LED Lighting in Vertical Farming Systems Enhances Bioactive Compounds and Productivity of Vegetables Crops †
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Crops
3.2. Clustering
3.3. Nutritional Parameters
3.4. Light and Spectral Parameters
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Lee, J.H.; Shibata, S.; Goto, E. Time-course of changes in photosynthesis and secondary metabolites in canola (brassica napus) under different UV-B irradiation levels in a plant factory with artificial light. Front. Plant Sci. 2021, 12, 786555. [Google Scholar] [CrossRef]
- Noh, K.; Jeong, B.R. Increased carbon dioxide by occupants promotes growth of leafy vegetables grown in indoor cultivation system. Sustainability 2021, 13, 13288. [Google Scholar] [CrossRef]
- Nguyen, T.K.L.; Cho, K.M.; Lee, H.Y.; Cho, D.Y.; Lee, G.O.; Jang, S.N.; Lee, Y.; Kim, D.; Son, K.-H. Effects of white LED lighting with specific shorter blue and/or green wavelength on the growth and quality of two lettuce cultivars in a vertical farming system. Agronomy 2021, 11, 2111. [Google Scholar] [CrossRef]
- Tang, D.; Huang, Q.; Wei, K.; Yang, X.; Wei, F.; Miao, J. Identification of differentially expressed genes and pathways involved in growth and development of Mesona chinensis benth under red and blue-light conditions. Front. Plant Sci. 2021, 12, 761068. [Google Scholar] [CrossRef]
- He, R.; Gao, M.; Li, Y.; Zhang, Y.; Song, S.; Su, W.; Liu, H. Supplemental UV-A Affects growth and antioxidants of Chinese kale baby-leaves in artificial light plant factory. Horticulturae 2021, 7, 294. [Google Scholar] [CrossRef]
- Zheng, J.; Gan, P.; Ji, F.; He, D.; Yang, P. Growth and energy use efficiency of grafted tomato transplants as affected by led light quality and photon flux density. Agriculture 2021, 11, 816. [Google Scholar] [CrossRef]
- Lam, V.P.; Choi, J.; Park, J. Enhancing growth and glucosinolate accumulation in watercress (Nasturtium officinale L.) by regulating light intensity and photoperiod in plant factories. Agriculture 2021, 11, 723. [Google Scholar] [CrossRef]
- Nájera, C.; Urrestarazu, M. Effect of the Intensity and Spectral Quality of LED Light on Yield and Nitrate Accumulation in Vegetables. HortScience 2019, 54, 1745–1750. [Google Scholar] [CrossRef]
- Gao, M.; He, R.; Shi, R.; Li, Y.; Song, S.; Zhang, Y.; Su, W.; Liu, H. Combination of Selenium and UVA radiation affects growth and phytochemicals of broccoli microgreens. Molecules 2021, 26, 4646. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wu, T.; Huang, K.; Liu, Y.; Liu, M.; Wang, J. Effect of LED Spectrum on the quality and nitrogen metabolism of lettuce under recycled hydroponics. Front. Plant Sci. 2021, 12, 1159. [Google Scholar] [CrossRef]
- Gao, M.; He, R.; Shi, R.; Zhang, Y.; Song, S.; Su, W.; Liu, H. Differential Effects of low light intensity on broccoli microgreens growth and phytochemicals. Agronomy 2021, 11, 537. [Google Scholar] [CrossRef]
- Xu, W.; Lu, N.; Kikuchi, M.; Takagaki, M. Continuous lighting and high daily light integral enhance yield and quality of mass-produced Nasturtium (Tropaeolum majus L.) in plant factories. Plants 2021, 10, 1203. [Google Scholar] [CrossRef] [PubMed]
