Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,111)

Search Parameters:
Keywords = crustacean

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4197 KiB  
Review
Conformational Dynamics and Structural Transitions of Arginine Kinase: Implications for Catalysis and Allergen Control
by Sung-Min Kang
Life 2025, 15(8), 1248; https://doi.org/10.3390/life15081248 - 6 Aug 2025
Abstract
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” [...] Read more.
Arginine kinase is a key phosphagen kinase in invertebrates that facilitates rapid ATP regeneration by reversibly transferring phosphate groups between phosphoarginine and ADP. Structural studies have shown that the enzyme adopts distinct conformations in its ligand-free and ligand-bound states, known as the “open” and “closed” forms, respectively. These conformational changes are crucial for catalytic activity, enabling precise positioning of active-site residues and loop closure during phosphoryl transfer. Transition-state analog complexes have provided additional insights by mimicking intermediate states of catalysis, supporting the functional relevance of the open/closed structural model. Furthermore, studies across multiple species reveal how monomeric and dimeric forms of arginine kinase contribute to its allosteric regulation and substrate specificity. Beyond its metabolic role, arginine kinase is also recognized as a major allergen in crustaceans. Its structural uniqueness and absence in vertebrates make it a promising candidate for selective drug targeting. By integrating crystallographic data with functional context, this review highlights conserved features and species-specific variations of arginine kinase that may inform the design of inhibitors. Such molecules have the potential to serve both as antiparasitic agents and as novel therapeutics to manage crustacean-related allergic responses in humans. Full article
(This article belongs to the Section Proteins and Proteomics)
Show Figures

Figure 1

23 pages, 1714 KiB  
Article
Physicochemical and Biological Properties of Quercetin-Loaded Low-Molecular-Weight Chitosan Nanoparticles Derived from Hermetia illucens Larvae and Crustacean Sources: A Comparative Study
by Anna Guarnieri, Rosanna Mallamaci, Giuseppe Trapani, Dolores Ianniciello, Carmen Scieuzo, Francesco Iannielli, Luigi Capasso, Maria Chiara Sportelli, Alessandra Barbanente, Michela Marsico, Angela De Bonis, Stefano Castellani, Patrizia Falabella and Adriana Trapani
Pharmaceutics 2025, 17(8), 1016; https://doi.org/10.3390/pharmaceutics17081016 - 5 Aug 2025
Abstract
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac [...] Read more.
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac were compared herein by investigating the in vitro features of nanoparticles (NPs) made from each polysaccharide and administered with the antioxidant quercetin (QUE). Methods. X-ray diffraction and FT-IR spectroscopy enabled the identification of each type of CS. Following the ionic gelation technique and using sulfobutylether-β-cyclodextrin as a cross-linking agent, NPs were easily obtained. Results. Physicochemical data, release studies in PBS, and the evaluation of antioxidant effects via the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test were studied for both CSlarvae and CScrustac. QUE-loaded NP sizes ranged from 180 to 547 nm, and zeta potential values were between +7.5 and +39.3 mV. In vitro QUE release in PBS was faster from QUE-CSlarvae NPs than from CScrustac, and high antioxidant activity—according to the DPPH test—was observed for all tested NP formulations. Discussion. The agar diffusion assay, referring to Escherichia coli and Micrococcus flavus, as well as the microdilution assay, showed the best performance as antimicrobial formulations in the case of QUE-CSlarvae NPs. QUE-CSlarvae NPs can represent a promising vehicle for QUE, releasing it in a sustained manner, and, relevantly, the synergism noticed between QUE and CSlarvae resulted in a final antimicrobial product. Conclusions. New perspectives for low-molecular-weight CS are disclosed by adopting renewable sources from insects instead of the commercial CScrustac. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

