Raman Spectroscopy as a Useful Tool for Tentative Identification of Nutritional Ingredients and Distinction of Allium Species †
Abstract
:1. Introduction
2. Material and Methods
2.1. Plant Material
2.2. Raman Instrumentation
2.3. Chemometric Sample Classification Based on PCA of the Raman Spectra
3. Results and Discussion
3.1. Raman Signature of Allium Samples
3.2. PCA of the Data Obtained from Raman Spectra of Allium Species Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.Q.; Zhou, S.D.; He, X.J.; Yu, Y.; Zhang, Y.C.; Wei, X.Q. Phylogeny and biogeography of Allium (Amaryllidaceae: Allieae) based on nuclear ribosomal internal transcribed spacer and chloroplast rps16 sequences, focusing on the inclusion of species endemic to China. Ann. Bot. 2010, 106, 709–733. [Google Scholar] [CrossRef] [PubMed]
- Marrelli, M.; Amodeo, V.; Statti, G.; Conforti, F. Biological properties and bioactive components of Allium cepa L.: Focus on potential benefits in the treatment of obesity and related comorbidities. Molecules 2019, 24, 24010119. [Google Scholar] [CrossRef] [PubMed]
- Fredotović, Ž.; Puizina, J. Edible Allium species: Chemical composition, biological activity and health effects. Ital. J. Food Sci. 2019, 31, 19–39. [Google Scholar]
- Fritsch, R.M.; Keusgen, M. Occurrence and taxonomic significance of cysteine sulphoxides in the genus Allium L. (Alliaceae). Phytochemistry 2006, 67, 1127–1135. [Google Scholar] [CrossRef] [PubMed]
- Buzgar, N.; Apopei, A.I.; Buzatu, A. Romanian Database of Raman Spectroscopy. 2009. Available online: http://www.rdrs.ro (accessed on 17 January 2021).
- Lu, X.; Rasco, B.A.; Jabal, J.M.; Aston, D.E.; Lin, M.; Konkel, M.E. Investigating antibacterial effects of garlic (Allium sativum) concentrate and garlic-derived organosulfur compounds on Campylobacter jejuni by using Fourier transform infrared spectroscopy, Raman spectroscopy, and electron microscopy. Appl. Environ. Microbiol. 2011, 77, 5257–5269. [Google Scholar] [CrossRef]
- Lu, X.; Rasco, B.A.; Kang, D.H.; Jabal, J.M.; Aston, D.E.; Konkel, M.E. Infrared and Raman spectroscopic studies of the antimicrobial effects of garlic concentrates and diallyl constituents on foodborne pathogens. Anal. Chem. 2011, 83, 4137–4146. [Google Scholar] [CrossRef]
- Si, M.Z.; Zhang, D.Q.; Liu, R.M. Study of volatile organic compounds of fresh Allium species using headspace combined with surface-enhanced Raman scattering. Guang Pu Xue Yu Guang Pu Fen Xi 2014, 34, 2449–2452. [Google Scholar]
- Menges, F. Spectragryph Optical Spectroscopy Software, Version 1.2.14. Available online: http://www.effemm2.de/spectragryph/ (accessed on 27 March 2021).
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Hanen, N.; Fattouch, S.; Ammar, E.; Neffati, M. Allium Species, Ancient Health Food for the Future? In Scientific, Health and Social Aspects of the Food Industry; Valdez, B., Ed.; IntechOpen: London, UK, 2012; pp. 343–354. Available online: https://www.intechopen.com/chapters/27393 (accessed on 17 January 2021).
- Upadhyay, R. Nutraceutical, pharmaceutical and therapeutic uses of Allium cepa: A review. Int. J. Green Pharm. 2016, 10, 46–64. [Google Scholar]
- Hacıseferoğulları, H.; Özcan, M.; Demir, F.; Çalışır, S. Some nutritional and technological properties of garlic (Allium sativum L.). J. Food Eng. 2005, 68, 463–469. [Google Scholar] [CrossRef]
- Hedges, L.; Lister, C. The Nutritional Attributes of Allium Species; Crop & Food Research Confidential Report No. 1814; Crop & Food Research: Christchurch, New Zealand, 2007. [Google Scholar] [CrossRef]
- Tsiaganis, M.; Laskari, K.; Melissari, E. Fatty acid composition of Allium species lipids. J. Food Compos. Anal. 2006, 19, 620–627. [Google Scholar] [CrossRef]
- Synytsya, A.; Čopíková, J.; Matějka, P.; Machovič, V. Fourier transform Raman and infrared spectroscopy of pectins. Carbohydr. Polym. 2003, 54, 97–106. [Google Scholar] [CrossRef]
- Zeng, J.; Ping, W.; Sanaeifar, A.; Xu, X.; Luo, W.; Sha, J.; Huang, Z.; Huang, Y.; Liu, X.; Zhan, B.; et al. Quantitative visualization of photosynthetic pigments in tea leaves based on Raman spectroscopy and calibration model transfer. Plant Methods 2021, 17, 4. [Google Scholar] [CrossRef]
- Picaud, T.; Le Moigne, C.; Gomez de Gracia, A.; Desbois, A. Soret-Excited Raman Spectroscopy of the Spinach Cytochrome b6f Complex. Structures of the b- and c-Type Hemes, Chlorophyll a and β-Carotene. Biochemistry 2001, 40, 7309–7317. [Google Scholar] [CrossRef]
- Cai, Z.L.; Zeng, H.; Chen, M.; Larkum, A.W. Raman spectroscopy of chlorophyll d from Acaryochloris marina. Biochim. Biophys. Acta 2002, 1556, 89–91. [Google Scholar] [CrossRef]
