowvat, M.H.; Molaei, M.; Heli, H. Paromomycin-loaded mannosylated chitosan nanoparticles: Synthesis, characterization and targeted drug delivery against leishmaniasis. Acta Trop. 2019, 197, 105045. [Google Scholar] [CrossRef]
- Riaz, A.; Hendricks, S.; Elbrink, K.; Guy, C.; Maes, L.; Ahmed, N.; Kiekens, F.; Khan, G.M. Preparation and Characterization of Nanostructured Lipid Carriers for Improved Topical Drug Delivery: Evaluation in Cutaneous Leishmaniasis and Vaginal Candidiasis Animal Models. AAPS PharmSciTech 2020, 21, 185. [Google Scholar] [CrossRef]
- Valle, I.V.; Machado, M.E.; Araújo, C.; da Cunha-Junior, E.F.; da Silva Pacheco, J.; Torres-Santos, E.C.; da Silva, L.; Cabral, L.M.; do Carmo, F.A.; Sathler, P.C. Oral pentamidine-loaded poly(d,l-lactic-co-glycolic) acid nanoparticles: An alternative approach for leishmaniasis treatment. Nanotechnology 2019, 30, 455102. [Google Scholar] [CrossRef] [PubMed]
- Hadidi, M.; Pouramin, S.; Adinepour, F.; Haghani, S.; Jafari, S.M. Chitosan nanoparticles loaded with clove essential oil: Characterization, antioxidant and antibacterial activities. Carbohydr. Polym. 2020, 236, 116075. [Google Scholar] [CrossRef] [PubMed]
- Ashvini, H.; Balla, A.; Mutta, S. Clarithromycin-loaded chitosan nanoparticles: Preparation, characterisation and antibacterial activity on Streptococcus pneumonia. Indian J. Pharm. Sci. 2019, 81, 302–308. [Google Scholar] [CrossRef]
- Grenha, A.; Seijo, B.; Serra, C.; Remuñan-López, C. Chitosan nanoparticle-loaded mannitol microspheres: Structure and surface characterization. Biomacromolecules 2007, 8, 2072–2079. [Google Scholar] [CrossRef]
- Varshosaz, J.; Arbabi, B.; Pestehchian, N.; Saberi, S.; Delavari, M. Chitosan-titanium dioxide-glucantime nanoassemblies effects on promastigote and amastigote of Leishmania major. Int. J. Biol. Macromol. 2018, 107, 212–221. [Google Scholar] [CrossRef]
- Shawer, R.; El-Leithy, E.S.; Abdel-Rashid, R.S.; Eltaweil, A.S.; Baeshen, R.S.; Mori, N. Preparation of Lambda-Cyhalothrin-Loaded Chitosan Nanoparticles and Their Bioactivity against Drosophila suzukii. Nanomaterials 2022, 12, 3110. [Google Scholar] [CrossRef]
- Chandra Hembram, K.; Prabha, S.; Chandra, R.; Ahmed, B.; Nimesh, S. Advances in preparation and characterization of chitosan nanoparticles for therapeutics. Artif. Cells Nanomed. Biotechnol. 2016, 44, 305–314. [Google Scholar] [CrossRef]
- Sohail, A.; Khan, R.U.; Khan, M.; Khokhar, M.; Ullah, S.; Ali, A.; Bilal, H.; Khattak, S.; Khan, M.; Ahmad, B. Comparative efficacy of amphotericin B-loaded chitosan nanoparticles and free amphotericin B drug against Leishmania tropica. Bull. Natl. Res. Cent. 2021, 45, 187. [Google Scholar] [CrossRef]
- Khokhar, M.; Shereen, M.A.; Khan, M.; Khan, R.U.; Sohail, A.; Khan, I.U.; Khan, I.U.; Khattak, S. In vitro efficacy of polymer coated miltefosine drug against leishmania tropica. J. Parasit. Dis. Off. Organ Indian Soc. Parasitol. 2022, 46, 366–376. [Google Scholar] [CrossRef]
- Gürbüz Çolak, N.; Çetin Uyanikgil, E.; Özbel, Y.; Töz, S. The Designing of a Gel Formulation with Chitosan Polymer Using Liposomes as Nanocarriers of Amphotericin B for a Non-invasive Treatment Model of Cutaneous Leishmaniasis. Acta Parasitol. 2022, 67, 1354–1363. [Google Scholar] [CrossRef]
- Ali, H.Z. Cytotoxicity of Miltefosine against Leishmania major Promastigotes. Adv. Biores. 2012, 3, 90–94. [Google Scholar]
- Mahmoudzadeh-Niknam, H.; Khalili, G.; Abrishami, F.; Najafy, A.; Khaze, V. The route of Leishmania tropica infection determines disease outcome and protection against Leishmania major in BALB/c mice. Korean J. Parasitol. 2013, 51, 69–74. [Google Scholar] [CrossRef] [PubMed]
