Effects of Species of Leaves and Conditioning Time on Vernal Colonization by Temperate Lotic Isopods (Lirceus sp.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. Data Analysis
3. Results
4. Discussion
4.1. Leaves as Nutritional Resources versus Shelters
4.2. Leaf Packs in Different Microhabitats
4.3. Colonization of Leaf Packs under Different Durations of Conditioning
4.4. The Possible Impact of Experimental Season
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Minshall, G.W. Role of allochthonous detritus in the trophic structure of a woodland springbrook community. Ecology 1967, 48, 139–149. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Hynes, H.B.N. The fate of dead leaves that fall into streams. Hydrobiologia 1971, 68, 465–516. [Google Scholar]
- Cross, W.F.; Benstead, J.P.; Frost, P.C.; Thomas, S.A. Ecological stoichiometry in freshwater benthic systems: Recent progress and perspectives. Freshw. Biol. 2005, 50, 1895–1912. [Google Scholar] [CrossRef]
- Marks, J.C. Revisiting the fates of dead leaves that fall into streams. Annu. Rev. Ecol. Evol. Syst. 2019, 50, 547–568. [Google Scholar] [CrossRef]
- Smock, L.A.; Metzler, G.M.; Gladden, J.E. Role of debris dams in the structure and functioning of low-gradient headwater streams. Ecology 1989, 70, 764–775. [Google Scholar] [CrossRef]
- Richardson, J.S. Seasonal food limitation of detritivores in a montane stream: An experimental test. Ecology 1991, 72, 873–887. [Google Scholar] [CrossRef]
- Hildrew, A.G.; Dobson, M.K.; Groom, A.; Ibbotson, A.; Lancaster, J.; Rundle, S.D. Flow and retention in the ecology of stream invertebrates. Int. Ver. Theor. Angew. Limnol. Verhandlungen 1991, 24, 1742–1747. [Google Scholar] [CrossRef]
- Dobson, M.; Hildrew, A.G. A test of resource limitation among shredding detritivores in low order streams in southern England. J. Anim. Ecol. 1992, 61, 69–78. [Google Scholar] [CrossRef]
- Rosenthal, G.A.; Janzen, D. (Eds.) Herbivores: Their Interaction with Secondary Plant Metabolites; Academic Press: New York, NY, USA, 1979. [Google Scholar]
- Gessner, M.O.; Chauvet, E. Importance of stream microfungi in controlling breakdown rates of leaf litter. Ecology 1994, 75, 1807–1817. [Google Scholar] [CrossRef]
- Canhoto, C.; Graça, M.A.S. Food value of introduced eucalypt leaves for a Mediterranean stream detritivore: Tipula lateralis. Freshw. Biol. 1995, 34, 209–214. [Google Scholar] [CrossRef]
- Graça, M.A.S. The role of invertebrates on leaf litter decomposition in streams—A review. Int. Rev. Hydrobiol. 2001, 86, 383–393. [Google Scholar] [CrossRef]
- Stoler, A.B.; Relyea, R.A. Leaf litter quality induces morphological and developmental changes in larval amphibians. Ecology 2013, 94, 1594–1603. [Google Scholar] [CrossRef]
- Kaushik, N.K.; Hynes, H.B.N. Experimental study on the role of autumn-shed leaves in aquatic environments. J. Ecol. 1968, 56, 229–243. [Google Scholar] [CrossRef]
- Petersen, R.C.; Cummins, K.W. Leaf processing in a woodland stream. Freshw. Biol. 1974, 4, 343–368. [Google Scholar] [CrossRef]
- Cummins, K.W. Structure and function of stream ecosystems. BioScience 1974, 24, 631–641. [Google Scholar] [CrossRef]