22 pages, 598 KiB  
Article
Re-Consider the Lobster: Animal Lives in Protein Supply Chains
by Karl T. Ulrich
Sustainability 2025, 17(15), 7034; https://doi.org/10.3390/su17157034 - 2 Aug 2025
Viewed by 120
Abstract
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive [...] Read more.
Animal protein production represents a complex system of lives transformed into nutrition, with profound ethical and environmental implications. This study provides a quantitative analysis of animal lives required to produce human-consumable protein across major food production systems. Categorizing animal lives based on cognitive complexity and accounting for all lives involved in production, including direct harvests, reproductive animals, and feed species, reveals dramatic variations in protein efficiency. The analysis considers two categories of animal life: complex-cognitive lives (e.g., mammals, birds, cephalopods) and pain-capable lives (e.g., fish, crustaceans). Calculating protein yield per life demonstrates efficiency differences spanning more than five orders of magnitude, from 2 g per complex-cognitive life for baby octopus to 390,000 g per life for bovine dairy systems. Key findings expose disparities between terrestrial and marine protein production. Terrestrial systems involving mammals and birds show higher protein yields and exclusively involve complex-cognitive lives, while marine systems rely predominantly on pain-capable lives across complex food chains. Dairy production emerges as the most efficient system. Aquaculture systems reveal complex dynamics, with farmed carnivorous fish requiring hundreds of feed fish lives to produce protein, compared to omnivorous species that demonstrate improved efficiency. Beyond quantitative analysis, this research provides a framework for understanding the ethical and ecological dimensions of protein production, offering insights for potential systemic innovations. Full article
(This article belongs to the Section Sustainable Food)
Show Figures

Graphical abstract

20 pages, 5041 KiB  
Review
Aquatic Biomass-Based Carbon Dots: A Green Nanostructure for Marine Biosensing Applications
by Ahmed Dawood, Mohsen Ghali, Laura Micheli, Medhat H. Hashem and Clara Piccirillo
Clean Technol. 2025, 7(3), 64; https://doi.org/10.3390/cleantechnol7030064 - 1 Aug 2025
Viewed by 176
Abstract
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots [...] Read more.
Aquatic biomass—ranging from fish scales and crustacean shells to various algae species—offers an abundant, renewable source for carbon dot (CD) synthesis, aligning with circular economy principles. This review highlights recent studies for valorizing aquatic biomass into high-performance carbon-based nanomaterials—specifically aquatic biomass-based carbon dots (AB-CDs)—briefly summarizing green synthesis approaches (e.g., hydrothermal carbonization, pyrolysis, and microwave-assisted treatments) that minimize environmental impact. Subsequent sections highlight the varied applications of AB-CDs, particularly in biosensing (including the detection of marine biotoxins), environmental monitoring of water pollutants, and drug delivery systems. Physically AB-CDs show unique optical and physicochemical properties—tunable fluorescence, high quantum yields, enhanced sensitivity, selectivity, and surface bio-functionalization—that make them ideal for a wide array of applications. Overall, the discussion underlines the significance of this approach; indeed, transforming aquatic biomass into carbon dots can contribute to sustainable nanotechnology, offering eco-friendly solutions in sensing, environmental monitoring, and therapeutics. Finally, current challenges and future research directions are discussed to give a perspective of the potential of AB-CDs; the final aim is their integration into multifunctional, real-time monitoring and therapeutic systems—for sustainable nanotechnology innovations. Full article
Show Figures

