Holistic Approach for Estimating Water Quality Ecosystem Services of Danube Floodplains: Field Measures, Remote Sensing, and Machine Learning
Abstract
:1. Introduction
1.1. Research Context
1.2. Background
1.3. Research Objective
- displaying the behavior of specific parameters with a temporal analysis of water quality with field data from 1996 to 2017;
- investigating particular changes of the water quality at the spatial level through all active floodplains along the Danube River;
- assessing the effect of floodplains’ nutrient retention and water quality improvement by means of time series analysis of nutrients, physiochemical parameters, and WQI;
- analyzing the relationship between the river discharge and river water quality through correlation analysis between the nutrients’ retention values and the river discharge, as well as between the water quality improvement and the river discharge.
2. Study Area
3. Materials and Methods
3.1. Evolution of Water Quality in the Danube River
3.1.1. Field Data
3.1.2. Time Series Analysis
3.1.3. Floodplains and Data Availability
3.1.4. Nutrient Retention
3.1.5. Water Quality Index (WQI)
3.1.6. Correlation with River Discharge
3.2. Modeling Water Quality Dynamics with Remote Sensing
3.2.1. Field and Remote Sensing Data Comparison
3.2.2. Machine Learning Models
4. Results
4.1. Results on Water Quality Index (WQI)
4.2. Nitrogen and Phosphorus Retention
4.3. Water Quality Variations
4.4. Water Quality and Correlation with River Discharge
4.5. Remote Sensing-Based Machine Learning Models
4.5.1. C2RCC Water Products’ Validation
4.5.2. Machine Learning Modeling
4.5.3. Water Quality Maps
5. Discussion
5.1. Water Quality and Nutrient Retention
5.2. Machine Learning Models Based on Remote Sensing
5.3. Human Intervention and Floodplain Reconnections
6. Conclusions and Outlook
- At the annual scale, most areas downstream of active floodplains have better WQI than the corresponding upstream section, while nitrate and total phosphorus retention do not show a relevant trend (the effect is rather dependent on the single floodplain);
- There is the need for more sophisticated analyses of remote sensing data, as shown by poor results for in situ validation of Sentinel-2 C2RCC water products; on the other hand, remote sensing-based ML modeling shows more certain results for Chl-a, but is still lacking certainty in the modeling of TSM;
- The comparison of remote sensing ML approaches (water quality maps) and in situ data analysis (WQI variation shown by the time series) shows an agreement of two independent methodologies.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- EC. Nature-Based Solutions & Re-Naturing Cities; European Commission: Brussel, Belgium, 2015. [Google Scholar]
- Nesshöver, C.; Assmuth, T.; Irvine, K.N.; Rusch, G.M.; Waylen, K.A.; Delbaere, B.; Haase, D.; Jones-Walters, L.; Kenue, H.; Kovacs, E.; et al. The science, policy and practice of nature-based solutions: An interdisciplinary perspective. Sci. Total Environ. 2017, 579, 1215–1227. [Google Scholar] [CrossRef] [PubMed]
- UNESCO. UN World Water Development Report; Nature-Based Solutions for Water: Paris, France, 2018. [Google Scholar]
- Zingraff-Hamed, A.; Noack, M.; Greulich, S.; Schwarzwälder, K.; Pauleit, S.; Wantzen, K.M. Model-Based Evaluation of the Effects of River Discharge Modulations on Physical Fish Habitat Quality. Water 2018, 10, 374. [Google Scholar] [CrossRef] [Green Version]
- Glibert, P.M.; Burford, M.A. Globally changing nutrient loads and harmful algal blooms: Recent advances, new paradigms, and continuuing challenges. Oceanography 2017, 30, 58–69. [Google Scholar] [CrossRef] [Green Version]
- Galloway, J.N.; Cowling, E.B. Cowling, Reactive nitrogen and the world: 200 years of change. AMBIO 2002, 31, 64–71. [Google Scholar] [CrossRef] [PubMed]
- Howarth, R.W. Coastal nitrogen pollution: A review of sources and trends globally and regionally. Harmful Algae 2008, 8, 14–20. [Google Scholar] [CrossRef]
- Goolsby, D.A.; Battaglin, W.A.; Lawrence, G.B.; Artz, R.S.; Aulenbach, B.T.; Hooper, R.P.; Keeney, D.R.; Stensland, G.J. Integrated Assessment on Hypoxia in the Gulf of Mexico, Topic 3 Report: Flux and Sources of Nutrients in the Mississippi-Atchafalaya River Basin; NOAA Coastal Ocean Program Decision Analysis Series 17; National Centers for Coastal Ocean Science: Silver Spring, MD, USA, 1999.