- Bärlocher, F.; Kendrick, B. Assimilation efficiency of Gammarus pseudolimnaeus (Amphipoda) feeding on fungal mycelium or autumn-shed leaves. Oikos 1975, 26, 55–59. [Google Scholar] [CrossRef]
- Bärlocher, F.; Kendrick, B. Leaf-conditioning by microorganisms. Oecologia 1975, 20, 359–362. [Google Scholar] [CrossRef]
- Boling, R.H.; Goodman, E.D.; Van Sickle, J.A.; Zimmer, J.O.; Cummings, K.W.; Petersen, R.C.; Reice, S.R. Toward a model of detritus processing in a woodland stream. Ecology 1975, 56, 141–151. [Google Scholar] [CrossRef]
- Suberkropp, K.; Godshalk, G.L.; Klug, M.J. Changes in the chemical composition of leaves during processing in a woodland Stream. Ecology 1976, 57, 720–727. [Google Scholar] [CrossRef]
- Anderson, N.H.; Sedell, J.R. Detritus processing by macroinvertebrates in stream ecosystems. Annu. Rev. Entomol. 1979, 24, 351–377. [Google Scholar] [CrossRef]
- Golladay, S.W.; Webster, J.R.; Benfield, E.F. Factors affecting food utilization by a leaf shredding aquatic insect: Leaf species and conditioning time. Ecography 1983, 6, 157–162. [Google Scholar] [CrossRef]
- Chamier, A.-C. Cellulose digestion and metabolism in the freshwater amphipod Gammarus pseudolimnaeus Bousfield. Freshw. Biol. 1991, 25, 33–40. [Google Scholar] [CrossRef]
- Graça, M.A.S.; Maltby, L.; Calow, P. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: Feeding strategies. Oecologia 1993, 93, 139–144. [Google Scholar] [CrossRef]
- Gulis, V.; Suberkropp, K. Leaf litter decomposition and microbial activity in nutrient-enriched and unaltered reaches of a headwater stream. Freshw. Biol. 2003, 48, 123–134. [Google Scholar] [CrossRef]
- Besemer, K. Biodiversity, community structure and function of biofilms in stream ecosystems. Res. Microbiol. 2015, 166, 774–781. [Google Scholar] [CrossRef]
- Ostrofsky, M.L. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. J. N. Am. Benthol. Soc. 1997, 16, 750–759. [Google Scholar] [CrossRef]
- Dobson, M.; Hildrew, A.G.; Ibbotson, A.; Garthwaite, J. Enhancing litter retention in streams. Freshw. Biol. 1992, 28, 71–79. [Google Scholar] [CrossRef]
- Styron, C.E.; Burbanck, W.D. Ecology of an aquatic isopod, Lirceus fontinalis Raf., emphasizing radiation effects. Am. Midl. Nat. 1967, 78, 389–415. [Google Scholar] [CrossRef]
- Styron, C.E. Ecology of two populations of an aquatic isopod, Lirceus fontinalis Raf. Ecology 1968, 49, 629–636. [Google Scholar] [CrossRef]
- Murphy, P.M.; Learner, M.A. The life history and production of Asellus aquaticus (Crustacea: Isopoda) in the River Ely, South Wales. Freshw. Biol. 1982, 12, 435–444. [Google Scholar] [CrossRef]
- Holomuzki, J.R.; Short, T.M. Habitat use and fish avoidance behaviors by the stream-dwelling isopod Lirceus fontinalis. Oikos 1988, 52, 79–86. [Google Scholar] [CrossRef]
- Sparkes, T.C. The effects of size-dependent predation risk on the interaction between behavioral and life history traits in a stream-dwelling isopod. Behav. Ecol. Sociobiol. 1996, 39, 411–417. [Google Scholar] [CrossRef]