- Cui, J.; Song, S.; Yu, J.; Liu, H. Effect of daily light integral on cucumber plug seedlings in artificial light plant factory. Horticulturae 2021, 7, 139. [Google Scholar] [CrossRef]
- Gallegos-Cedillo, V.M.; Diánez, F.; Nájera, C.; Santos, M. Plant Agronomic Features Can Predict Quality and Field Performance: A Bibliometric Analysis. A Review. Agronomy 2021, 11, 2305. [Google Scholar] [CrossRef]
- Chen, X.; Chen, J.; Wu, D.; Xie, Y.; Li, J. Mapping the research trends by co–word analysis based on keywords from funded project. Procedia Comput. Sci. 2016, 91, 547–555. [Google Scholar] [CrossRef]
- Ohtake, N.; Ishikura, M.; Suzuki, H.; Yamori, W.; Goto, E. Continuous irradiation with alternating red and blue light enhances plant growth while keeping nutritional quality in lettuce. HortScience 2018, 53, 1804–1809. [Google Scholar] [CrossRef]
- Tamura, Y.; Mori, T.; Nakabayashi, R.; Wang, N.; Kusano, M. Metabolomic evaluation of the quality of leaf lettuce grown in practical plant factory to capture metabolite signature. Front. Plant Sci. 2018, 9, 665. [Google Scholar] [CrossRef]
- Zhang, X.; He, D.; Niu, G.; Yan, Z.; Song, J. Effects of environment lighting on the growth, photosynthesis, and quality of hydroponic lettuce in a plant factory. J. Agric. Biol. Eng. 2018, 11, 33–40. [Google Scholar] [CrossRef]
- Larsen, D.H.; Woltering, E.J.; Nicole, C.C.S.; Marcelis, L.F.M. Response of Basil growth and morphology to light intensity and spectrum in a vertical farm. Front. Plant Sci. 2020, 11, 1893. [Google Scholar] [CrossRef]
- Meng, Q.; Runkle, E.S. Far-red radiation interacts with relative and absolute blue and red photon flux densities to regulate growth, morphology, and pigmentation of lettuce and basil seedlings. Sci. Hortic. 2019, 255, 269–280. [Google Scholar] [CrossRef]
- Pennisi, G.; Orsini, F.; Landolfo, M.; Pistillo, A.; Crepaldi, A.; Nicola, S.; Fernández, J.A.; Marcelis, L.F.M.; Gianquinto, G. Optimal photoperiod for indoor cultivation of leafy vegetables and herbs. Eur. J. Hortic. Sci. 2020, 85, 329–338. [Google Scholar] [CrossRef]
- Wittmann, S.; Jüttner, I.; Mempel, H. Indoor farming marjoram production—quality, resource efficiency, and potential of application. Agronomy 2020, 10, 1769. [Google Scholar] [CrossRef]
- Palmer, S.; van Iersel, M.W. Increasing growth of lettuce and mizuna under sole-source LED lighting using longer photoperiods with the same daily light integral. Agronomy 2020, 10, 1659. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Shimano, A.; Hikosaka, S.; Ishigami, Y.; Goto, E. Effects of photosynthetic photon flux density and light period on growth and camptothecin accumulation of ophiorrhiza pumila under controlled environments. J. Agric. Meteorol. 2020, 76, 180–187. [Google Scholar]
- Kim, Y.J.; Nguyen, T.K.L.; Oh, M.-M. Growth and ginsenosides content of ginseng sprouts according to LED-based light quality changes. Agronomy 2020, 10, 1979. [Google Scholar] [CrossRef]