- Alexander, R.B.; Smith, R.A.; Schwarz, G.E.; Boyer, E.W.; Nolan, J.V.; Brakebill, J.W. Differences in Phosphorus and Nitrogen Delivery to The Gulf of Mexico from the Mississippi River Basin. Environ. Sci. Technol. 2008, 42, 822–830. [Google Scholar] [CrossRef] [Green Version]
- Lewin, J. Floodplain geomorphology. Prog. Phys. Geogr. 1978, 2, 408–437. [Google Scholar] [CrossRef]
- Nardi, F.; Vivoni, E.R.; Grimaldi, S. Investigating a floodplain scaling relation using a hydrogeomorphic delineation method. Water Resour. Res. 2006, 42. [Google Scholar] [CrossRef]
- Amoros, C.; Bornette, G. Connectivity and biocomplexity in waterbodies of riverine floodplains. Freshw. Biol. 2002, 47, 761–776. [Google Scholar] [CrossRef]
- Benjankar, R.; Egger, G.; Jorde, K.; Goodwin, P.; Glenn, N.F. Dynamic floodplain vegetation model development for the Kootenai River, USA. J. Environ. Manag. 2011, 92, 3058–3070. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Whiting, P.J. Streamflow necessary for environmental maintenance. Annu. Rev. Earth Planet. Sci. 2002, 30, 181–206. [Google Scholar] [CrossRef]
- MAE: Millennium Ecosystem Assessment. Ecosystems and Human Well-Being: Wetlands and Water; World Resources Institute: Washington, DC, USA, 2012. [Google Scholar]
- Sanon, S.; Hein, T.; Douven, W.; Winkler, P. Quantifying ecosystem service trade-offs: The case of an urban floodplain in Vienna, Austria. J. Environ. Manag. 2012, 111, 159–172. [Google Scholar] [CrossRef] [PubMed]
- Schindler, S.; Sebesvari, Z.; Damm, C.; Euller, K.; Mauerhofer, V.; Schneidergruber, A.; Brio, M.; Essl, F.; Kanka, R.; Lauwaars, S.G.; et al. Multifunctionality of floodplain landscapes: Relating management options to ecosystem services. Landsc. Ecol. 2014, 29, 229–244. [Google Scholar] [CrossRef]
- Weigelhofer, G.; Hein, T. Efficiency and detrimental side effects of denitrifying bioreactors for nitrate reduction in drainage water. Environ. Sci. Pollut. Res. 2015, 22, 13534–13545. [Google Scholar] [CrossRef]
- Hardison, E.C.; O’Driscoll, M.A.; DeLoatch, J.P.; Howard, R.J.; Brinson, M.M. Urban Land Use, Channel Incision, and Water Table Decline Along Coastal Plain Streams, North Carolina. JAWRA J. Am. Water Resour. Assoc. 2009, 45, 1032–1046. [Google Scholar] [CrossRef]
- Xue, Y.; Kovacic, D.A.; David, M.B.; Gentry, L.E.; Mulvaney, R.L.; Lindau, C.W. In situ measurements of denitrification in constructed wetlands. J. Environ. Qual. 1999, 28, 263–269. [Google Scholar] [CrossRef] [Green Version]
- Knighton, D. Fluvial Forms and Processes: A New Perspective; Routledge: London, UK, 2014. [Google Scholar]
- Debels, P.; Figueroa, R.; Urrutia, R.; Barra, R.; Niell, X. Evaluation of water quality in the Chillán River (Central Chile) using physicochemical parameters and a modified water quality index. Environ. Monit. Assess. 2005, 110, 301–322. [Google Scholar] [CrossRef]