- Wallace, J.B.; Webster, J.R. The role of macroinvertebrates in stream ecosystem function. Annu. Rev. Entomol. 1996, 41, 115–139. [Google Scholar] [CrossRef] [PubMed]
- Covich, A.P.; Palmer, M.A.; Crowl, T.A. The role of benthic invertebrate species in freshwater ecosystems: Zoobenthic species influence energy flows and nutrient cycling. BioScience 1999, 49, 119–127. [Google Scholar] [CrossRef]
- Sparkes, T.C.; Mills, C.M.; Volesky, L.A.; Talkington, J.A. Leaf degradation, macroinvertebrate shredders and energy flow in streams: A laboratory-based exercise examining ecosystem processes. Am. Biol. Teach. 2008, 70, 90–94. [Google Scholar] [CrossRef]
- Griffiths, N.A.; Tank, J.L.; Roley, S.S.; Stephen, M.L. Decomposition of maize leaves and grasses in restored agricultural streams. Freshw. Sci. 2012, 31, 848–864. [Google Scholar] [CrossRef]
- Lafuente, E.; Lürig, M.D.; Rövekamp, M.; Matthews, B.; Buser, C.; Vorburger, C.; Räsänen, K. Building on 150 years of knowledge: The freshwater isopod Asellus aquaticus as an integrative eco-evolutionary model system. Front. Ecol. Evol. 2021, 9, 748212. [Google Scholar] [CrossRef]
- Vesakoski, O.; Merilaita, S.; Jormalainen, V. Reckless males, rational females: Dynamic trade-off between food and shelter in the marine isopod Idotea balthica. Behav. Process. 2008, 79, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Vollmer, K.L.; Gall, B.G. Complex predator–prey interactions between the rusty crayfish (Orconectes rusticus) and invertebrate and vertebrate prey within their native range. J. Freshw. Ecol. 2014, 29, 267–277. [Google Scholar] [CrossRef]
- Frost, P.C.; Elser, J.J. Growth responses of littoral mayflies to the phosphorus content of their food. Ecol. Lett. 2002, 5, 232–240. [Google Scholar] [CrossRef]
- Melillo, J.M.; Aber, J.D.; Linkins, A.E. Factors controlling mass loss and nitrogen dynamics of plant litter decaying in northern streams. Bull. Mar. Sci. 1984, 35, 341–356. [Google Scholar]
- Webster, J.R.; Benfield, E.F. Vascular plant breakdown in freshwater ecosystems. Annu. Rev. Ecol. Syst. 1986, 17, 567–594. [Google Scholar] [CrossRef]
- Iyengar, E.V.; Schwartz, C.I.; Davidson, A.T. Long-term maintenance requirements of the riparian isopod, Lirceus sp. Hydrobiologia 2017, 802, 53–69. [Google Scholar] [CrossRef]
- Hubricht, L.; Mackin, J.G. The freshwater isopods of the genus Lirceus (Asellota, Asellidae). Am. Midl. Nat. 1949, 42, 334–349. [Google Scholar] [CrossRef]
- Williams, W.D. Freshwater Isopods (Asellidae) of North America; U.S Environmental Protection Agency: Cincinnati, OH, USA, 1976.
- Pennak, R.W. Freshwater Invertebrates of the United States, 2nd ed.; Wiley: New York, NY, USA, 1978. [Google Scholar]
- Styron, C.E. Taxonomy of two populations of an aquatic isopod, Lirceus fontinalis Raf. Am. Midl. Nat. 1969, 82, 402–416. [Google Scholar] [CrossRef]
- McDonald, J.H. Handbook of Biological Statistics, 3rd ed.; Sparky House Publishing: Baltimore, MA, USA, 2014; pp. 75–85. [Google Scholar]
- R Studio Team. RStudio: Integrated Development for R; RStudio, PBC: Boston, MA, USA, 2020; Available online: http://www.rstudio.com/ (accessed on 16 June 2020).
