Potential of Onion Byproducts as a Sustainable Source of Dietary Fiber and Antioxidant Compounds for Its Application as a Functional Ingredient †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Onion Byproducts’ Treatment
2.2. Proximal Analysis
2.3. Bioactivity Assays
2.3.1. Total Polyphenol Content (TPC) and Antioxidant Capacity
2.3.2. Antidiabetic Capacity
2.4. Statistical Analysis
3. Results and Discussion
3.1. Proximal Analysis
3.2. Bioactivity Assays
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Kumar, M.; Barbhai, M.D.; Hasan, M.; Dhumal, S.; Singh, S.; Pandiselvam, R.; Rais, N.; Natta, S.; Senapathy, M.; Sinha, N.; et al. Onion (Allium cepa L.) Peel: A Review on the Extraction of Bioactive Compounds, Its Antioxidant Potential, and Its Application as a Functional Food Ingredient. J. Food Sci. 2022, 87, 4289–4311. [Google Scholar] [CrossRef] [PubMed]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Cools, K.; Terry, L.A.; Esteban, R.M. Characterization of Industrial Onion Wastes (Allium cepa L.): Dietary Fibre and Bioactive Compounds. Plant Foods Hum. Nutr. 2011, 66, 48–57. [Google Scholar] [CrossRef]
- Bedrníček, J.; Jirotková, D.; Kadlec, J.; Laknerová, I.; Vrchotová, N.; Tříska, J.; Samková, E.; Smetana, P. Thermal Stability and Bioavailability of Bioactive Compounds after Baking of Bread Enriched with Different Onion By-Products. Food Chem. 2020, 319, 126562. [Google Scholar] [CrossRef] [PubMed]
- Choi, I.S.; Cho, E.J.; Moon, J.H.; Bae, H.J. Onion Skin Waste as a Valorization Resource for the By-Products Quercetin and Biosugar. Food Chem. 2015, 188, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Benítez, V.; Mollá, E.; Martín-Cabrejas, M.A.; Aguilera, Y.; López-Andréu, F.J.; Terry, L.A.; Esteban, R.M. The Impact of Pasteurisation and Sterilisation on Bioactive Compounds of Onion By-Products. Food Bioprocess Technol. 2013, 6, 1979–1989. [Google Scholar] [CrossRef]
- Benítez, V. Caracterización de Subproductos de Cebolla Como Fuente de Fibra Alimentaria y Otros Compuestos Bioactivos. Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, España, 2011. [Google Scholar]
- Fidelis, M.; de Oliveira, S.M.; Sousa Santos, J.; Bragueto Escher, G.; Silva Rocha, R.; Gomes Cruz, A.; Araújo Vieira do Carmo, M.; Azevedo, L.; Kaneshima, T.; Oh, W.Y.; et al. From Byproduct to a Functional Ingredient: Camu-Camu (Myrciaria dubia) Seed Extract as an Antioxidant Agent in a Yogurt Model. J. Dairy Sci. 2020, 103, 1131–1140. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, A.M.; Iriondo-DeHond, A.; Dellacassa, E.; Medrano-Fernandez, A.; del Castillo, M.D. Assessment of Antioxidant, Antidiabetic, Antiobesity, and Anti-Inflammatory Properties of a Tannat Winemaking by-Product. Eur. Food Res. Technol. 2019, 245, 1539–1551. [Google Scholar] [CrossRef]
- AOAC. Official Methods of Analysis, 16th ed.; Association of Official Analytical Chemists: Washington, DC, USA, 1999. [Google Scholar]
- Báez, J.; Fernández-Fernández, A.M.; Tironi, V.; Bollati-Fogolín, M.; Añón, M.C.; Medrano-Fernández, A. Identification and Characterization of Antioxidant Peptides Obtained from the Bioaccessible Fraction of α-Lactalbumin Hydrolysate. J. Food Sci. 2021, 86, 4479–4490. [Google Scholar] [CrossRef] [PubMed]
- Fernández-Fernández, A.M.; Dumay, E.; Lazennec, F.; Migues, I.; Heinzen, H.; Lema, P.; López-Pedemonte, T.; Medrano-Fernandez, A. Antioxidant, Antidiabetic, and Antiobesity Properties, TC7-Cell Cytotoxicity and Uptake of Achyrocline Satureioides (Marcela) Conventional and High Pressure-Assisted Extracts. Foods 2021, 10, 893. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.H.; Jo, S.H.; Jang, H.D.; Lee, M.S.; Kwon, Y.I. Antioxidant Activity and α-Glucosidase Inhibitory Potential of Onion (Allium cepa L.) Extracts. Food Sci. Biotechnol. 2010, 19, 159–164. [Google Scholar] [CrossRef]