- Lumb, A.; Sharma, T.C.; Bibeault, J.F. A Review of Genesis and Evolution of Water Quality Index (WQI) and Some Future Directions. Water Qual. Expo. Health 2011, 3, 11–24. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of river water quality indices-a review. Environ. Monit. Assess. 2016, 188, 58. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Bresciani, M.; Stroppiana, D.; Oggioni, A.; Morabito, G. Optical remote sensing of lakes: An overview on Lake Maggiore. J. Limnol. 2013, 73. [Google Scholar] [CrossRef] [Green Version]
- Moses, W.J.; Gitelson, A.A.; Berdnikov, S.; Povazhnyy, V. Estimation of chlorophyll-a concentration in case II waters using MODIS and MERIS data—Successes and challenges. Environ. Res. Lett. 2009, 4, 045005. [Google Scholar] [CrossRef] [Green Version]
- Woźniak, M.; Bradtke, K.M.; Krężel, A. Comparison of satellite chlorophyll a algorithms for the Baltic Sea. J. Appl. Remote Sens. 2014, 8, 083605. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.L.; Yang, L.Y.; Qin, B.Q.; Gao, G.; Luo, L.C.; Zhu, G.W.; Liu, M.L. Spatial distribution of COD and the correlations with other parameters in the northern region of Lake Taihu. Huanjing Kexue 2008, 29, 1457–1462. [Google Scholar]
- Salem, S.I.; Strand, M.H.; Higa, H.; Kim, H.; Kazuhiro, K.; Oki, K.; Oki, T. Evaluation of MERIS Chlorophyll-a Retrieval Processors in a Complex Turbid Lake Kasumigaura over a 10-Year Mission. Remote Sens. 2017, 9, 1022. [Google Scholar] [CrossRef] [Green Version]
- Bresciani, M.; Cazzaniga, I.; Austoni, M.; Sforzi, T.; Buzzi, F.; Morabito, G.; Giardino, C. Mapping phytoplankton blooms in deep subalpine lakes from Sentinel-2A and Landsat-8. Hydrobiologia 2018, 824, 197–214. [Google Scholar] [CrossRef] [Green Version]
- Grendaitė, D.; Stonevičius, E.; Karosienė, J.; Savadova, K.; Kasperovičienė, J. Chlorophyll-a concentration retrieval in eutrophic lakes in Lithuania from Sentinel-2 data. Geol. Geogr. 2018, 4, 15–28. [Google Scholar] [CrossRef]
- Klein, T.; Nilsson, M.; Persson, A.; Håkansson, B. From Open Data to Open Analyses—New Opportunities for Environmental Applications? Environments 2017, 4, 32. [Google Scholar] [CrossRef] [Green Version]
- Topp, S.N.; Pavelsky, T.M.; Jensen, D.; Simard, M.; Ross, M.R. Research Trends in the Use of Remote Sensing for Inland Water Quality Science: Moving Towards Multidisciplinary Applications. Water 2020, 12, 169. [Google Scholar] [CrossRef] [Green Version]
- Arias-Rodriguez, L.F.; Duan, Z.; Díaz-Torres, J.D.J.; Basilio Hazas, M.; Huang, J.; Kumar, B.U.; Disse, M. Integration of Remote Sensing and Mexican Water Quality Monitoring System Using an Extreme Learning Machine. Sensors 2021, 21, 4118. [Google Scholar] [CrossRef]
- Brunotte, E.; Dister, E.; Günther-Diringer, D.; Koenzen, U.; Mehl, D. Flussauen in Deutschland–Erfassung und Bewertung des Auenzustandes (Riparian Wetlands in Germany, Inventory and Evaluation of the Conditions of Floodplains); Bundesamt für Naturschutz (BfN): Bonn, Germany, 2009; Volume 87, ISBN 978-3-7843-3987-0. [Google Scholar]
- Holubová, K.; Hey, R.D.; Lisicky, M.J. Middle Danube tributaries: Constraints and opportunities in lowland river restoration. Large Rivers 2003, 15, 507–519. [Google Scholar] [CrossRef]