- Fuell, A.K.; Entrekin, S.A.; Owen, G.S.; Owen, S.K. Drivers of leaf decomposition in two wetland types in the Arkansas River Valley, U.S.A. Wetlands 2013, 33, 1127–1137. [Google Scholar] [CrossRef]
- Siders, A.C.; Compson, Z.G.; Hungate, B.A.; Dijkstra, P.; Koch, G.W.; Wymore, A.S.; Grandy, A.S.; Marks, J.C. Litter identity affects assimilation of carbon and nitrogen by a shredding caddisfly. Ecosphere 2018, 9, e02340. [Google Scholar] [CrossRef]
- Hutchens, J.J.; Benfield, E.F.; Webster, J.R. Diet and growth of a leaf-shredding caddisfly in southern Appalachian streams of contrasting disturbance history. Hydrobiologia 1997, 396, 193–201. [Google Scholar] [CrossRef]
- Fuller, C.L.; Evans-White, M.A.; Entrekin, S.A. Growth and stoichiometry of a common aquatic detritivore respond to changes in resource stoichiometry. Oecologia 2015, 177, 837–848. [Google Scholar] [CrossRef]
- Friberg, N.; Jacobsen, D. Feeding plasticity of two detritivore-shredders. Freshw. Biol. 1994, 32, 133–142. [Google Scholar] [CrossRef]
- Dudgeon, D.; Wu, K.K.Y. Leaf litter in a tropical stream: Food or substrate for macroinvertebrates? Arch. Hydrobiol. 1999, 146, 65–82. [Google Scholar] [CrossRef]
- Abrams, M.D. The red maple paradox. BioScience 1998, 48, 355–364. [Google Scholar] [CrossRef]
- Abrams, M.D. Where has all the white oak gone? BioScience 2003, 53, 927–939. [Google Scholar] [CrossRef]
- Statzner, B.; Gore, J.A.; Resh, V.H. Hydraulic stream ecology: Observed patterns and potential applications. J. N. Am. Benthol. Soc. 1988, 7, 307–360. [Google Scholar] [CrossRef]
- Bärlocher, F.; Kendrick, B. Fungi in the diet of Gammarus pseudolimnaeus (Amphipoda). Oikos 1973, 24, 295–300. [Google Scholar] [CrossRef]
- Bärlocher, F.; Kendrick, B. Dynamics of fungal populations on leaves in a stream. J. Ecol. 1974, 62, 761–791. [Google Scholar] [CrossRef]
- Suberkropp, K.; Arsuffi, T.L.; Anderson, J.P. Comparison of degradative ability, enzymatic activity, and palatability of aquatic hyphomycetes grown on leaf litter. Appl. Environ. Microbiol. 1983, 46, 237–244. [Google Scholar] [CrossRef] [PubMed]
- Ligeiro, R.; Moretti, M.S.; Gonçalves, J.F.; Callisto, M. What is more important for invertebrate colonization in a stream with low-quality litter inputs: Exposure time or leaf species? Hydrobiologia 2010, 654, 125–136. [Google Scholar] [CrossRef]
- Cummins, K.W.; Klug, M.J. Feeding ecology of stream invertebrates. Annu. Rev. Ecol. Syst. 1979, 10, 147–172. [Google Scholar] [CrossRef]
- Rossi, L.; Fano, A.E. Role of fungi in the trophic niche of the congeneric detritivorous Asellus aquaticus and A. coxalis (Isopoda). Oikos 1979, 32, 380–385. [Google Scholar] [CrossRef]
- Willoughby, L.G.; Marcus, J.H. Feeding and growth in the isopod Asellus aquaticus on actinomycetes, considered as model filamentous bacteria. Freshw. Biol. 1979, 9, 441–449. [Google Scholar] [CrossRef]
- Suberkropp, K.; Arsuffi, T.L. Degradation, growth, and changes in palatability of leaves colonized by six aquatic hyphomycete species. Mycologia 1984, 76, 398–407. [Google Scholar] [CrossRef]
- Arsuffi, T.L.; Suberkropp, K. Selective feeding by shredders on leaf-colonizing stream fungi: Comparison of macroinvertebrate taxa. Oecologia 1989, 79, 30–37. [Google Scholar] [CrossRef] [PubMed]
- France, R.L. Leaves as “crackers”, biofilm as “peanut butter”: Exploratory use of stable isotopes as evidence for microbial pathways in detrital food webs. Oceanol. Hydrobiol. Stud. 2011, 40, 110–115. [Google Scholar] [CrossRef]
