Vacuum U-Tube Solar Cooking System with Cylindrical Parabolic Solar Collector as a Sustainable Alternative in Northeastern Peru
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Technical Description of the Solar Cooker Prototype
2.3. Energy Performance
2.3.1. Evaluation Period
2.3.2. Radiation
2.3.3. Temperature
2.4. Energy Efficiency
- : Solar cooker efficiency (%)
- : Food mass (kg)
- : Specific heat of food
- : Difference between maximum temperature and ambient temperature (K)
- : Average solar radiation
- : Area of the solar cooker’s food collector (m2)
- : Cooking time required (s)
Cooking Power of the Prototype
- : Cooking power (W)
- = Difference between maximum temperature and ambient temperature (°C)
- : Cooking time (s)
- : Food mass (kg)
- : Specific heat of food ()
3. Results
3.1. Energy Behavior with Food
3.1.1. White Corn (Zea mays L.)
3.1.2. Wheat (Triticum)
3.1.3. Corn (Zea mays Variety morochon)
3.2. Energy Efficiency (%)
3.3. Cooking Power (W)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mperejekumana, P.; Shen, L.; Gaballah, M.S.; Zhong, S. Exploring the potential and challenges of energy transition and household cooking sustainability in sub-sahara Africa. Renew. Sustain. Energy Rev. 2024, 199, 114534. [Google Scholar] [CrossRef]
- Bailis, R.; Drigo, R.; Ghilardi, A.; Masera, O. The carbon footprint of traditional woodfuels. Nat. Clim. Chang. 2015, 5, 266–272. [Google Scholar] [CrossRef]
- Rosenthal, J.; Quinn, A.; Grieshop, A.P.; Pillarisetti, A.; Glass, R.I. Clean cooking and the SDGs: Integrated analytical approaches to guide energy interventions for health and environment goals. Energy Sustain. Dev. 2018, 42, 152–159. [Google Scholar] [CrossRef]
- Bonjour, S.; Adair-Rohani, H.; Wolf, J.; Bruce, N.G.; Mehta, S.; Prüss-Ustün, A.; Lahiff, M.; Rehfuess, E.A.; Mishra, V.; Smith, K.R. Solid fuel use for household cooking: Country and regional estimates for 1980-2010. Environ. Health Perspect. 2013, 121, 784–790. [Google Scholar] [CrossRef]
- Bruce, N.; de Cuevas, R.A.; Cooper, J.; Enonchong, B.; Ronzi, S.; Puzzolo, E.; Mbatchou, B.; Pope, D. The Government-led initiative for LPG scale-up in Cameroon: Programme development and initial evaluation. Energy Sustain. Dev. 2018, 46, 103–110. [Google Scholar] [CrossRef]
- Verma, A.; El-Bayeh, C.Z.; Buddhi, D.; Amir, M.; Ahmad, F.; Singh, H. Socio-economic impact of solar cooking technologies on community kitchens under different climate conditions: A review. Eng. Rep. 2024, 6, e12998. [Google Scholar] [CrossRef]
- Poddar, M.; Chakrabarti, S. Indoor air pollution and women’s health in India: An exploratory analysis. Environ. Dev. Sustain. 2016, 18, 669–677. [Google Scholar] [CrossRef]
- Roden, C.A.; Bond, T.C.; Conway, S.; Pinel, A.B.O.; MacCarty, N.; Still, D. Laboratory and field investigations of particulate and carbon monoxide emissions from traditional and improved cookstoves. Atmos. Environ. 2009, 43, 1170–1181. [Google Scholar] [CrossRef]
- Sharma, V.; Getahun, T.; Verma, M.; Villa, A.; Gupta, N. Carbon based catalysts for the hydrodeoxygenation of lignin and related molecules: A powerful tool for the generation of non-petroleum chemical products including hydrocarbons. Renew. Sustain. Energy Rev. 2020, 133, 110280. [Google Scholar] [CrossRef]
- Bhattacharya, M.; Paramati, S.R.; Ozturk, I.; Bhattacharya, S. The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Appl. Energy 2016, 162, 733–741. [Google Scholar] [CrossRef]
- Fontes, C.H.d.O.; Freires, F.G.M. Sustainable and renewable energy supply chain: A system dynamics overview. Renew. Sustain. Energy Rev. 2018, 82, 247–259. [Google Scholar] [CrossRef]