- Rebello, K.M.; Andrade-Neto, V.V.; Gomes, C.R.B.; de Souza, M.V.N.; Branquinha, M.H.; Santos, A.L.S.; Torres-Santos, E.C.; d’Avila-Levy, C.M. Miltefosine-Lopinavir Combination Therapy Against Leishmania infantum Infection: In vitro and in vivo Approaches. Front. Cell. Infect. Microbiol. 2019, 9, 229. [Google Scholar] [CrossRef] [PubMed]
Scheme 570 | Concentrations | OD at 570 nm (Mean ± SD) | Hemolysis (%) |
---|---|---|---|
MLCNPs | 150 µg/mL | 0.032 ± 0.0025 | 1.60% |
200 µg/mL | 0.043 ± 0.0015 | 2.45% | |
250 µg/mL | 0.051 ± 0.0010 | 3.20% | |
Con MFS | 150 µg/mL | 0.062 ± 0.0020 | 5.96% |
200 µg/mL | 0.075 ± 0.0015 | 6.92% | |
250 µg/mL | 0.082 ± 0.0030 | 7.40% | |
PBS | - | 0.003 ± 0.0005 | 0% |
Triton 100× | - | 1.223 ± 0.0251 | 100% |
Concentrations | 24 h | 48 h | 72 h | |||
---|---|---|---|---|---|---|
MLCNPs | Con MFS | MLCNPs | Con MFS | MLCNPs | Con MFS | |
50 µg/mL | 16 ± 4.2 | 28 ± 1.1 | 14 ± 0.7 | 21 ± 0.7 | 10 ± 0.3 | 18 ± 1.3 |
40 µg/mL | 17 ± 2.5 | 30 ± 2.05 | 16 ± 0.3 | 25 ± 1.8 | 12 ± 0.8 | 20 ± 2.0 |
30 µg/mL | 20.5 ± 4.5 | 33 ± 3.08 | 18 ± 1.1 | 30 ± 0.9 | 15 ± 1.8 | 25 ± 1.5 |
20 µg/mL | 24 ± 4.1 | 44 ± 1.8 | 21 ± 1.5 | 40 ± 1.5 | 23 ± 2.5 | 30 ± 0.5 |
10 µg/mL | 31.5 ± 3.4 | 52 ± 1.6 | 26 ± 1.6 | 45 ± 1.4 | 25 ± 2.1 | 41 ± 1.3 |
05 µg/mL | 35 ± 3.8 | 60 ± 1.4 | 30 ± 1.3 | 52 ± 0.9 | 29 ± 1.6 | 44 ± 1.5 |
Groups | N | Before Treatment | After Treatment | p-Value |
---|---|---|---|---|
Con MFS | 4 | 6.9 (±0.26) mm | 6.6 (±0.23) mm | 0.09 |
MLCNPs (oral) | 4 | 6.9 (±0.46) mm | 5.9 (±0.33) mm | 0.01 |
MLCNPs (IL) | 4 | 7.2 (±0.50) mm | 6.4 (±0.45) mm | 0.06 |
Placebo | 4 | 6.8 (±0.50) mm | 7.2 (±0.29) mm | 0.24 |
Lesion Size | Groups | Mean Rank | Sum of Ranks | p-Value | p-Value Difference |
---|---|---|---|---|---|
Before (Trt) | Con MFS | 4.63 | 18.50 | 0.885 | 0.020 |
MLCNPs (oral) | 4.38 | 17.50 | |||
After (Trt) | Con MFS | 6.50 | 26.00 | 0.019 | |
MLCNPs (oral) | 2.50 | 10.00 |
Lesion Size | Groups | Mean Rank | Sum of Ranks | p-Value | p-Value Difference |
---|---|---|---|---|---|
Before (Trt) | Con MFS | 4.63 | 18.50 | 0.885 | 0.065 |
MLCNPs (IL) | 4.38 | 17.50 | |||
After (Trt) | Con MFS | 4.88 | 19.50 | 0.661 | |
MLCNPs (IL) | 4.13 | 16.50 |
Lesion Size | Groups | Mean Rank | Sum of Ranks | p-Value | p-Value Difference |
---|---|---|---|---|---|
Before (Trt) | MLCNPs (oral) | 4.25 | 17.00 | 0.770 | 0.019 |
MLCNPs (IL) | 4.75 | 19.00 | |||
After (Trt) | MLCNPs (oral) | 3.13 | 12.50 | 0.108 | |
MLCNPs (IL) | 5.88 | 23.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, R.U.; Khan, M.; Ullah, Q.; Khan, M.Z.; Sohail, A.; Islam, R.; Bilal, H.; Ullah, S.; Iqbal, A. In Vitro and In Vivo Effects of Conventional and Chitosan Nanoparticle-Encapsulated Miltefosine Drug for Treatment of Cutaneous Leishmaniasis. Med. Sci. Forum 2023, 21, 19. https://doi.org/10.3390/ECB2023-14334
Khan RU, Khan M, Ullah Q, Khan MZ, Sohail A, Islam R, Bilal H, Ullah S, Iqbal A. In Vitro and In Vivo Effects of Conventional and Chitosan Nanoparticle-Encapsulated Miltefosine Drug for Treatment of Cutaneous Leishmaniasis. Medical Sciences Forum. 2023; 21(1):19. https://doi.org/10.3390/ECB2023-14334
Chicago/Turabian StyleKhan, Rahat Ullah, Momin Khan, Qudrat Ullah, Muhammad Zahoor Khan, Aamir Sohail, Rehmat Islam, Hazrat Bilal, Shakeeb Ullah, and Aamir Iqbal. 2023. "In Vitro and In Vivo Effects of Conventional and Chitosan Nanoparticle-Encapsulated Miltefosine Drug for Treatment of Cutaneous Leishmaniasis" Medical Sciences Forum 21, no. 1: 19. https://doi.org/10.3390/ECB2023-14334
APA StyleKhan, R. U., Khan, M., Ullah, Q., Khan, M. Z., Sohail, A., Islam, R., Bilal, H., Ullah, S., & Iqbal, A. (2023). In Vitro and In Vivo Effects of Conventional and Chitosan Nanoparticle-Encapsulated Miltefosine Drug for Treatment of Cutaneous Leishmaniasis. Medical Sciences Forum, 21(1), 19. https://doi.org/10.3390/ECB2023-14334