Graphical abstract

16 pages, 1947 KiB  
Article
Benthic Macrofauna in the Loukkos Estuary, Morocco: Patterns and Environmental Drivers
by Feirouz Touhami
Ecologies 2025, 6(3), 53; https://doi.org/10.3390/ecologies6030053 - 1 Aug 2025
Viewed by 173
Abstract
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), [...] Read more.
This study provides the first comprehensive characterization of benthic macrofaunal communities in the Loukkos estuary, highlighting their spatial and seasonal variability and the environmental factors shaping their structure. A total of 47 species were identified across 12 site–season combinations, dominated by molluscs (47%), polychaetes (23%), and crustaceans (21%). Species richness varied considerably along the estuarine gradient, ranging from fewer than five species in the upstream sector to up to 30 species downstream. Overall, higher diversity was observed in the downstream areas and during the dry season. Macrofaunal density also exhibited substantial variability, ranging from 95 ind.m−2 to 14,852 ind.m−2, with a mean density of 2535 ± 4058 ind.m−2. Multivariate analyses identified four distinct benthic assemblages structured primarily by spatial factors (ANOSIM R = 0.86, p = 0.002), with negligible seasonal effect (R = −0.03, p = 0.6). Assemblages ranged from marine-influenced communities at the estuary mouth dominated by Cerastoderma edule, through rich and diverse seagrass-associated communities in the lower estuary dominated by Bittium reticulatum, and moderately enriched mid-estuary communities characterized by Scrobicularia plana and Hediste diversicolor, to species-poor upstream communities dominated by the tolerant species H. diversicolor. Canonical analysis showed that salinity and vegetation explain nearly 40% of the variation in benthic assemblages, highlighting the key role of Zostera seagrass beds as structuring habitats. Moreover, upstream anthropogenic pressures alter environmental conditions, reducing benthic diversity and favoring tolerant species. Full article
Show Figures

Figure 1

8 pages, 222 KiB  
Perspective
Exploring the Potential of European Brown Shrimp (Crangon crangon) in Integrated Multi-Trophic Aquaculture: Towards Achieving Sustainable and Diversified Coastal Systems
by Ángel Urzúa and Marina Gebert
Oceans 2025, 6(3), 47; https://doi.org/10.3390/oceans6030047 - 31 Jul 2025
Viewed by 114
Abstract
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native [...] Read more.
Global marine coastal aquaculture increased by 6.7 million tons in 2024, with whiteleg shrimp (Penaeus vannamei) dominating crustacean production. However, reliance on a single species raises sustainability concerns, particularly in the face of climate change. Diversifying shrimp farming by cultivating native species, such as the European brown shrimp (Crangon crangon), presents an opportunity to develop a sustainable blue bioeconomy in Europe. C. crangon holds significant commercial value, yet overexploitation has led to population declines. Integrated Multi-Trophic Aquaculture (IMTA) offers a viable solution by utilizing fish farm wastewater as a nutrient source, reducing both costs and environmental impact. Research efforts in Germany and other European nations are exploring IMTA’s potential by co-culturing shrimp with species like sea bream, sea bass, and salmon. The physiological adaptability and omnivorous diet of C. crangon further support its viability in aquaculture. However, critical knowledge gaps remain regarding its lipid metabolism, early ontogeny, and reproductive biology—factors essential for optimizing captive breeding. Future interdisciplinary research should refine larval culture techniques and develop sustainable co-culture models. Expanding C. crangon aquaculture aligns with the UN’s Sustainable Development Goals by enhancing food security, ecosystem resilience, and economic stability while reducing Europe’s reliance on seafood imports. Full article
81 pages, 6368 KiB  
Review
A Comprehensive Review on the Valorization of Bioactives from Marine Animal By-Products for Health-Promoting, Biofunctional Cosmetics
by Sofia Neonilli A. Papadopoulou, Theodora Adamantidi, Dimitrios Kranas, Paschalis Cholidis, Chryssa Anastasiadou and Alexandros Tsoupras
Mar. Drugs 2025, 23(8), 299; https://doi.org/10.3390/md23080299 - 26 Jul 2025
Viewed by 347
Abstract
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet [...] Read more.
In recent decades, there has been a marked surge in the development of marine-by-product-derived ingredients for cosmetic applications, driven by the increasing demand for natural, sustainable, and high-performance formulations. Marine animal by-products, particularly those from fish, crustaceans, and mollusks, represent an abundant yet underutilized source of bioactive compounds with notable potential in cosmeceutical innovation. Generated as waste from the fishery and seafood-processing industries, these materials are rich in valuable bioactives, such as chitosan, collagen, peptides, amino acids, fatty acids, polar lipids, lipid-soluble vitamins, carotenoids, pigments, phenolics, and mineral-based substrates like hydroxyapatite. Marine by-product bioactives can be isolated via several extraction methods, and most importantly, green ones. These compounds exhibit a broad spectrum of skin-health-promoting effects, including antioxidant, anti-aging, anti-inflammatory, antitumor, anti-wrinkle, anti-hyperpigmentation, and wound-healing properties. Moreover, applications extend beyond skincare to include hair, nail, and oral care. The present review provides a comprehensive analysis of bioactives obtained from marine mollusks, crustaceans, and fish by-products, emphasizing modern extraction technologies with a focus on green and sustainable approaches. It further explores their mechanisms of action and documented efficacy in cosmetic formulations. Finally, the review outlines current limitations and offers future perspectives for the industrial valorization of marine by-products in functional and environmentally-conscious cosmetic development. Full article
Show Figures

