A G-Modified Helmholtz Equation with New Expansions for the Earth’s Disturbing Gravitational Potential, Its Functionals and the Study of Isogravitational Surfaces
Abstract
:1. Introduction
2. Laplace Equation, Disturbing Potential, and Relative Quantities
3. G-Modified Helmholtz Equation, Disturbing Potential, and Relative Quantities
4. Study of the Earth’s Isogravitational Surfaces
5. Disturbing Isogravitational Surfaces, Anomalistic Isogravitational Surfaces, and a Comparison between the Two Methods of Determining Disturbing Potential
6. Summation of the Results
7. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jarosz, W.; Carr, N.A.; Jensen, H.W. Importance Sampling Spherical Harmonics. Comput. Graph. Forum 2009, 28, 577–586. Available online: http://graphics.ucsd.edu/~henrik/papers/importance_sampling_spherical_harmonics.pdf (accessed on 2 February 2024). [CrossRef]
- Silvennoinen, A.; Sloan, P.P. Moving Basis Decomposition for Precomputed Light Transport. Comput. Graph. Forum 2021, 40, 127–137. Available online: https://www.ppsloan.org/publications/mbd.pdf (accessed on 2 February 2024). [CrossRef]
- Wang, J.; Xu, K.; Zhou, K.; Lin, S.; Hu, S.; Guo, B. Spherical Harmonics Scaling. Vis. Comput. 2006, 22, 713–720. Available online: https://link.springer.com/article/10.1007/s00371-006-0057-8 (accessed on 2 February 2024). [CrossRef]
- Annen, T.; Kautz, J.; Durand, F.; Seidel, H.P. Spherical Harmonic Gradients for Mid-Range Illumination. In Proceedings of the 15th Eurographics Workshop in Rendering Techniques, Norrköping, Sweden, 21–24 June 2004; pp. 331–336. Available online: https://diglib.eg.org/bitstream/handle/10.2312/EGWR.EGSR04.331-336/331-336.pdf?sequence=1&isAllowed=y (accessed on 2 February 2024).
- Sanso, F.; Sideris, M. Geoid Determination Theory and Methods; Springer Science & Business Media: Berlin, Germany, 2013; Chapter 6; Volume 262, p. 131. Available online: https://link.springer.com/book/10.1007/978-3-540-74700-0 (accessed on 2 February 2024).
- Shouny, A.; Khalil, R.; Kamel, A.; Miky, Y. Assessments of recent Global Geopotential Models based on GPS levelling and gravity data along coastal zones of Egypt. Open Gosciences 2023, 15, 20220450. Available online: https://www.degruyter.com/document/doi/10.1515/geo-2022-0450/html (accessed on 2 February 2024). [CrossRef]
- Wu, Y.; He, X.; Luo, Z.; Shi, H. An Assessment of Recently Released High Degree Global Geopotential Models Based on Heterogeneous Geodetic and Ocean Data. Front. Earth Sci. 2021, 9, 749611. Available online: https://www.frontiersin.org/articles/10.3389/feart.2021.749611/full (accessed on 2 February 2024). [CrossRef]
- Isik, M.S.; Çevikalp, M.R.; Erol, B.; Erol, S. Improvement of GOCE-Based Geopotential Models for Gravimetric Geoid Modeling in Turkey. Geosciences 2022, 12, 432. Available online: https://www.mdpi.com/2076-3263/12/12/432 (accessed on 2 February 2024). [CrossRef]
- Elizondo, N.A.; Lopez, R.V.G.; Carillo, X.G.T.; Becerra, G.E.V. Combining Global Geopotential Models, Digital Elevation Models, and GNSS/Leveling for Precise Local Geoid Determination in Some Mexico Urban Areas: Case Study. ISPRS Int. J. Geo-Inf. 2021, 10, 819. Available online: https://www.mdpi.com/2220-9964/10/12/819 (accessed on 2 February 2024). [CrossRef]
- Roithmayr, C.M. Contributions of Spherical Harmonics to Magnetic and Gravitational Fields; NASA TM-2004-213007; National Aeronautics and Space Administration: Washington, DC, USA, 2004. Available online: https://ntrs.nasa.gov/api/citations/20040047194/downloads/20040047194.pdf (accessed on 2 February 2024).
- Campbell, W.H. Geomagnetism Applications; U.S. Geological Survey Sircular 1109; United States Government Printing Office: Washington, DC, USA, 1995. Available online: https://pubs.usgs.gov/circ/1995/1109/report.pdf (accessed on 2 February 2024).