- Nguyen, D.T.P.; Lu, N.; Kagawa, N.; Kitayama, M.; Takagaki, M. Short-Term root-zone temperature treatment enhanced the accumulation of secondary metabolites of hydroponic coriander (Coriandrum sativum L.) grown in a plant factory. Agronomy 2020, 10, 413. [Google Scholar] [CrossRef]
- Hwang, H.; An, S.; Lee, B.; Chun, C. Improvement of growth and morphology of vegetable seedlings with supplemental far-red enriched led lights in a plant factory. Horticulturae 2020, 6, 109. [Google Scholar] [CrossRef]
- An, S.; Park, S.W.; Kwack, Y. Growth of cucumber scions, rootstocks, and grafted seedlings as affected by different irrigation regimes during cultivation of ‘Joenbaekdadagi’ and ‘Heukjong’ seedlings in a plant factory with artificial lighting. Agronomy 2020, 10, 1943. [Google Scholar] [CrossRef]
- Kang, W.H.; Kim, J.; Yoon, H.I.; Son, J.E. Quantification of spectral perception of plants with light absorption of photoreceptors. Plants 2020, 9, 556. [Google Scholar] [CrossRef]
- Kang, D.I.; Jeong, H.K.; Park, Y.G.; Jeong, B.R. Flowering and morphogenesis of kalanchoe in response to quality and intensity of night interruption light. Plants 2019, 8, 90. [Google Scholar] [CrossRef]
- Bantis, F.; Fotelli, M.; Ilić, Z.S.; Koukounaras, A. Physiological and phytochemical responses of spinach baby leaves grown in a pfal system with LEDs and saline nutrient solution. Agriculture 2020, 10, 574. [Google Scholar] [CrossRef]
- Azad, M.O.K.; Kjaer, K.H.; Adnan, M.; Naznin, M.T.; Lim, J.D.; Sung, I.J.; Park, C.H.; Lim, Y.S. The evaluation of growth performance, photosynthetic capacity, and primary and secondary metabolite content of leaf lettuce grown under limited irradiation of blue and red LED light in an urban plant factory. Agriculture 2020, 10, 28. [Google Scholar] [CrossRef]
- Gao, W.; He, D.; Ji, F.; Zhang, S.; Zheng, J. Effects of daily light integral and LED spectrum on growth and nutritional quality of hydroponic spinach. Agronomy 2020, 10, 1082. [Google Scholar] [CrossRef]
- Zou, T.; Huang, C.; Wu, P.; Ge, L.; Xu, Y. Optimization of artificial light for spinach growth in plant factory based on orthogonal test. Plants 2020, 9, 490. [Google Scholar] [CrossRef] [PubMed]
- Takasu, S.; Shimizu, H.; Nakashima, H.; Miyasaka, J.; Ohdoi, K. Photosynthesis and morphology of leaf lettuce (Lactuca sativa L. Cv. Greenwave) grown under alternating irradiation of red and blue light. Environ. Control. Biol. 2019, 57, 93–98. [Google Scholar] [CrossRef]
- Han, S.J.; Choi, I.L.; Kim, J.Y.; Wang, L.; Lee, J.H.; Choi, K.-Y.; Kim, Y.; Islam, M.; Lee, Y.-T.; Kang, H.-M. Various light quality including QD-LED affect growth and leaf color of red romaine baby leaf lettuce. Not. Bot. Horti Agrobot. 2019, 47, 757–762. [Google Scholar] [CrossRef]
- Okazaki, S.; Yamashita, T. A manipulation of air temperature and light quality and intensity can maximize growth and folate biosynthesis in leaf lettuce. Environ. Control. Biol. 2019, 57, 39–44. [Google Scholar] [CrossRef]
