Plants as Natural Organic Coagulant Powders for Winery Wastewater Treatment †
Abstract
:1. Introduction
2. Material and Methods
2.1. Reagents and Winery Wastewater Sampling
2.2. Analytical Technics
2.3. Organic Coagulant Preparation
2.4. Characterization of Plant Powder
2.5. Coagulation–Flocculation–Decantation Experimental Set-Up
2.6. Statistical Analysis
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Agustina, T.E.; Ang, H.M.; Pareek, V.K. Treatment of Winery Wastewater Using a Photocatalytic/Photolytic Reactor. Chem. Eng. J. 2008, 135, 151–156. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Guimarães, V.; Lucas, M.S.; Peres, J.A. Treatment of Winery Wastewater with a Combination of Adsorption and Thermocatalytic Processes. Processes 2022, 10, 75. [Google Scholar] [CrossRef]
- Wei, H.; Gao, B.; Ren, J.; Li, A.; Yang, H. Coagulation/Flocculation in Dewatering of Sludge: A Review. Water Res. 2018, 143, 608–631. [Google Scholar] [CrossRef]
- Domínguez, J.R.; González, T.; García, H.M.; Sánchez-Lavado, F.; Heredia, J.B. de Aluminium Sulfate as Coagulant for Highly Polluted Cork Processing Wastewaters: Removal of Organic Matter. J. Hazard. Mater. 2007, 148, 15–21. [Google Scholar] [CrossRef] [PubMed]
- Amor, C.; De Torres-Socías, E.; Peres, J.A.; Maldonado, M.I.; Oller, I.; Malato, S.; Lucas, M.S. Mature Landfill Leachate Treatment by Coagulation/Flocculation Combined with Fenton and Solar Photo-Fenton Processes. J. Hazard. Mater. 2015, 286, 261–268. [Google Scholar] [CrossRef] [PubMed]
- Braz, R.; Pirra, A.; Lucas, M.S.; Peres, J.A. Combination of Long Term Aerated Storage and Chemical Coagulation/Flocculation to Winery Wastewater Treatment. Desalination 2010, 263, 226–232. [Google Scholar] [CrossRef]
- Amaral-Silva, N.; Martins, R.C.; Paiva, C.; Castro-Silva, S.; Quinta-Ferreira, R.M. A New Winery Wastewater Treatment Approach during Vintage Periods Integrating Ferric Coagulation, Fenton Reaction and Activated Sludge. J. Environ. Chem. Eng. 2016, 4, 2207–2215. [Google Scholar] [CrossRef]
- Rizzo, L.; Lofrano, G.; Belgiorno, V. Olive Mill and Winery Wastewaters Pre-Treatment by Coagulation with Chitosan. Sep. Sci. Technol. 2010, 45, 2447–2452. [Google Scholar] [CrossRef]
- Jorge, N.; Teixeira, A.R.; Matos, C.C.; Lucas, M.S.; Peres, J.A. Combination of Coagulation–Flocculation–Decantation and Ozonation Processes for Winery Wastewater Treatment. Int. J. Environ. Res. Public Health 2021, 18, 8882. [Google Scholar] [CrossRef] [PubMed]
- Madrona, G.S.; Serpelloni, G.B.; Vieira, A.M.S.; Nishi, L.; Cardoso, K.C.; Bergamasco, R. Study of the Effect of Saline Solution on the Extraction of the Moringa Oleifera Seed’s Active Component for Water Treatment. Water Air Soil Pollut. 2010, 211, 409–415. [Google Scholar] [CrossRef]
- Tie, J.; Jiang, M.; Li, H.; Zhang, S.; Zhang, X. A Comparison between Moringa Oleifera Seed Presscake Extract and Polyaluminum Chloride in the Removal of Direct Black 19 from Synthetic Wastewater. Ind. Crop. Prod. 2015, 74, 530–534. [Google Scholar] [CrossRef]
- Dkhissi, O.; El Hakmaoui, A.; Souabi, S.; Chatoui, M.; Jada, A.; Akssira, M. Treatment of Vegetable Oil Refinery Wastewater by Coagulation-Flocculation Process Using the Cactus as a Bio-Flocculant. J. Mater. Environ. Sci. 2018, 9, 18–25. [Google Scholar] [CrossRef]
- Lisperguer, J.; Saravia, Y.; Vergara, E. Structure and Thermal Behavior of Tannins from Acacia Dealbata Bark and Their Reactivity toward Formaldehyde. J. Chil. Chem. Soc. 2016, 61, 3188–3190. [Google Scholar] [CrossRef]
- Carlo, J.; Jiménez, J.; Sofía, A.; Abarca, V.; Bonilla, P.J.; Alpízar, H.B.; Mario, R.; Fallas, S. Extracción y Evaluación de Taninos Condensados a Partir de La Corteza de Once Especies Maderables de Costa Rica. Rev. Tecnol. Marcha 2012, 25, 15–22. [Google Scholar] [CrossRef]