- Imran, M.; Haglind, F.; Asim, M.; Alvi, J.Z. Recent research trends in organic Rankine cycle technology: A bibliometric approach. Renew. Sustain. Energy Rev. 2018, 81, 552–562. [Google Scholar] [CrossRef]
- Pan, M.; Pan, C.; Li, C.; Zhao, J. A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability. Renew. Sustain. Energy Rev. 2021, 141, 11077. [Google Scholar] [CrossRef]
- Kalogirou, S.A. Solar thermal collectors and applications. Prog. Energy Combust. Sci. 2004, 30, 231–295. [Google Scholar] [CrossRef]
- Corwin, K.A.; Burkhardt, J.; Corr, C.A.; Stackhouse, P.W.; Munshi, A.; Fischer, E.V. Solar energy resource availability under extreme and historical wildfire smoke conditions. Nat. Commun. 2025, 16, 245. [Google Scholar] [CrossRef]
- Ammar, R.B.; Ammar, M.B.; Oualha, A. Photovoltaic power forecast using empirical models and artificial intelligence approaches for water pumping systems. Renew. Energy 2020, 153, 1016–1028. [Google Scholar] [CrossRef]
- Hayashi, H.; Chantana, J.; Kawano, Y.; Nishimura, T.; Mavlonov, A.; Minemoto, T. Zn1−xMgxO second buffer layer of Cu2Sn1−xGexS3 thin-film solar cell for minimizing carrier recombination and open-circuit voltage deficit. Sol. Energy 2020, 204, 769–776. [Google Scholar] [CrossRef]
- Javed, A.H.; Shahzad, N.; Khan, M.A.; Ayub, M.; Iqbal, N.; Hassan, M.; Hussain, N.; Rameel, M.I.; Shahzad, M.I. Effect of ZnO nanostructures on the performance of dye sensitized solar cells. Sol. Energy 2021, 230, 492–500. [Google Scholar] [CrossRef]
- Gil, R.R.; Muñoz, B.C.; González-Bravo, H.E.; Rodríguez, R.D. Development and experimental evaluation of a parabolic solar cooker for sustainable cooking in monsoon climates. J. Clean. Prod. 2025, 523, 146416. [Google Scholar] [CrossRef]
- Pandey, A.K.; Jadoun, V.K.; Jayalakshmi, N.S. Exploring the Potential and Avenues of Renewable Integrated Energy Resources Through Virtual Power Plant. In Intelligent Computing Techniques for Smart Energy Systems; Lecture Notes in Electrical Engineering; Springer: Singapore, 2025; Volume 1276, pp. 231–244. [Google Scholar] [CrossRef]
- Pandey, A.K.; Jadoun, V.K.; Sabhahit, J.N. Scheduling and assessment of multi-area virtual power plant including flexible resources using swarm intelligence technique. Electr. Power Syst. Res. 2025, 238, 111139. [Google Scholar] [CrossRef]
- Dan, A.; Chattopadhyay, K.; Barshilia, H.C.; Basu, B. Shifting of the absorption edge in TiB2/TiB(N)/Si3N4 solar selective coating for enhanced photothermal conversion. Sol. Energy 2018, 173, 192–200. [Google Scholar] [CrossRef]
- Adeyemi, I.; Arink, T.; Janajreh, I. Numerical Modeling of the Entrained Flow Gasification (EFG) of Kentucky Coal and Biomass. Energy Procedia 2015, 75, 232–239. [Google Scholar] [CrossRef]
- El Moussaoui, N.; Talbi, S.; Atmane, I.; Kassmi, K.; Schwarzer, K.; Chayeb, H.; Bachiri, N. Feasibility of a new design of a Parabolic Trough Solar Thermal Cooker (PSTC). Sol. Energy 2020, 201, 866–871. [Google Scholar] [CrossRef]
- El-Sebaii, A.A.; Ibrahim, A. Experimental testing of a box-type solar cooker using the standard procedure of cooking power. Renew. Energy 2005, 30, 1861–1871. [Google Scholar] [CrossRef]
- Kundapur, A.; Sudhir, C.V. Proposal for new world standard for testing solar cookers. J. Eng. Sci. Technol. 2009, 4, 272–281. [Google Scholar]
- Bigelow, A.W.; Tabatchnick, J.; Hughes, C. Testing solar cookers for cooking efficiency. Sol. Energy Adv. 2024, 4, 100053. [Google Scholar] [CrossRef]
- Farooqui, S.Z. A vacuum tube based improved solar cooker. Sustain. Energy Technol. Assess. 2013, 3, 33–39. [Google Scholar] [CrossRef]
- Hebbar, G.; Hegde, S.; Sanketh, B.; Sanith, L.R.; Udupa, R. Design of solar cooker using evacuated tube solar collector with phase change material. Mater. Today Proc. 2021, 46, 2888–2893. [Google Scholar] [CrossRef]