- Szmańda, J.B.; Lehotský, M.; Novotný, J. Sedimentological Record of Flood Events from Years 2002 and 2007 in the Danube River Overbank Deposits in Bratislava (Slovakia); Quaestiones Geographicae (QUAGEO): Warsaw, Poland, 2008. [Google Scholar]
- Marren, P.M.; Grove, J.R.; Webb, J.A.; Stewardson, M.J. The Potential for Dams to Impact Lowland Meandering River Floodplain Geomorphology. Sci. World J. 2014, 2014, 309673. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Danube Transnational Programme, Danube Floodplain Output 3.1: Evaluated and Ranked Danube Floodplains. 2021. Available online: https://www.interreg-danube.eu/uploads/media/approved_project_output/0001/48/24dcc4166f77972edc0953f65627b506d8ea8d6d.pdf (accessed on 13 April 2022).
- Schwarz, U. Floodplain restoration potential and flood mitigation along the Danube. Geophys. Res. Abstr. 2011, 13, 13713. [Google Scholar]
- Danube Transnational Programme, Interreg Danube Floodplain: Reducing the Flood Risk through Floodplain Restoration along the Danube River and Tributaries. 2020. Available online: https://www.interreg-danube.eu/approved-projects/danube-floodplain (accessed on 28 February 2022).
- Danube Transnational Programme, Danube Floodplain GIS. 2021. Available online: http://www.geo.u-szeged.hu/dfgis/ (accessed on 2 January 2022).
- ICPDR. International Commission for the Protection of the Danube River: The Danube River Basin District Management Plan. 2021. Available online: https://www.icpdr.org/main/wfd-fd-plans-published-2021 (accessed on 30 December 2021).
- Kronvang, B.; Bruhn, A.J. Choice of Sampling Strategy and Estimation Method for Calculating Nitrogen and Phosphorus Transport in Small Lowland Streams. Hydrol. Processes 1996, 10, 1483–1501. [Google Scholar] [CrossRef]
- Zweynert, U. Möglichkeiten und Grenzen bei der Modellierung von Nährstoffeinträgen auf Flussgebietsebene (Modelling Nutrient Emissions on River Basin Scale—Possibilities and Limits); Technischen Universität Dresden: Dresden, Germany, 2008. [Google Scholar]
- Zessner, M.; Winkler, S.; Natho, S. Optimierung von Frachterhebungen in Gewässern unter Berücksichtigung von Probenahmehäufigkeit und Berechnungsmethodik (In-Stream Load Optimizations Under Consideration of Sampling Frequency and Algorithm); Federal Ministry for Agriculture, Forestry, Environment and Water Management, Institut für Wassergüte, Ressourcenmanagement und Abfallwirtschaft, Ed.; TU Wien: Vienna, Austria, 2008. [Google Scholar]
- Moscuzza, C.; Volpedo, A.V.; Ojeda, C.; Cirelli, A.F. Water quality index as an tool for river assessment in agricultural areas in the pampean plains of argentina. J. Urban Environ. Eng. 2007, 1, 18–25. [Google Scholar] [CrossRef]
- Conesa Fdez-Vitora, V. Guia Metodologica Para la Evaluacion del Impacto Ambiental, 2nd ed.; M. Prensa: Madrid, Spain, 1995. [Google Scholar]