- Chung, H.; Chang, M.; Wu, C.; Fang, W. Quantitative evaluation of electric light recipes for red leaf lettuce cultivation in plant factories. HortTechnology 2018, 28, 755–763. [Google Scholar] [CrossRef]
- Song, J.; Huang, H.; Hao, Y.; Song, S.; Zhang, Y.; Su, W.; Liu, H. Nutritional quality, mineral and antioxidant content in lettuce affected by interaction of light intensity and nutrient solution concentration. Sci. Rep. 2020, 10, 2796. [Google Scholar] [CrossRef]
- Li, Y.; Shi, R.; Jiang, H.; Wu, L.; Zhang, Y.; Song, S.; Su, W.; Liu, H. End-Of-Day LED Lightings influence the leaf color, growth and phytochemicals in two cultivars of lettuce. Agronomy 2020, 10, 1475. [Google Scholar] [CrossRef]
- Li, L.; Tong, Y.; Lu, J.; Li, Y.; Yang, Q. Lettuce growth, nutritional quality, and energy use efficiency as affected by red–blue light combined with different monochromatic wavelengths. HortScience 2020, 55, 613–620. [Google Scholar] [CrossRef]
- Kovács, B.; Kotroczó, Z.; Kocsis, L.; Biró, B. Potentials of indoor lettuce production in natural forest soil at limited watering. J. Cent. Eur. Agric. 2020, 21, 531–536. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhou, Q.; Qu, Y. Growth, nutritional quality, and energy use efficiency in two lettuce cultivars as influenced by white plus red versus red plus blue LEDs. Int. J. Agric. Biol. Eng. 2020, 13, 33–40. [Google Scholar] [CrossRef]
- Mao, H.; Hang, T.; Zhang, X.; Lu, N. Both multi-segment light intensity and extended photoperiod lighting strategies, with the same daily light integral, promoted Lactuca sativa L. growth and photosynthesis. Agronomy 2019, 9, 857. [Google Scholar] [CrossRef]
- Yan, Z.; He, D.; Niu, G.; Zhou, Q.; Qu, Y. Growth, nutritional quality, and energy use efficiency of hydroponic lettuce as in-fluenced by daily light integrals exposed to white versus white plus red Light-emitting Diodes. HortScience 2019, 54, 1737–1744. [Google Scholar] [CrossRef]
- Saito, K.; Ishigami, Y.; Goto, E. Evaluation of the light environment of a plant factory with artificial light by using an optical simulation. Agronomy 2020, 10, 1663. [Google Scholar] [CrossRef]
- Maeda, K.; Ito, Y. Effect of different PPFDs and photoperiods on growth and yield of everbearing strawberry ‘elan’ in plant factory with white LED lighting. Environ. Control. Biol. 2020, 58, 99–104. [Google Scholar] [CrossRef]
- Zheng, J.F.; He, D.X.; Ji, F. Effects of light intensity and photoperiod on runner plant propagation of hydroponic strawberry transplants under LED lighting. Int. J. Agric. Biol. Eng. 2019, 12, 26–31. [Google Scholar] [CrossRef]
- ATSDR. Agency for Toxic Substances and Disease Registry 2015 Public health summary: Nitrate and nitrite. Division of Tox-icology and Health Sciences. Available online: https://www.atsdr.cdc.gov/es/phs/es_phs204.pdf (accessed on 10 February 2022).
- EFSA. European Food Safety Authority. Scientific Opinion. Statement on possible public health risks for infants and young children from the presence of nitrates in leafy vegetables. EFSA J. 2010, 8, 1935. Available online: https://www.efsa.europa.eu/en/efsajournal/pub/1935 (accessed on 10 February 2022).