- Prada, K.O.; Antelo, M.J.; Murillo, N.A.; Cózar, J.R.; Contreras–de–Villar, F.; Pérez, J.J.M. A New Method for the Collection of Marine Geomagnetic Information: Survey Application in the Colombian Caribbean. J. Mar. Sci. Eng. 2021, 9, 10. Available online: https://www.mdpi.com/2077-1312/9/1/10 (accessed on 2 February 2024). [CrossRef]
- Zigan, L. Overview of Electric Field Applications in Energy and Process Engineering. Energies 2018, 11, 1361. Available online: https://www.mdpi.com/1996-1073/11/6/1361 (accessed on 15 February 2024). [CrossRef]
- Tognolatti, L.; Ponti, C.; Santarsiero, M.; Schettini, G. An Efficient Computational Technique for the Electromagnetic Scattering by Prolate Spheroids. Mathematics 2022, 10, 1761. Available online: https://www.mdpi.com/2227-7390/10/10/1761 (accessed on 15 February 2024). [CrossRef]
- Vafeas, P.; Perrusson, G.; Lesselier, D. Low-frequency scattering from perfectly conducting spheroidal bodies in a conductive medium with magnetic dipole excitation. Int. J. Eng. Sci. 2009, 47, 372–390. Available online: https://www.researchgate.net/publication/222923079_Lowfrequency_scattering_fro_perfectly_conducting_spheroidal_bodies_in_a_conductive_medium_with_magnetic_dipole_excitation (accessed on 15 February 2024). [CrossRef]
- Perrusson, G.; Vafeas, P.; Chatjigeorgiou, I.K.; Lesselier, D. Low-frequency on-site identification of a highly conductive body buried in Earth from a model ellipsoid. IMA J. Appl. Math. 2015, 80, 963–980. Available online: https://www.researchgate.net/publication/274162167_Low-frequency_onsite_identification_of_a_highly_conductive_body_buried_in_Earth_from_a_model_ellipsoid (accessed on 15 February 2024). [CrossRef]
- Ming, Y.; Niu, X.; Xie, X.; Han, Z.; Li, Q.; Sun, S. Application on Gravity Exploration in Urban Active Fault Detection. In The 9th International Conference on Environmental and Engineering Geophysics 2021, Proceedings of the IOP Conference Series: Earth and Environmental Sciences, Changchun, China, 11–14 October 2020; IOP Publishing: Bristol, UK, 2021; Volume 660, p. 012057. Available online: https://www.researchgate.net/publication/349532168_Application_of_gravity_exploration_in_urban_active_fault_detection (accessed on 21 February 2024).
- Sjöberg, L.E.; Bagherbagdi, M. Gravity Inversion and Integration. In Theory and Applications in Geodesy and Geophysics; Springer: Basel, Switzerland, 2017; p. 251. Available online: https://www.geokniga.org/bookfiles/geokniga-gravity-inversion-and-integration.pdf (accessed on 21 February 2024).
- Scheinert, M.; Ferranccioli, F.; Schwabe, J.; Studinger, M.; Damaske, D.; Jokat, W.; Aleshkova, N.; Jordan, T.; Leitchenkov, G.; Blankenship, D.D.; et al. New Antarctic gravity gnomaly grid for enhanced geodetic and geophysical studies in Antarctica. Geophys. Res. Lett. 2016, 43, 600–610. Available online: https://www.researchgate.net/publication/289983658_New_Antarctic_Gravity_Anomaly_Grid_for_Enhanced_Geodetic_and_Geophysical_Studies_in_Antarctica (accessed on 21 February 2024). [CrossRef] [PubMed]
- Ismail, N.; Yanis, M.; Abdullah, F.; Irfansyam, A.; Atmojo, B.S.W. Mapping buried ancient structure using gravity method: A case study from Cot Sidi Abdullah North Aceh. J. Phys. 2018, 1120, 012035. Available online: https://iopscience.iop.org/article/10.1088/1742-6596/1120/1/012035/pdf (accessed on 21 February 2024). [CrossRef]
- Manoussakis, G. The Gravity Force Generated by a Non-Rotating Level Ellipsoid of Revolution with Low Eccentricity as a Series of Spherical Harmonics. Mathematics 2023, 11, 1974. Available online: https://www.mdpi.com/journal/mathematics/special_issues/Applications_Partial_Differential_Equations_Mathematical_Physics (accessed on 21 February 2024). [CrossRef]
- Heiskanen, W.; Moritz, H. Physical Geodesy. W.H. Freeman Co. 1967, 82–112. Available online: https://archive.org/details/heiskanen_morits_1967_physical_geodesy/page/n89/mode/2up?view=theater (accessed on 3 March 2024).