- Sagar, N.A.; Pareek, S.; Gonzalez-Aguilar, G.A. Quantification of Flavonoids, Total Phenols and Antioxidant Properties of Onion Skin: A Comparative Study of Fifteen Indian Cultivars. J. Food Sci. Technol. 2020, 57, 2423–2432. [Google Scholar] [CrossRef] [PubMed]
- Celano, R.; Docimo, T.; Piccinelli, A.L.; Gazzerro, P.; Tucci, M.; Di Sanzo, R.; Carabetta, S.; Campone, L.; Russo, M.; Rastrelli, L. Onion Peel: Turning a Food Waste into a Resource. Antioxidants 2021, 10, 304. [Google Scholar] [CrossRef] [PubMed]
- Lorenzo León, H.C.; Rodríguez Galdón, B.; Rodríguez Rodríguez, E.M.; Díaz Romero, C. Capacidad Antioxidante de Diferentes Variedades de Cebolla: Antioxidant Capacity of Different Onion Cultivars. CYTA—J. Food 2009, 7, 53–58. [Google Scholar] [CrossRef]
- Mohamed, S. Functional Foods against Metabolic Syndrome (Obesity, Diabetes, Hypertension and Dyslipidemia) and Cardiovasular Disease. Trends Food Sci. Technol. 2014, 35, 114–128. [Google Scholar] [CrossRef]
- Datta, S.; Sinha, B.K.; Bhattacharjee, S.; Seal, T. Nutritional Composition, Mineral Content, Antioxidant Activity and Quantitative Estimation of Water Soluble Vitamins and Phenolics by RP-HPLC in Some Lesser Used Wild Edible Plants. Heliyon 2019, 5, 1431. [Google Scholar] [CrossRef] [PubMed]
- Sagar, N.A.; Pareek, S. Fortification of Multigrain Flour with Onion Skin Powder as a Natural Preservative: Effect on Quality and Shelf Life of the Bread. Food Biosci. 2021, 41, 100992. [Google Scholar] [CrossRef]
- Shahidi, F.; Yeo, J.D. Insoluble-Bound Phenolics in Food. Molecules 2016, 21, 1216. [Google Scholar] [CrossRef] [PubMed]
OS | OP | |
---|---|---|
DM (%) | 91.2 ± 0.2 b | 14.1 ± 0.3 a |
Proteins (%) | 2.38 ± 0.01 | - |
Lipids (%) | 0.53 ± 0.01 | - |
Dietary fiber (%) | 69.9 ± 2.9 b | 43.9 ± 0.8 a |
Ash (%) | 9.4 ± 0.6 b | 5.3 ± 0.2 a |
Minerals (mg/g) | ||
Ca | 24.5 ± 0.5 b | 9.7 ± 1.5 a |
Fe | 0.048 ± 0.004 b | 0.018 ± 0.003 a |
Bioactive Properties | OS | OP |
---|---|---|
TPC (mg GAE/g DM) | 112.9 ± 7.4 b | 19.3 ± 3.8 a |
Antioxidant capacity | ||
ABTS (µmol TE/g DM) | 699.0 ± 94.2 b | 162.5 ±14.4 a |
ORAC-FL (µmol TE/g DM) | 1782.0 ± 92.0 a | 2989.4 ± 70.9 b |
HORAC (mg chlorogenic acid/g DM) | 46.1 ± 2.2 b | 5.7 ± 0.1 a |
Antidiabetic capacity (IC50, µg/mL DM) | ||
α-glucosidase inhibition capacity | 447.2 ± 40.5 a | 625.1 ± 58.0 b |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Báez, J.; Marra, G.; Olt, V.; Fernández-Fernández, A.M.; Medrano, A. Potential of Onion Byproducts as a Sustainable Source of Dietary Fiber and Antioxidant Compounds for Its Application as a Functional Ingredient. Biol. Life Sci. Forum 2023, 26, 67. https://doi.org/10.3390/Foods2023-15046
Báez J, Marra G, Olt V, Fernández-Fernández AM, Medrano A. Potential of Onion Byproducts as a Sustainable Source of Dietary Fiber and Antioxidant Compounds for Its Application as a Functional Ingredient. Biology and Life Sciences Forum. 2023; 26(1):67. https://doi.org/10.3390/Foods2023-15046
Chicago/Turabian StyleBáez, Jessica, Gian Marra, Victoria Olt, Adriana Maite Fernández-Fernández, and Alejandra Medrano. 2023. "Potential of Onion Byproducts as a Sustainable Source of Dietary Fiber and Antioxidant Compounds for Its Application as a Functional Ingredient" Biology and Life Sciences Forum 26, no. 1: 67. https://doi.org/10.3390/Foods2023-15046
APA StyleBáez, J., Marra, G., Olt, V., Fernández-Fernández, A. M., & Medrano, A. (2023). Potential of Onion Byproducts as a Sustainable Source of Dietary Fiber and Antioxidant Compounds for Its Application as a Functional Ingredient. Biology and Life Sciences Forum, 26(1), 67. https://doi.org/10.3390/Foods2023-15046