- Addiscott, T. Is it nitrate that threatens life or the scare about nitrate. J. Sci. Food Agric. 2006, 86, 2005–2009. [Google Scholar] [CrossRef]
- Saengtharatip, S.; Joshi, J.; Zhang, G.; Kozai, T.; Yamori, W. Optimal light wavelength for a novel cultivation system with a supplemental upward lighting in plant factory with artificial lighting. Environ. Control. Biol. 2021, 59, 21–27. [Google Scholar] [CrossRef]
Crops | Variety | Crops | Variety |
---|---|---|---|
Basil (Ocimum basilicum L.) [19,20,21] | “Genovese” | Marjoram (Origanum majorana) [22] | * |
Broccoli (Brassica oleracea var. italica) [9,11] | “lvhua” | Mizuna (Brassica rapa nipposinica) [23] | * |
Canola (Brassica napus L.) [1] | “Kizakino-natane” | Nasturtium (Tropaeolum majus L.) [12] | * |
Chicory (Cichorium intybus) [21] | “Bionda a foglie larghe” | Ophiorrhiza pumila [24] | * |
Chinese kale (Brassica alboglabra Bailey) [5] | * | Panax ginseng [25] | * |
Coriander (Coriandrum sativum L.) [26] | * | Pepper (Capsicum annuum L.) [27] | “Shinhong” |
Cucumber (Cucumis sativus) [13,23,28] | “Yuexiu No.3” | “Tantan” | |
“Joenbaekdadagi” | Platostoma palustre (Mesona chinensis) [29] | * | |
“Heukjong” | Pumpkin (Cucurbita ficifolia Bouché) [6,27] | “Heukjong” | |
“Joeunbaegdadagi” | “Bulrojangsaeng” | ||
Kalanchoe (Kalanchoe blossfeldiana) [23,24,30,31] | “Lipstick” | Rocket (Eruca vesicaria ssp. sativa) [8,27,32] | “Coltivata” |
“Spain” | Spinach (Spinacia oleraciea L.) [8,31,33,34] | “Geant D’ Hiver” | |
“Romaine” | “BJC009” | ||
Lettuce (Lactuca sativa L.) [2,3,8,10,16,17,18,20,21,23,32,33,34,35,36,37,38,39,40,41,42,43,44,45] | Butterhead “Asia Butter Head” | “Disease-resistant 388” | |
Romaine “Asia Heuk Romaine” | Ssamchoo (Brassica Lee ssp. namai) [46] | * | |
“Yidali” | Strawberry (Fragaria × ananassa) [47,48] | Duch. “Elan” | |
“Romaine” | “Benihoppe” | ||
“Little Gem” | Sweet basil (Ocimum basilicum) [46] | * | |
“Red butter” | Tomato (Lycopersicon esculentum Mill.) [6,13] | “Zhezhan No.1” | |
“Green butter” | “Dongfeng No.1” | ||
“Tiberius” | “Dotaerangdia” | ||
“Lollo rosso” | “B-blocking” | ||
“Rebelina” | Watercress (Nasturtium officinale L.) [7] | ||
“Capitata” | Watermelon (Citrullus vulgaris L.) [27] | “Sambokkul” | |
“Lvdie and Ziya” | |||
“Longifolia” | |||
“Rex” | |||
“Cherokee” | |||
“Ziwei” | |||
“Greenwave” | |||
“Red Romaine” | |||
“Crispa” | |||
“Summer Surge” | |||
“Red Oak” |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nájera, C.; Gallegos-Cedillo, V.M.; Ros, M.; Pascual, J.A. LED Lighting in Vertical Farming Systems Enhances Bioactive Compounds and Productivity of Vegetables Crops. Biol. Life Sci. Forum 2022, 16, 24. https://doi.org/10.3390/IECHo2022-12514
Nájera C, Gallegos-Cedillo VM, Ros M, Pascual JA. LED Lighting in Vertical Farming Systems Enhances Bioactive Compounds and Productivity of Vegetables Crops. Biology and Life Sciences Forum. 2022; 16(1):24. https://doi.org/10.3390/IECHo2022-12514
Chicago/Turabian StyleNájera, Cinthia, Victor M. Gallegos-Cedillo, Margarita Ros, and José Antonio Pascual. 2022. "LED Lighting in Vertical Farming Systems Enhances Bioactive Compounds and Productivity of Vegetables Crops" Biology and Life Sciences Forum 16, no. 1: 24. https://doi.org/10.3390/IECHo2022-12514
APA StyleNájera, C., Gallegos-Cedillo, V. M., Ros, M., & Pascual, J. A. (2022). LED Lighting in Vertical Farming Systems Enhances Bioactive Compounds and Productivity of Vegetables Crops. Biology and Life Sciences Forum, 16(1), 24. https://doi.org/10.3390/IECHo2022-12514