- Phu, S.T.P. Research on the Correlation Between Chlorophyll-a and Organic Matter BOD, COD, Phosphorus, and Total Nitrogen in Stagnant Lake Basins. In Sustainable Living with Environmental Risks; Kaneko, N., Yoshiura, S., Kobayashi, M., Eds.; Springer: Tokyo, Japan, 2014. [Google Scholar] [CrossRef] [Green Version]
- Yogendra, K.; Puttaiah, E.T. Determination of water quality index and suitability of an urban waterbody in Shimoga Town, Karnataka. In Proceedings of the 12th World Lake Conference (Taal 2008), Jaipur, India, 28 October–2 November 2007; p. 346. [Google Scholar]
- Etim, E.E.; Odoh, R.; Itodo, A.U.; Umoh, S.D.; Lawal, U. Water quality index for the assessment of water quality from different sources in the Niger Delta Region of Nigeria. Front. Sci. 2013, 3, 89–95. [Google Scholar]
- Silveira Kupssinskü, L.; Thomassim Guimarães, T.; Menezes de Souza, E.; Zanotta, D.C.; Roberto Veronez, M.; Gonzaga, L.; Mauad, F.F. A Method for Chlorophyll-a and Suspended Solids Prediction through Remote Sensing and Machine Learning. Sensors 2020, 20, 2125. [Google Scholar] [CrossRef] [Green Version]
- Tundisi, J.G.T.; Matsumura-Tundisi, T.M. Limnologia. Braz. J. Biol. 2009, 69. [Google Scholar] [CrossRef] [Green Version]
- Giardino, C.; Brando, V.E.; Gege, P.; Pinnel, N.; Hochberg, E.; Knaeps, E.; Reusen, I.; Doerffer, R.; Bresciani, M.; Braga, F.; et al. Imaging Spectrometry of Inland and Coastal Waters: State of the Art, Achievements and Perspectives. Surv. Geophys. 2019, 40, 401–429. [Google Scholar] [CrossRef] [Green Version]
- Ansper, A.; Alikas, K. Retrieval of Chlorophyll a from Sentinel-2 MSI Data for the European Union Water Framework Directive Reporting Purposes. Remote Sens. 2018, 11, 64. [Google Scholar] [CrossRef] [Green Version]
- Brockmann, C.; D, R.; Marco, P.; Stelzer, K.; Embacher, S.; Ruescas, A. Evolution Of The C2RCC Neural Network For Sentinel 2 and 3 For The Retrieval of Ocean. In Proceedings of the Living Planet Symposium, Prague, Czech Republic, 9–13 May 2016. [Google Scholar]
- Arias-Rodriguez, L.F.; Duan, Z.; Sepúlveda, R.; Martinez-Martinez, S.I.; Disse, M. Monitoring Water Quality of Valle de Bravo Reservoir, Mexico, Using Entire Lifespan of MERIS Data and Machine Learning Approaches. Remote Sens. 2020, 12, 1586. [Google Scholar] [CrossRef]
- Cheng, K.S.; Lei, T.C. Reservoir Trophic State evaluation using Landsat TM Images. J. Am. Water Resour. Assoc. 2001, 37, 1321–1334. [Google Scholar] [CrossRef]
- Duan, H.; Ma, R.; Zhang, Y.; Zhang, B. Remote-sensing assessment of regional inland lake water clarity in northeast China. Limnology 2009, 10, 135–141. [Google Scholar] [CrossRef]
- Bonansea, M.; Ledesma, M.; Rodriguez, C.; Pinotti, L. Using new remote sensing satellites for assessing water quality in a reservoir. Hydrol. Sci. J. 2018, 64, 34–44. [Google Scholar] [CrossRef]
- Kloiber, S.M.; Brezonik, P.L.; Olmanson, L.G.; Bauer, M.E. A procedure for regional lake water clarity assessment using Landsat multispectral data. Remote Sens. Environ. 2002, 82, 38–47. [Google Scholar] [CrossRef]