Figure 1

20 pages, 5747 KiB  
Article
Functional Study of the BMP Signaling Pathway in Appendage Regeneration of Exopalaemon carinicauda
by Chaofan Xing, Yong Li, Zhenxiang Chen, Qingyuan Hu, Jiayi Sun, Huanyu Chen, Qi Zou, Yingying Li, Fei Yu, Chao Wang, Panpan Wang and Xin Shen
Biology 2025, 14(8), 940; https://doi.org/10.3390/biology14080940 - 25 Jul 2025
Viewed by 407
Abstract
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages [...] Read more.
Appendage autotomy frequently occurs during the cultivation of Exopalaemon carinicauda, which severely impacts its survival and economic benefits. To investigate the molecular mechanism underlying appendage regeneration in E. carinicauda, this study presents a comparative transcriptome analysis on samples from different stages of appendage regeneration in individuals of the same family of E. carinicauda. A total of 6460 differentially expressed genes (DEGs) were identified between the samples collected at 0 h post-autotomy (D0) and those collected at 18 h post-autotomy (D18h). Additionally, 7740 DEGs were identified between D0 and 14 d post-autotomy (D14d), with 3382 DEGs identified between D18h and D14d. Among them, differentially expressed genes such as EcR, RXR, BMP1, and Smad4 are related to muscle growth or molting and may be involved in the regeneration process. qRT-PCR results revealed that EcBMPR2 was expressed at relatively high levels in the gonad and ventral nerve cord tissues and that the highest level of expression was detected in the regenerative basal tissue at 24 h post-autotomy. In situ hybridization results indicated strong signals of this gene in the cells at the wound site at 72 h post-autotomy. Following knockdown of EcBMPR2, the expression levels of both EcBMPR1B and EcSmad1 were significantly downregulated, and long-term interference with the EcBMPR2 gene resulted in a significantly slower appendage regeneration process compared to the control group. When the downstream transcription factor EcSmad1 was knocked down, the two receptor genes EcBMPR2 and EcBMPR1B were downregulated, whereas EcBMP7 was upregulated. After inhibiting the BMP signaling pathway, the degree of cell aggregation at the autotomy site in the experimental group was significantly lower than that in the control group, the wound healing rate was delayed, and the blastema regeneration time was prolonged from 5 d to 7 d. Collectively, these results indicate that the BMP signaling pathway plays a critical role in the early stages of appendage regeneration in E. carinicauda. This study provides important theoretical insights for understanding limb regeneration in crustaceans. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