- Khatri, R.; Goyal, R.; Sharma, R.K. Advances in the developments of solar cooker for sustainable development: A comprehensive review. Renew. Sustain. Energy Rev. 2021, 145, 111166. [Google Scholar] [CrossRef]
- Esen, M. Thermal performance of a solar cooker integrated vacuum-tube collector with heat pipes containing different refrigerants. Sol. Energy 2004, 76, 751–757. [Google Scholar] [CrossRef]
- Goyal, R.K.; Eswaramoorthy, M. Thermal performance enhancement on a box-type solar cooker using a triangular fin over a conventional cooking pot. Sol. Energy 2023, 258, 339–350. [Google Scholar] [CrossRef]
- Kumar, S. Thermal performance study of box type solar cooker from heating characteristic curves. Energy Convers. Manag. 2004, 45, 127–139. [Google Scholar] [CrossRef]
- Farooqui, S.Z. A review of vacuum tube based solar cookers with the experimental determination of energy and exergy efficiencies of a single vacuum tube based prototype. Renew. Sustain. Energy Rev. 2014, 31, 439–445. [Google Scholar] [CrossRef]
- Bhowmik, M.; Muthukumar, P.; Patil, A. Analysis of heat transfer characteristics and optimization of U-tube based solar evacuated tube collector system with different flow conditioning inserts. Therm. Sci. Eng. Prog. 2023, 39, 101709. [Google Scholar] [CrossRef]
- Komolafe, C.A.; Okonkwo, C.E. Design, Fabrication, and Thermal Evaluation of a Solar Cooking System Integrated with Tracking Device and Sensible Heat Storage Materials. Front. Energy Res. 2022, 10, 821098. [Google Scholar] [CrossRef]
- Weldu, A.; Zhao, L.; Deng, S.; Mulugeta, N.; Zhang, Y.; Nie, X.; Xu, W. Performance evaluation on solar box cooker with reflector tracking at optimal angle under Bahir Dar climate. Sol. Energy 2019, 180, 664–677. [Google Scholar] [CrossRef]
- Sivakumar, R.; Sakthivel, G.; Mohanraj, T.; Lakshmipathi, J.; Jeagdesshwaran, R.; Manickavasagam, P.; Govardhan, Y.S. Solar thermal cooking device for domestic cooking applications: Bridging sustainable development goals and innovation. Heliyon 2024, 10, e38415. [Google Scholar] [CrossRef]
- Aragaw, Y.T.; Adem, K.D. Development and performance evaluation of tube-type direct solar oven for baking bread. Heliyon 2022, 8, e11502. [Google Scholar] [CrossRef] [PubMed]
- Baylon, J.S.; González, M.P.; Morán, Y.G.; Gómez, A.T.; López, J.M.G. Design and evaluation of a solar cooker with reused evacuated tube: Enhancing thermal efficiency for food cooking. South Fla. J. Dev. 2024, 5, e4830. [Google Scholar] [CrossRef]
- Ebersviller, S.M.; Jetter, J.J. Evaluation of performance of household solar cookers. Sol. Energy 2020, 208, 166. [Google Scholar] [CrossRef]
- Herez, A.; Ramadan, M.; Khaled, M. Review on solar cooker systems: Economic and environmental study for different Lebanese scenarios. Renew. Sustain. Energy Rev. 2018, 81, 421–432. [Google Scholar] [CrossRef]
- Jamal, S.; Alkhabbaz, A.; Hamzah, H.; Sahin, B. Thermal analysis of a solar panel unit using PCM and various fin arrangements. Int. J. Heat Fluid Flow 2026, 117, 110108. [Google Scholar] [CrossRef]
- Thirugnanam, C.; Karthikeyan, S.; Kalaimurugan, K. Study of phase change materials and its application in solar cooker. Mater. Today Proc. 2020, 33, 2890–2896. [Google Scholar] [CrossRef]









| Parameter | Tube 1 | Tube 2 | Tube 3 | Description/Observation |
|---|---|---|---|---|
| Model | SUNSET 58/1800 | SUNSET 58/1800 | SUNSET 58/1800 | Double-walled borosilicate glass tubes with selective coating. |
| Length (mm) | 1800 | 1800 | 1800 | Standard length of the model |
| Outer diameter (mm) | 58 | 58 | 58 | Identical for the three tubes; determines the collector area. |
| Inner diameter (mm) | 47 ± 1 | 47 ± 1 | 47 ± 1 | Manufacturer tolerance according to SUNSET technical sheet. |