- Bagherbandi, M.; Jouybari, A.; Niflourousan, F.; Ägren, J. Deflection of vertical effect on direct georeferencing in aerial mobile mapping systems: A case study in Sweden. Photogramm. Rec. 2022, 37, 285–305. Available online: https://www.diva-portal.org/smash/get/diva2:1684428/FULLTEXT01.pdf (accessed on 3 March 2024). [CrossRef]
- Barzaghi, R.; Carrion, D.; Pepe, M.; Prezioso, G. Computing the Deflection of the Vertical for Improving Aerial Surveys: A Comparison between EGM2008 and ITALGEO05 Estimates. Sensors 2016, 16, 1168. Available online: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5017334/pdf/sensors-16-01168.pdf (accessed on 3 March 2024). [CrossRef] [PubMed]
- Šprlák, M.; Novak, P. Integral formulas for computing a third order gravitational tensor from volumetric mass density, disturbing gravitational potential, gravity anomaly and gravity disturbance. J. Geod. 2015, 89, 141–157. Available online: https://www.researchgate.net/publication/271211475_Integral_formulas_for_computing_a_thirdorder_gravitational_tensor_from_volumetric_mass_density_disturbing_gravitational_potential_gravity_anomaly_and_gravity_disturbance (accessed on 5 March 2024). [CrossRef]
- Gorshkov, G.P. Isogravitational surfaces. Geophys. Abstr. 1934, 82. Available online: https://books.google.gr/books?id=1RxUCPOWOtEC&pg=PA1738&lpg=PA1738&dq=isogravitational+surfaces+of+the+Earth&source=bl&ots=9VnOhvB6Cs&sig=ACfU3U2hlSJxufGjWTktf6yfI13mwKuylA&hl=el&sa=X&ved=2ahUKEwjx8pD85tqEAxVh9LsIHbuUA_E4ChDoAXoECAYQAw#v=onepage&q=isogravitational%20surfaces%20of%20the%20Earth&f=false (accessed on 5 March 2024). [CrossRef]
- Koop, R. Global Gravity Field Modelling Using Satellite Gravity Gradiometry; Nederlandse Commissie voor Geodesie: Delft, Netherlands, 1993; Volume 38, pp. 32–183. Available online: https://ncgeo.nl/index.php/en/publicatiesgb/publications-on-geodesy/item/2544-pog-38-r-koop-global-gravity-modelling-using-satellite-gravity-gradiometry (accessed on 5 March 2024).
- Giblin, P. Differential Geometry of Curves and Surfaces; Department of Mathematical Sciences, University of Liverpool: Liverpool, UK, 1999; pp. 32–39. Available online: https://www.liverpool.ac.uk/~pjgiblin/papers/diff-geom-book.pdf (accessed on 5 March 2024).
Quantity | Laplace Equation Spherical Harmonics, Radial Distance in Rational Powers | G-Modified Helmholtz Equation, Spherical Harmonics, Radial Distance in Irrational Powers |
---|---|---|
Disturbing Potential T | Yes, indirect determination | Yes, indirect determination |
Ellipsoid’s gravity potential Ve | Yes, direct determination * | No |
Earth’s gravity potential VE | Yes, indirect determination | No |
Gravity disturbance δg | Yes, indirect determination | Yes, direct determination |
Gravity anomaly Δg | Yes, indirect determination | Yes, direct determination |
Gravity intensity g | No | Yes, direct determination |
Ellipsoid’s gravity intensity γ | No | Yes, direct determination |
Vertical gradient of g | No | Yes, indirect determination |
Vertical gradient of γ | No | Yes, indirect determination |
Component ξ | Yes, indirect determination | Yes, indirect determination |
Component η | Yes, indirect determination | Yes, indirect determination |
Geoid undulation N | Yes, indirect determination | Yes, indirect determination |
Quantity | Expression |
---|---|
Gravity g | |
Gravity disturbance δg | |
Gravity anomaly Δg | |
Disturbing potential T in three-dimensional space | |
Disturbing potential on the geoid | |
Geoid undulation N | or |
Vertical gradient of gravity | |
Component ξ | |
Component η | |
Normal gravity on the geoid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Manoussakis, G. A G-Modified Helmholtz Equation with New Expansions for the Earth’s Disturbing Gravitational Potential, Its Functionals and the Study of Isogravitational Surfaces. AppliedMath 2024, 4, 580-595. https://doi.org/10.3390/appliedmath4020032
Manoussakis G. A G-Modified Helmholtz Equation with New Expansions for the Earth’s Disturbing Gravitational Potential, Its Functionals and the Study of Isogravitational Surfaces. AppliedMath. 2024; 4(2):580-595. https://doi.org/10.3390/appliedmath4020032
Chicago/Turabian StyleManoussakis, Gerassimos. 2024. "A G-Modified Helmholtz Equation with New Expansions for the Earth’s Disturbing Gravitational Potential, Its Functionals and the Study of Isogravitational Surfaces" AppliedMath 4, no. 2: 580-595. https://doi.org/10.3390/appliedmath4020032
APA StyleManoussakis, G. (2024). A G-Modified Helmholtz Equation with New Expansions for the Earth’s Disturbing Gravitational Potential, Its Functionals and the Study of Isogravitational Surfaces. AppliedMath, 4(2), 580-595. https://doi.org/10.3390/appliedmath4020032