14 pages, 1428 KiB  
Article
Extraction of Chitin, Chitosan, and Calcium Acetate from Mussel Shells for Sustainable Waste Management
by Chaowared Seangarun, Somkiat Seesanong, Banjong Boonchom, Nongnuch Laohavisuti, Pesak Rungrojchaipon, Wimonmat Boonmee, Sirichet Punthipayanon and Montree Thongkam
Int. J. Mol. Sci. 2025, 26(15), 7107; https://doi.org/10.3390/ijms26157107 - 23 Jul 2025
Viewed by 480
Abstract
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions [...] Read more.
In this paper, mussel shells were used to produce chitin, chitosan, and calcium acetate using chemical processes, searching for an alternative environmentally friendly biopolymer and calcium source. Mussel shells were treated with acetic acid as a demineralizing agent, resulting in separate solid fractions and calcium solution. The solid was further purified to produce chitin by deproteinization and decolorization processes, and then the deacetylation process was used to obtain chitosan. The calcium solution was evaporated to produce calcium acetate powder. The yields of extracted chitin, chitosan, and calcium acetate from 100 g of mussel shells were 2.98, 2.70, and 165.23 g, respectively. The prepared chitin, chitosan, and calcium acetate were analyzed by Fourier transform infrared (FTIR) spectrophotometry, X-ray diffraction (XRD), thermogravimetric analysis (TGA), and scanning electron microscope (SEM) to confirm the chemical and physical properties. The analysis results of chitin and chitosan revealed the similarity to chitosan derived from crustaceans and insects in terms of functional group, structure and morphologies. The prepared calcium acetate shows FTIR and XRD data corresponding to calcium acetate monohydrate (Ca(CH3COO)2·H2O) similar to synthesized calcium acetate in previous research. In addition, the mineral contents of calcium acetate identified by X-ray fluorescence (XRF) analysis exhibit 97.8% CaO with non-toxic impurities. This work demonstrated the potential of the production process of chitin, chitosan, and calcium acetate for the development of a sustainable industrial process with competitive functional performance against the commercial chitin and chitosan production process using crustacean shells and supported the implementation of a circular economy. Full article
(This article belongs to the Section Materials Science)
Show Figures

Figure 1

34 pages, 2311 KiB  
Review
Decoding Stress Responses in Farmed Crustaceans: Comparative Insights for Sustainable Aquaculture Management
by Fitriska Hapsari, Muhammad Agus Suprayudi, Dean M. Akiyama, Julie Ekasari, Parisa Norouzitallab and Kartik Baruah
Biology 2025, 14(8), 920; https://doi.org/10.3390/biology14080920 - 23 Jul 2025
Viewed by 590
Abstract
Aquaculture is a crucial food-producing sector that can supply more essential nutrients to nourish the growing human population. However, it faces challenges, including limited water quality and space competition. These constraints have led to the intensification of culture systems for more efficient resource [...] Read more.
Aquaculture is a crucial food-producing sector that can supply more essential nutrients to nourish the growing human population. However, it faces challenges, including limited water quality and space competition. These constraints have led to the intensification of culture systems for more efficient resource use while maintaining or increasing production levels. However, intensification introduces stress risks to cultured organisms by, for instance, overcrowding, waste accumulation, and water quality deterioration, which can negatively affect the growth, health, and immunity of animals and cause diseases. Additionally, environmental changes due to climate and anthropogenic activities further intensify the environmental stress for aquaculture organisms, including crustaceans. Shrimp are one of the most widely cultured and consumed farmed crustacea. Relative to aquatic vertebrates such as fish, the physiology of crustaceans has simpler physiological structures, as they lack a spinal cord. Consequently, their stress response mechanisms follow a single pathway, resulting in less complex responses to stress exposure compared to those of fish. While stress is considered a primary factor influencing the growth, health, and immunity of shrimp, comprehensive research on crustacean stress responses remains limited. Understanding the stress response at the organismal and cellular levels is essential to identify sensitive and effective stress biomarkers which can inform the development of targeted intervention strategies to mitigate stress. This review provides a comprehensive overview of the physiological changes that occur in crustaceans under stress, including hormonal, metabolic, hematological, hydromineral, and phenotypic alterations. By synthesizing current knowledge, this article aims to bridge existing gaps and provide insights into the stress response mechanisms, paving the way for advancements in crustacean health management. Full article
(This article belongs to the Section Marine Biology)
Show Figures