- Lee, W.; Lan, W. Properties of Resorcinol–Tannin–Formaldehyde Copolymer Resins Prepared from the Bark Extracts of Taiwan Acacia and China Fir. Bioresour. Technol. 2006, 97, 257–264. [Google Scholar] [CrossRef] [PubMed]
- Vunain, E.; Mike, P.; Mpeketula, G.; Monjerezi, M.; Etale, A. Evaluation of Coagulating Efficiency and Water Borne Pathogens Reduction Capacity of Moringa Oleifera Seed Powder for Treatment of Domestic Wastewater from Zomba, Malawi. J. Environ. Chem. Eng. 2019, 7, 103118. [Google Scholar] [CrossRef]
- Boulaadjoul, S.; Zemmouri, H.; Bendjama, Z.; Drouiche, N. A Novel Use of Moringa Oleifera Seed Powder in Enhancing the Primary Treatment of Paper Mill Effluent. Chemosphere 2018, 206, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Araújo, C.S.T.; Alves, V.N.; Rezende, H.C.; Almeida, I.L.S.; de Assunção, R.M.N.; Tarley, C.R.T.; Segatelli, M.G.; Coelho, N.M.M. Characterization and Use of Moringa Oleifera Seeds as Biosorbent for Removing Metal Ions from Aqueous Effluents. Water Sci. Technol. 2010, 62, 2198–2203. [Google Scholar] [CrossRef] [PubMed]
- Ndabigengesere, A.; Narasiah, K.S. Use of Moringa Oleifera Seeds as a Primary Coagulant in Wastewater Treatment. Environ. Technol. 1998, 19, 789–800. [Google Scholar] [CrossRef]
Parameters | Portuguese Law Decree No. 236/98 | WW |
---|---|---|
pH | 6.0–9.0 | 4.0 |
Biochemical Oxygen Demand—BOD5 (mg O2/L) | 40 | 550 |
Chemical Oxygen Demand—COD (mg O2/L) | 150 | 2145 |
Biodegradability—BOD5/COD | 0.26 | |
Total Organic Carbon—TOC (mg C/L) | 400 | |
Total Nitrogen—TN (mg N/L) | 15 | 9.07 |
Turbidity (NTU) | 296 | |
Total suspended solids—TSS (mg/L) | 60 | 750 |
Electrical conductivity (μS/cm) | 62.5 | |
Total polyphenols (mg gallic acid/L) | 0.5 | 22.6 |
Iron (mg/L) | 2.0 | 0.05 |
Aluminium (mg/L) | 10.0 | 0.00 |
Plant Specie | Sub-Specie | Part Collected | Herbarium Number |
---|---|---|---|
Acacia dealbata Link. | Pollen | ||
Quercus ilex L. | ilex | Acorn skin | |
Quercus ilex L. | ilex | Peeled acorn | |
Platanus × acerifolia (Aiton) Willd. | Seed | ||
Tanacetum vulgare L. | Seed | HVR22099 |
Coagulant | pH | Coagulant Dosage | Fast Mix | Slow Mix | [PVPP] |
---|---|---|---|---|---|
g/L | rpm/min | rpm/min | mg/L | ||
Acacia dealbata Link. (pollen) | 3 | 0.1 | 120/1 | 20/30 | 45 |
Quercus ilex L. (acorn skin) | 3 | 0.1 | 150/3 | 20/20 | 45 |
Quercus ilex L. (peeled acorn) | 3 | 0.1 | 180/3 | 40/17 | 100 |
Platanus × acerifólia (Aiton) Willd. (seeds) | 3 | 0.1 | 150/3 | 20/20 | 5 |
Tanacetum vulgare L. (seeds) | 3 | 0.1 | 120/1 | 20/30 | 5 |
Aluminium sulfate | 5 | 1.0 | 120/1 | 20/30 | 5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jorge, N.; Teixeira, A.R.; Marchão, L.; Lucas, M.S.; Peres, J.A. Plants as Natural Organic Coagulant Powders for Winery Wastewater Treatment. Biol. Life Sci. Forum 2022, 16, 20. https://doi.org/10.3390/IECHo2022-12487
Jorge N, Teixeira AR, Marchão L, Lucas MS, Peres JA. Plants as Natural Organic Coagulant Powders for Winery Wastewater Treatment. Biology and Life Sciences Forum. 2022; 16(1):20. https://doi.org/10.3390/IECHo2022-12487
Chicago/Turabian StyleJorge, Nuno, Ana R. Teixeira, Leonilde Marchão, Marco S. Lucas, and José A. Peres. 2022. "Plants as Natural Organic Coagulant Powders for Winery Wastewater Treatment" Biology and Life Sciences Forum 16, no. 1: 20. https://doi.org/10.3390/IECHo2022-12487
APA StyleJorge, N., Teixeira, A. R., Marchão, L., Lucas, M. S., & Peres, J. A. (2022). Plants as Natural Organic Coagulant Powders for Winery Wastewater Treatment. Biology and Life Sciences Forum, 16(1), 20. https://doi.org/10.3390/IECHo2022-12487