- Adar, F. Carotenoids—Their Resonance Raman Spectra and How They Can Be Helpful in Characterizing a Number of Biological Systems. Spectroscopy 2017, 32, 12–20. [Google Scholar]
- Vítek, P.; Novotná, K.; Hodaňová, P.; Rapantová, B.; Klem, K. Detection of herbicide effects on pigment composition and PSII photochemistry in Helianthus annuus by Raman spectroscopy and chlorophyll a fluorescence. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 170, 234–241. [Google Scholar] [CrossRef]
- Vrettos, J.S.; Stewart, D.H.; De Paula, J.C.; Brudvig, G.W. Low-Temperature Optical and Resonance Raman Spectra of a Carotenoid Cation Radical in Photosystem II. J. Phys. Chem. B 1999, 103, 6403–6406. [Google Scholar] [CrossRef]
- Edwards, H.G.; Farwell, D.W.; Webster, D. FT Raman microscopy of untreated natural plant fibres. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 1997, 53A, 2383–2392. [Google Scholar] [CrossRef]
- Schulz, H.; Schütze, W.; Baranska, M. Fast determination of carotenoids in tomatoes and tomato products by Raman spectroscopy. Acta Hortic. 2006, 712, 901–905. [Google Scholar] [CrossRef]
- Farber, C.; Sanchez, L.; Rizevsky, S.; Ermolenkov, A.; McCutchen, B.; Cason, J.; Simpson, C.; Burow, M.; Kurouski, D. Raman Spectroscopy Enables Non-Invasive Identification of Peanut Genotypes and Value-Added Traits. Sci. Rep. 2020, 10, 7730. [Google Scholar] [CrossRef]
- Schulz, H.; Baranska, M.; Baranski, R. Potential of NIR-FT-Raman spectroscopy in natural carotenoid analysis. Biopolymers 2005, 77, 212–221. [Google Scholar] [CrossRef]
- Collins, A.M.; Jones, H.D.; Han, D.; Hu, Q.; Beechem, T.E.; Timlin, J.A. Carotenoid distribution in living cells of Haematococcus pluvialis (Chlorophyceae). PLoS ONE 2011, 6, e24302. [Google Scholar] [CrossRef]
- Vítek, P.; Veselá, B.; Klem, K. Spatial and Temporal Variability of Plant Leaf Responses Cascade after PSII Inhibition: Raman, Chlorophyll Fluorescence and Infrared Thermal Imaging. Sensor 2020, 20, 1015. [Google Scholar] [CrossRef]
- Agarwal, U.P. 1064 nm FT-Raman spectroscopy for investigations of plant cell walls and other biomass materials. Front. Plant Sci. 2014, 5, 490. [Google Scholar] [CrossRef]
- Volić, M.; Pajić-Lijaković, I.; Djordjević, V.; Knežević-Jugović, Z.; Pećinar, I.; Stevanović-Dajić, Z.; Veljović, Đ.; Hadnadjev, M.; Bugarski, B. Alginate/soy protein system for essential oil encapsulation with intestinal delivery. Carbohydr. Polym. 2018, 200, 15–24. [Google Scholar] [CrossRef]
- da Silva, C.E.; Vandenabeele, P.; Edwards, H.G.; de Oliveira, L.F. NIR-FT-Raman spectroscopic analytical characterization of the fruits, seeds, and phytotherapeutic oils from rosehips. Anal. Bioanal. Chem. 2008, 392, 1489–1496. [Google Scholar] [CrossRef]
- De Oliveira, V.E.; Castro, H.V.; Edwards, H.G.M.; de Oliveiraa, L.F.C. Carotenes and carotenoids in natural biological samples: A Raman spectroscopic analysis. J. Raman Spectrosc. 2010, 41, 642–650. [Google Scholar] [CrossRef]
- Wiercigroch, E.; Szafraniec, E.; Czamara, K.; Pacia, M.Z.; Majzner, K.; Kochan, K.; Kaczor, A.; Baranska, M.; Malek, K. Raman and infrared spectroscopy of carbohydrates: A review. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2017, 185, 317–335. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vuković, S.; Moravčević, Đ.; Gvozdanović-Varga, J.; Kostić, A.Ž.; Vujošević, A.; Kilibarda, S.; Pećinar, I. Raman Spectroscopy as a Useful Tool for Tentative Identification of Nutritional Ingredients and Distinction of Allium Species. Biol. Life Sci. Forum 2022, 16, 21. https://doi.org/10.3390/IECHo2022-12480
Vuković S, Moravčević Đ, Gvozdanović-Varga J, Kostić AŽ, Vujošević A, Kilibarda S, Pećinar I. Raman Spectroscopy as a Useful Tool for Tentative Identification of Nutritional Ingredients and Distinction of Allium Species. Biology and Life Sciences Forum. 2022; 16(1):21. https://doi.org/10.3390/IECHo2022-12480
Chicago/Turabian StyleVuković, Sandra, Đorđe Moravčević, Jelica Gvozdanović-Varga, Aleksandar Ž. Kostić, Ana Vujošević, Sofija Kilibarda, and Ilinka Pećinar. 2022. "Raman Spectroscopy as a Useful Tool for Tentative Identification of Nutritional Ingredients and Distinction of Allium Species" Biology and Life Sciences Forum 16, no. 1: 21. https://doi.org/10.3390/IECHo2022-12480
APA StyleVuković, S., Moravčević, Đ., Gvozdanović-Varga, J., Kostić, A. Ž., Vujošević, A., Kilibarda, S., & Pećinar, I. (2022). Raman Spectroscopy as a Useful Tool for Tentative Identification of Nutritional Ingredients and Distinction of Allium Species. Biology and Life Sciences Forum, 16(1), 21. https://doi.org/10.3390/IECHo2022-12480