- Garaba, S.P.; Badewien, T.H.; Braun, A.; Schulz, A.-C.; Zielinski, O. Using ocean colour remote sensing products to estimate turbidity at the Wadden Sea time series station Spiekeroog. J. Eur. Opt. Soc.-Rapid Publ. 2014, 9, 14020. [Google Scholar] [CrossRef]
- Ruescas, A.B.; Hieronymi, M.; Mateo-Garcia, G.; Koponen, S.; Kallio, K.; Camps-Valls, G. Machine Learning Regression Approaches for Colored Dissolved Organic Matter (CDOM) Retrieval with S2-MSI and S3-OLCI Simulated Data. Remote Sens. 2018, 10, 786. [Google Scholar] [CrossRef] [Green Version]
- Maier, P.M.; Keller, S. Application of Different Simulated Spectral Data and Machine Learning to Estimate the Chlorophyll a Concentration of Several Inland Waters. In Proceedings of the 10th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 September 2019. [Google Scholar]
- Breiman, L. Random Forests; Machine Learning; Kluwer Academic Publishers: Berlin, Germany, 2001. [Google Scholar]
- Kim, Y.H.; Im, J.; Ha, H.K.; Choi, J.-K.; Ha, S. Machine learning approaches to coastal water quality monitoring using GOCI satellite data. GISci. Remote Sens. 2014, 51, 158–174. [Google Scholar] [CrossRef]
- Batur, E.; Maktav, D. Assessment of Surface Water Quality by Using Satellite Images Fusion Based on PCA Method in the Lake Gala, Turkey. IEEE Trans. Geosci. Remote Sens. 2019, 57, 2983–2989. [Google Scholar] [CrossRef]
- Lin, C.-J.; Chang, C.-C. LIBSVM: A Library for Support Vector Machines. Available online: https://www.csie.ntu.edu.tw/~cjlin/papers/libsvm.pdf (accessed on 15 January 2022).
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [Green Version]
- Matthews, M.W. A current review of empirical procedures of remote sensing in inland and near-coastal transitional waters. Int. J. Remote Sens. 2011, 32, 6855–6899. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sloan, J.J. Deep learning-based water quality estimation and anomaly detection using Landsat-8/Sentinel-2 virtual constellation and cloud computing. GISci. Remote Sens. 2020, 4, 510–525. [Google Scholar] [CrossRef]
- Sparks, R.E. Need for ecosystem management of large rivers and their floodplains. Bioscience 1995, 3, 168–182. [Google Scholar] [CrossRef]
- Kadlec, R.H.; Wallace, S. Treatment Wetlands, 2nd ed.; C.P.B.: Raton, FL, USA, 2008. [Google Scholar]
- Philippot, L.; Hallin, S.; Schloter, M. Ecology of denitrifying prokaryotes in agricultural soil. Adv. Agron. 2007, 96, 249–305. [Google Scholar]
- Batjes, N.H. Global Distribution of Soil Phosphorus Retention Potential; ISRIC-World Soil Information: Wageningen, The Netherlands, 2011. [Google Scholar]
- Walling, D.E.; He, Q.; Blake, W.H. River flood plains as phosphorus sinks. IAHS Publ. Int. Assoc. Hydrol. Sci. 2000, 263, 211–218. [Google Scholar]
- Jarvie, H.P.; Johnson, L.T.; Sharpley, A.N.; Smith, D.R.; Baker, D.B.; Bruulsema, T.W.; Confesor, R. Increased soluble phosphorus loads to Lake Erie: Unintended consequences of conservation practices? J. Environ. Qual. 2017, 46, 123–132. [Google Scholar] [CrossRef] [Green Version]