Figure 1

20 pages, 2847 KiB  
Article
Oxidative Stress Disrupts Gill Function in Eriocheir sinensis: Consequences for Ion Transport, Apoptosis, and Autophagy
by Wenrong Feng, Qinghong He, Qiqin Yang, Yuanfeng Xu, Gang Jiang, Jianlin Li, Jun Zhou, Rui Jia and Yongkai Tang
Antioxidants 2025, 14(8), 897; https://doi.org/10.3390/antiox14080897 - 22 Jul 2025
Viewed by 333
Abstract
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O [...] Read more.
Oxidative stress is a key mediator of physiological dysfunction in aquatic organisms under environmental challenges, yet its comprehensive impacts on gill physiology require further clarification. This study investigated the molecular and cellular responses of Eriocheir sinensis gills to hydrogen peroxide (H2O2)-induced oxidative stress, integrating antioxidant defense, ion transport regulation, and stress-induced cell apoptosis and autophagy. Morphological alterations in the gill filaments were observed, characterized by septum degeneration, accumulation of haemolymph cells, and pronounced swelling. For antioxidant enzymes like catalase (CAT) and glutathione peroxidase (GPx), activities were enhanced, while superoxide dismutase (SOD) activity was reduced following 48 h of exposure. Overall, the total antioxidant capacity (T-AOC) showed a significant increase. The elevated concentrations of malondialdehyde (MDA) and H2O2 indicated oxidative stress. Ion transport genes displayed distinct transcription patterns: Na+-K+-2Cl co-transporter-1 (NKCC1), Na+/H+ exchanger 3 (NHE3), aquaporin 7 (AQP7), and chloride channel protein 2 (CLC2) were significantly upregulated; the α-subunit of Na+/K+-ATPase (NKAα) and carbonic anhydrase (CA) displayed an initial increase followed by decline; whereas vacuolar-type ATPase (VATP) consistently decreased, suggesting compensatory mechanisms to maintain osmotic balance. Concurrently, H2O2 triggered apoptosis (Bcl2, Caspase-3/8) and autophagy (beclin-1, ATG7), likely mediated by MAPK and AMPK signaling pathways. These findings reveal a coordinated yet adaptive response of crab gills to oxidative stress, providing new insights into the mechanistic basis of environmental stress tolerance in crustaceans. Full article
(This article belongs to the Special Issue Natural Antioxidants and Aquatic Animal Health—2nd Edition)
Show Figures

Figure 1

22 pages, 4093 KiB  
Article
Community Structure and Influencing Factors of Macro-Benthos in Bottom-Seeded Marine Pastures: A Case Study of Caofeidian, China
by Xiangping Xue, Long Yun, Zhaohui Sun, Jiangwei Zan, Xinjing Xu, Xia Liu, Song Gao, Guangyu Wang, Mingshuai Liu and Fei Si
Biology 2025, 14(7), 901; https://doi.org/10.3390/biology14070901 - 21 Jul 2025
Viewed by 185
Abstract
To accurately assess the water quality, ecosystem status, distribution of large benthic organisms, and ecological restoration under human intervention, an analysis of benthic organisms on Caofeidian in September and November 2023 and January and May of the following year was conducted in this [...] Read more.
To accurately assess the water quality, ecosystem status, distribution of large benthic organisms, and ecological restoration under human intervention, an analysis of benthic organisms on Caofeidian in September and November 2023 and January and May of the following year was conducted in this work. By performing CCA (canonical correspondence analysis) and cluster and correlation coefficient (Pearson) analyses, the temporal variation characteristics of benthic abundance, dominant species, community structure and biodiversity were analyzed. A total of 79 species of macro-benthic animals were found in four months, including 32 species of polychaetes, cnidarians, 1 species of Nemertean, 19 species of crustaceans, and 24 species of molluscs. The use of conventional grab-type mud collectors revealed that the Musculus senhousei dominated the survey (Y > 0.02). While only a small number of Ruditapes philippinarum were collected from bottom-dwelling species, a certain number of bottom-dwelling species (Ruditapes philippinarum and Scapharca subcrenata) were also collected during the trawl survey. Additionally, a significant population of Rapana venosa was found in the area. It is speculated that the dual effects of predation and competition are likely the primary reasons for the relatively low abundance of bottom-dwelling species. The density and biomass of macro-benthos were consistent over time, which was the highest in May, the second highest in January, and the lowest in September and November. The main environmental factors affecting the large benthic communities in the surveyed sea areas were pH, DO, NO2-N, T, SAL and PO43−-P. Combined with historical data, it was found that although the environmental condition in the Caofeidian sea area has improved, the Musculus senhousei has been dominant. In addition, the abundance of other species is much less than that of the Musculus senhousei, and the diversity of the benthic community is still reduced. Our work provides valuable data support for the management and improvement of bottom Marine pasture and promotes the transformation of Marine resources from resource plunder to a sustainable resource. Full article
(This article belongs to the Special Issue Global Fisheries Resources, Fisheries, and Carbon-Sink Fisheries)
Show Figures