| Absorptance | 0.93–0.95 | 0.93–0.95 | 0.93–0.95 | Solar radiation absorption rate of the selective coating. |
| Internal material | Galvanized steel | Galvanized steel | Galvanized steel | Cooking vessel inserted inside (Ø = 50.8 mm; L = 1700 mm). |
| Effective collection area (m2) | 0.082 | 0.082 | 0.082 | Calculated from diameter and exposed length |
| Orientation in CPC | Central (C) | Left lateral (LL) | Right lateral (RL) | LL and RL located below, C above, forming a triangular arrangement. |
| Type/Configuration | Test Conditions | Maximum Temperature (°C) | Efficiency (%) | Cooking Power (W) | Cooking Time | Reference |
|---|---|---|---|---|---|---|
| Cooker I, Cooker II, Cooker III | Containers made of different materials (with reflector, tracking and fixed) | 148.7 | 9.6–15.4 | Cooker I: 45.25; Cooker II: 39.72; Cooker III: 39.74 | 180–230–210 min | [37] |
| Solar tracking system + sensible heat storage | Water + thermal mass (oil/granite) | 73.5 | 31.6–40.3 | 42.5–58.2 | 144–151 min | [36] |
| Box-type cooker with triangular pots | Controlled box-type test. | 136 | 36–40 | 68.71–77.06 | 94–95 min → 85–86 min | [32] |
| Parabolic solar concentrator integrated with Arduino tracking | Water boiling test. | 76 | 40.3 | 56.4 | 8–17 h | [36] |
| Parabolic (indoor) and hybrid thermo-electric system | Hybrid thermoelectric configuration. | 514 | 60 | 700 | 4.16 h | [38] |
| Tube-type direct solar oven | Water Boiling Test (WBT) and bread baking test. | 127 | Avg. 44.4 | 95 | 51 min | [39] |
| Solar cooker with reused vacuum tubes + parabolic reflector | Reused component and concentrating reflector. | 339 (tube in reflector), 206 (ambient tube); 240 with reused tube. | 65 | 50–70 | 20 min (biscuit baking at 230 °C) | [40] |
| Panel-type (HotPot), Box-type (Global Sun Oven), Parabolic-type (Sun Chef) | ASAE S580.1 standard test protocol. (Norma ASAE S580.1 (ASABE, 2013) | 95 | 13–45 | 18–33 | 24–29 min | [41] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yalta Chappa, M.; Gosgot Angeles, W.; Santillan Gomez, H.; Hernandez Vilcarromero, H.J.; Mori Servan, D.C.; Oliva-Cruz, M.; Gamarra Torres, O.; Espinoza Canaza, F.I.; Ordinola Ramírez, C.; Barrena Gurbillón, M.Á. Vacuum U-Tube Solar Cooking System with Cylindrical Parabolic Solar Collector as a Sustainable Alternative in Northeastern Peru. Solar 2025, 5, 53. https://doi.org/10.3390/solar5040053
Yalta Chappa M, Gosgot Angeles W, Santillan Gomez H, Hernandez Vilcarromero HJ, Mori Servan DC, Oliva-Cruz M, Gamarra Torres O, Espinoza Canaza FI, Ordinola Ramírez C, Barrena Gurbillón MÁ. Vacuum U-Tube Solar Cooking System with Cylindrical Parabolic Solar Collector as a Sustainable Alternative in Northeastern Peru. Solar. 2025; 5(4):53. https://doi.org/10.3390/solar5040053
Chicago/Turabian StyleYalta Chappa, Merbelita, Wildor Gosgot Angeles, Homar Santillan Gomez, Humberto Jesus Hernandez Vilcarromero, Diana Carina Mori Servan, Manuel Oliva-Cruz, Oscar Gamarra Torres, Fernando Isaac Espinoza Canaza, Carla Ordinola Ramírez, and Miguel Ángel Barrena Gurbillón. 2025. "Vacuum U-Tube Solar Cooking System with Cylindrical Parabolic Solar Collector as a Sustainable Alternative in Northeastern Peru" Solar 5, no. 4: 53. https://doi.org/10.3390/solar5040053
APA StyleYalta Chappa, M., Gosgot Angeles, W., Santillan Gomez, H., Hernandez Vilcarromero, H. J., Mori Servan, D. C., Oliva-Cruz, M., Gamarra Torres, O., Espinoza Canaza, F. I., Ordinola Ramírez, C., & Barrena Gurbillón, M. Á. (2025). Vacuum U-Tube Solar Cooking System with Cylindrical Parabolic Solar Collector as a Sustainable Alternative in Northeastern Peru. Solar, 5(4), 53. https://doi.org/10.3390/solar5040053