- Peterson, K.T.; Sagan, V.; Sidike, P.; Cox, A.L.; Martinez, M. Suspended Sediment Concentration Estimation from Landsat Imagery along the Lower Missouri and Middle Mississippi Rivers Using an Extreme Learning Machine. Remote Sens. 2018, 10, 1503. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Wu, L.; Ren, H.; Deng, L.; Zhang, P. Retrieval of Water Quality Parameters from Hyperspectral Images Using Hybrid Bayesian Probabilistic Neural Network. Remote Sens. 2020, 12, 1567. [Google Scholar] [CrossRef]
- Bukata, R.P.; Jerome, J.H.; Kondratyev, A.S.; Pozdnyakov, D.V. Optical Properties and Remote Sensing of Inland and Coastal Waters; eBooks; CRC Press: Boca Raton, FL, USA, 1995. [Google Scholar]
- Nelson, J.C.; Redmond, A.; Sparks, R.E. Impacts of settlement on floodplain vegetation at the confluence of the Illinois and Mississippi Rivers. Trans. Ill. State Acad. Sci. 1994, 87, 117–133. [Google Scholar]
- Llewellyn, D.W.; Shaffer, G.P.; Craig, N.J.; Creasman, L.; Pashley, D.; Mark, S.; Brown, C. A decision-support system for prioritizing restoration sites on the Mississippi River alluvial plain. Conserv. Biol. 1996, 10, 1446–1455. [Google Scholar] [CrossRef]
- Natho, S.; Hein, M.T. Bedeutung der Flusseintiefungen für Auenreaktivierungen—eine nährstoffbasierte Perspektive. In Tag der Hydrologie; Deutsche Vereinigung für Wasserwirtschaft, Abwasser und Abfall (DWA): Munich, Germany, 2022. [Google Scholar]
- Venohr, M.; Hirt, U.; Hofmann, J.; Opitz, D.; Gericke, A.; Wetzig, A.; Natho, S.; Neumann, F.; Hürdler, J.; Matranga, M.; et al. Modelling of Nutrient Emissions in River Systems—MONERIS—Methods and Background. Int. Rev. Hydrobiol. 2011, 96, 435–483. [Google Scholar] [CrossRef]
- Garnier, J.; Billen, G.; Hannon, E.; Fonbonne, S.; Videnina, Y.; Soulie, M. Modelling the Transfer and Retention of Nutrients in the Drainage Network of the Danube River. Estuar. Coast. Shelf Sci. 2002, 54, 285–308. [Google Scholar] [CrossRef]
- Malagó, A.; Bouraoui, F.; Vigiak, O.; Grizzetti, B.; Pastori, M. Modelling water and nutrient fluxes in the Danube River Basin with SWAT. Sci. Total Environ. 2017, 603, 196–218. [Google Scholar] [CrossRef] [PubMed]
- Natho, S.; Tschikof, M.; Bondar-Kunze, E.; Hein, T. Modeling the Effect of Enhanced Lateral Connectivity on Nutrient Retention Capacity in Large River Floodplains: How Much Connected Floodplain Do We Need? Front. Environ. Sci. 2020, 8, 74. [Google Scholar] [CrossRef]
- Tockner, K.; Stanford, J.A. Riverine flood plains: Present state and future trends. Environ. Conserv. 2002, 29, 308–330. [Google Scholar] [CrossRef] [Green Version]
- Akanbi, A.A.; Lian, Y.; Soong, D.T. An Analysis of Managed Flood Storage Options for Selected Levees along the Lower Illinois River for Enhancing Flood Protection Report no. 4: Flood Storage Reservoirs and Flooding on the Lower Illinois River; ISWS Contract Report CR 645; ISWS: Champaign, IL, USA, 1999. [Google Scholar]
- Bundesministerium für Umwelt, N. nukleare Sicherheit und Verbracherschutz: Eckpunktepapier. Aktionsprogramm Natürlicher Klimaschutz 2021. [Google Scholar]