Figure 1

19 pages, 1835 KiB  
Article
Transcriptome Analysis Reveals Hyperglycemic Hormone and Excitatory Amino Acid Transporter 3 Are Involved in the Thermal Adaptation of Eriocheir sinensis
by Xi Li, Runlin Zhou, Ruiqi Zhang, Zhen He, Mingzhi Zhang, Ran Li, Tong Hao and Jinsheng Sun
Fishes 2025, 10(7), 361; https://doi.org/10.3390/fishes10070361 - 21 Jul 2025
Viewed by 290
Abstract
Temperature is one of the critical factors influencing the survival, growth, and reproduction of organisms. The molting and developmental mechanisms of crustaceans are highly sensitive to temperature, yet the regulatory mechanisms underlying their thermal adaptation remain unclear. In this work, transcriptome sequencing was [...] Read more.
Temperature is one of the critical factors influencing the survival, growth, and reproduction of organisms. The molting and developmental mechanisms of crustaceans are highly sensitive to temperature, yet the regulatory mechanisms underlying their thermal adaptation remain unclear. In this work, transcriptome sequencing was performed to analyze the gene expression profiles of Eriocheir sinensis under normal temperature (22 °C) and high-temperature (27 °C and 32 °C) conditions. A total of 377 differentially expressed genes (DEGs) were identified, including 149 up-regulated and 227 down-regulated genes. Through Gene Ontology (GO) enrichment analysis of these DEGs, 11 significantly temperature-regulated signaling pathways were identified, including the estrogen and androgen receptor signaling pathways, and two neurotransmission signaling pathways. These findings suggest that temperature may influence sex regulation in E. sinensis, while the dopamine receptor and neuropeptide signaling pathways may play a role in its thermal adaptation. Further validation via RT-qPCR of DEGs involved in neurotransmission signaling pathways revealed that crustacean hyperglycemic hormone (CHH) and excitatory amino acid transporter 3 (EAA3) genes are likely involved in the thermal adaptation of E. sinensis. In addition, the hemolymph glucose levels associated with the elevated temperatures were detected and consistent variations between glucose levels and CHH expressions were found. This indicates that the eyestalk CHH is strongly correlated with the hemolymph glucose levels and likely mediates the response to temperature changes by regulating blood glucose in E. sinensis. The results of this study not only provide key molecular targets for elucidating the mechanisms by which temperature affects molting and development in E. sinensis, but also establish a theoretical foundation for further research into thermal adaptation strategies in crustaceans. Full article
(This article belongs to the Section Aquatic Invertebrates)
Show Figures