- Pereira, A.; Trabulo, J.; Fernandes, I.; Pascoal, C.; Cássio, F.; Duarte, S. Spring stimulates leaf decomposition in moderately eutrophic streams. Aquat. Sci. 2017, 79, 197–207. [Google Scholar] [CrossRef]
- Fisher, S.G.; Likens, G.E. Energy flow in Bear Brook, New Hampshire: An integrative approach to stream ecosystem metabolism. Ecol. Monogr. 1973, 43, 421–439. [Google Scholar] [CrossRef]
- Giller, P.; Twomey, H. Benthic macroinvertebrate community organisation in two contrasting rivers: Between-site differences and seasonal patterns. Biol. Environ. Proc. R. Ir. Acad. 1993, 93B, 115–126. [Google Scholar]
- Haapala, A.; Muotka, T. Seasonal dynamics of detritus and associated macroinvertebrates in a channelized boreal stream. Fundam. Appl. Limnol. 1998, 142, 171–189. [Google Scholar] [CrossRef]
- Gordon, T.A.C.; Neto-Cerejeira, J.; Furey, P.C.; O’Gorman, E.J. Changes in feeding selectivity of freshwater invertebrates across a natural thermal gradient. Curr. Zool. 2018, 64, 231–242. [Google Scholar] [CrossRef]
- Tinbergen, L. The natural control of insects in pinewoods. Arch. Néerl. Zool. 1960, 13, 265–343. [Google Scholar] [CrossRef]
- Dukas, R.; Kamil, A. Limited attention: The constraint underlying search image. Behav. Ecol. 2001, 12, 192–199. [Google Scholar] [CrossRef]
- Clark, C.W.; Dukas, R. The behavioral ecology of a cognitive constraint: Limited attention. Behav. Ecol. 2003, 14, 151–156. [Google Scholar] [CrossRef]
- Cross, F.R.; Jackson, R.R. Olfactory search-image use by a mosquito-eating predator. Proc. R. Soc. B Biol. Sci. 2010, 277, 3173–3178. [Google Scholar] [CrossRef] [PubMed]
Source | df | Sum of Squares | Mean Square | F-Ratio | p-Value |
---|---|---|---|---|---|
Intercept | 1 | 256.80 | 256.80 | 163.11 | 0.0002 |
Leaf species | 2 | 0.34 | 0.17 | 0.34 | 0.72 |
Week | 1 | 33.52 | 33.52 | 66.79 | <0.0001 |
Microhabitat | 1 | 1.23 | 1.23 | 2.44 | 0.12 |
Mat | 4 | 6.30 | 1.57 | 3.14 | 0.02 |
Leaf species × Week | 2 | 0.03 | 0.02 | 0.03 | 0.97 |
Leaf species × Microhabitat | 2 | 0.46 | 0.23 | 0.45 | 0.64 |
Error | 68 | 34.13 | 0.50 | ||
Total | 80 | 94.18 |
Species of Leaf | Degree of Skeletonization | ||
---|---|---|---|
Minor | Moderate | Extreme | |
American beech | 9 | 0 | 0 |
Maple (red and sugar) | 2 | 3 | 4 |
Red oak | 4 | 3 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Heller, R.E.; Stouffer, A.N.; Iyengar, E.V. Effects of Species of Leaves and Conditioning Time on Vernal Colonization by Temperate Lotic Isopods (Lirceus sp.). Hydrobiology 2024, 3, 63-73. https://doi.org/10.3390/hydrobiology3020005
Heller RE, Stouffer AN, Iyengar EV. Effects of Species of Leaves and Conditioning Time on Vernal Colonization by Temperate Lotic Isopods (Lirceus sp.). Hydrobiology. 2024; 3(2):63-73. https://doi.org/10.3390/hydrobiology3020005
Chicago/Turabian StyleHeller, Renee E., Alison N. Stouffer, and Erika V. Iyengar. 2024. "Effects of Species of Leaves and Conditioning Time on Vernal Colonization by Temperate Lotic Isopods (Lirceus sp.)" Hydrobiology 3, no. 2: 63-73. https://doi.org/10.3390/hydrobiology3020005
APA StyleHeller, R. E., Stouffer, A. N., & Iyengar, E. V. (2024). Effects of Species of Leaves and Conditioning Time on Vernal Colonization by Temperate Lotic Isopods (Lirceus sp.). Hydrobiology, 3(2), 63-73. https://doi.org/10.3390/hydrobiology3020005