Floodplain Keyword | Restoration Demand | Location | Area Size (km2) | Floodplain Length (km) | River Kilometer (km) | Countries | Upstream Stations Code | Downstream Stations Code |
---|---|---|---|---|---|---|---|---|
FP1 | High | 48.144° N 17.025° E | 19.8 | 9.8 | 1880–1871.5 | Austria Slovakia | AT6 | AT4 SK1 |
FP2 | Low | 47.889° N 17.476° E | 140.2 | 51.4 | 1851.8–1797 | Hungary Slovakia | AT4 SK1 | HU1 SK2 |
FP3 | Low | 45.614° N 18.905° E | 279.9 | 70.1 | 1425–1354.2 | Serbia Croatia | HU5 HR1 | HR2 RS2 |
FP4 * | High Medium | 45.323° N 19.084° E 45.268° N 19.226° E | 24.6 30 | 16.8 9.3 | 1334–1318 1318–1308.4 | Serbia Croatia | HR2 RS2 | RS9 HR11 |
FP5 | High High | 45.235° N 19.485° E | 49.2 | 27.2 | 1304–1276 | Serbia Croatia | RS9 HR11 | RS3 |
45.224° N 19.729° E | 34.8 | 16.8 | 1276–1258 | |||||
FP6 * | Medium Medium | 43.779° N 23.811° E 43.716° N 24.069° E | 60.1 32.3 | 25.2 15.6 | 703–677 677–661 | Bulgaria Romania | RO18 RS8 RO2 BG1 | BG2 |
FP7 * | Medium Medium | 43.736° N 24.433° E | 29.3 | 15.4 | 646–630 | Bulgaria Romania | BG2 | BG11 BG3 |
43.725° N 24.697° E | 81.6 | 30.9 | 630–600 | |||||
FP8 | Medium | 43.911° N 26.033° E | 25.3 | 10.3 | 490–479.5 | Bulgaria Romania | BG4 | RO3 |
BG8 BG15 | ||||||||
FP9 | Medium | 44.136° N 26.93° E | 33.6 | 14.9 | 412–395.5 | Bulgaria Romania | RO3 | RO4 BG5 |
FP10 * | Medium Medium Low Low | 44.125° N 27.37° E 44.226° N 27.714° E 44.475° N 28.031° E 44.901° N 27.903° E | 50.3 79.4 93.6 298.8 | 17.7 31.2 58.6 77.9 | 375–356 345–313.5 313.5–252.5 252.5–172 | Romania | RO4 BG5 | RO11 RO5 UA1 |
R2 | RMSE | Number of Features | |
---|---|---|---|
MLR | 0.31 | 7.76 | 1 |
RF | 0.60 | 5.90 | 2 |
SVR | 0.57 | 6.10 | 5 |
R2 | RMSE | Number of Features | |
---|---|---|---|
MLR | 0.12 | 15.62 | 1 |
RF | 0.08 | 15.99 | 2 |
SVR | 0.08 | 21.07 | 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoyek, A.; Arias-Rodriguez, L.F.; Perosa, F. Holistic Approach for Estimating Water Quality Ecosystem Services of Danube Floodplains: Field Measures, Remote Sensing, and Machine Learning. Hydrobiology 2022, 1, 211-231. https://doi.org/10.3390/hydrobiology1020016
Hoyek A, Arias-Rodriguez LF, Perosa F. Holistic Approach for Estimating Water Quality Ecosystem Services of Danube Floodplains: Field Measures, Remote Sensing, and Machine Learning. Hydrobiology. 2022; 1(2):211-231. https://doi.org/10.3390/hydrobiology1020016
Chicago/Turabian StyleHoyek, Alain, Leonardo F. Arias-Rodriguez, and Francesca Perosa. 2022. "Holistic Approach for Estimating Water Quality Ecosystem Services of Danube Floodplains: Field Measures, Remote Sensing, and Machine Learning" Hydrobiology 1, no. 2: 211-231. https://doi.org/10.3390/hydrobiology1020016
APA StyleHoyek, A., Arias-Rodriguez, L. F., & Perosa, F. (2022). Holistic Approach for Estimating Water Quality Ecosystem Services of Danube Floodplains: Field Measures, Remote Sensing, and Machine Learning. Hydrobiology, 1(2), 211-231. https://doi.org/10.3390/hydrobiology1020016