Figure 1

21 pages, 12098 KiB  
Article
Genome-Wide Identification and Expression Analysis of Hsp70 Gene Family of Procambarus clarkii Reveals Its Immune Role in Response to Bacterial Challenge After Non-Lethal Heat Shock
by Xin Zhang, Xiuhong Cai, Shirui Yue, Zhangxuan Chen, Yulong Sun, Lei Cheng, Yewen Xi and Shunchang Wang
Animals 2025, 15(14), 2150; https://doi.org/10.3390/ani15142150 - 21 Jul 2025
Viewed by 327
Abstract
Water temperature significantly affects the physiological balance of aquatic organisms like crustaceans, and heat shock proteins (HSPs) are crucial for stress resistance and pathogen defense. This study conducted a genome-wide analysis to explore the functional characteristics of the Hsp70 gene family in Procambarus [...] Read more.
Water temperature significantly affects the physiological balance of aquatic organisms like crustaceans, and heat shock proteins (HSPs) are crucial for stress resistance and pathogen defense. This study conducted a genome-wide analysis to explore the functional characteristics of the Hsp70 gene family in Procambarus clarkii. Fifteen Hsp70 family members were identified, with several genes showing upregulation under non-lethal heat shock (NLHS) and pathogen challenges. RNA-Seq and qPCR analyses confirmed increased expression of certain PcHsp70s during NLHS, indicating NLHS activation of the Hsp70 family to enhance immune regulation. dsRNA-mediated silencing of Hsp70 led to downregulation of TLR pathway genes (e.g., TLR1, TLR6), suggesting Hsp70 regulates the TLR signaling pathway for immune responses. These findings reveal that NLHS-induced Hsp70 upregulation improves pathogen resistance, offering insights for addressing temperature fluctuations and disease outbreaks in aquaculture to optimize management practices. Full article
Show Figures

Figure 1

20 pages, 2866 KiB  
Article
Morphometrics of the Blue Crab Callinectes sapidus Rathbun, 1896 in a Northern Adriatic Saline Marsh Under Environmental Stress
by Neven Iveša, Paolo Paliaga, Matej Čief, Petra Burić, Valentina Pitacco and Moira Buršić
Appl. Sci. 2025, 15(14), 7990; https://doi.org/10.3390/app15147990 - 17 Jul 2025
Viewed by 738
Abstract
The Atlantic blue crab (Callinectes sapidus) has rapidly expanded across the Mediterranean, raising concerns over its ecological and economic impacts. This study examines the morphometric characteristics and environmental influences on C. sapidus populations in the Palud-Palù swamp (western Istrian coast) from [...] Read more.
The Atlantic blue crab (Callinectes sapidus) has rapidly expanded across the Mediterranean, raising concerns over its ecological and economic impacts. This study examines the morphometric characteristics and environmental influences on C. sapidus populations in the Palud-Palù swamp (western Istrian coast) from 2022 to 2024. A total of 203 specimens were analyzed for carapace width, length, depth, and body mass, alongside monthly measurements of temperature, salinity, oxygen saturation, and pH. Statistical analyses (t-tests, ANOVA, PCA, and RDA) revealed pronounced sexual dimorphism, with males consistently larger than females. Interannual differences in size distribution showed larger individuals in 2022, followed by a decline in 2023 and 2024, likely due to environmental stressors (e.g., salinity, temperature, hypoxia) and increased anthropogenic pressures (e.g., trapping and illegal harvesting). RDA identified temperature, oxygen saturation, and pH as key abiotic drivers of morphometric variation. These findings suggest that while C. sapidus demonstrates physiological plasticity, enabling its persistence in estuarine environments, its growth and invasive potential may be constrained under extreme or suboptimal local conditions. This study highlights the importance of long-term monitoring and integrated management to mitigate ecological disruption in sensitive coastal ecosystems. Full article
(This article belongs to the Special Issue New Insights into Marine Ecology and Fisheries Science)
Show Figures

Figure 1

Back to TopTop