A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts
Abstract
:1. Introduction
2. Transformation of an Antidiagonal Problem into an Antilinear ODE
2.1. Homogeneous Case: From (1) to (9)
2.2. Nonhomogeneous Case: From (2) to (10)
3. Some Physical Contexts Leading to (1) and (2)
3.1. Linear Schrödinger Equation
3.2. Helmholtz Equation
3.3. Zakharov–Shabat System
3.4. Kubelka–Munk Equations
4. An Example of Application
5. Discussion and Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Remling, C. Spectral Theory of Canonical Systems; De Gruyter: Berlin, Germany, 2018. [Google Scholar]
- Berk, H.L.; Book, D.L.; Pfirsch, D. Convergence of the Bremmer series for the spatially inhomogeneous Helmholtz equation. J. Math. Phys. 1967, 8, 1611–1619. [Google Scholar] [CrossRef]
- Popovic, J.; Runborg, O. Analysis of a fast method for solving the high frequency Helmholtz equation in one dimension. BIT Numer. Math. 2011, 51, 721–755. [Google Scholar] [CrossRef]
- Winitzki, S. Cosmological particle production and the precision of the WKB approximation. Phys. Rev. D 2005, 72, 104011. [Google Scholar] [CrossRef] [Green Version]
- Bremer, J. On the numerical solution of second order ordinary differential equations in the high-frequency regime. Appl. Comput. Harmon. Anal. 2018, 44, 312–349. [Google Scholar] [CrossRef]
- Lorenz, K.; Jahnke, T.; Lubich, C. Adiabatic integrators for highly oscillatory second-order linear differential equations with time-varying eigendecomposition. BIT Numer. Math. 2005, 45, 91–115. [Google Scholar] [CrossRef]
- Christ, M.; Kiselev, A. WKB asymptotic behavior of almost all generalized eigenfunctions for one-dimensional Schrödinger operators with slowly decaying potentials. J. Funct. Anal. 2001, 179, 426–447. [Google Scholar] [CrossRef] [Green Version]
- Arnold, A.; Ben-Abdallah, N.; Negulescu, C. WKB-based schemes for the oscillatory 1D Schrödinger equation in the semiclassical limit. SIAM J. Numer. Anal. 2011, 49, 1436–1460. [Google Scholar] [CrossRef] [Green Version]
- Ablowitz, M.J.; Segur, H. Solitons and the Inverse Scattering Transform; SIAM: Philadelphia, PA, USA, 1981. [Google Scholar]
- Grébert, B.; Kappeler, T. The Defocusing NLS Equation and Its Normal Form; European Mathematical Society: Zurich, Switzerland, 2014. [Google Scholar]
- Kubelka, P.; Munk, F. An article on optics of paint layers. Z. Tech. Phys. 1931, 12, 259–274. Available online: http://www.graphics.cornell.edu/~westin/pubs/kubelka.pdf (accessed on 7 June 2022). (In German, with English translation).
- Sandoval, C.; Kim, A.D. Deriving Kubelka–Munk theory from radiative transport. J. Opt. Soc. Am. A 2014, 31, 628–636. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kruse, B. Revised Kubelka–Munk theory. I. Theory and application. J. Opt. Soc. Am. A 2004, 21, 1933–1941. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Kruse, B.; Miklavcic, S.J. Revised Kubelka–Munk theory. II. Unified framework for homogeneous and inhomogeneous optical media. J. Opt. Soc. Am. A 2004, 21, 1942–1952. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Miklavcic, S.J. Revised Kubelka–Munk theory. III. A general theory of light propagation in scattering and absorptive media. J. Opt. Soc. Am. A 2005, 22, 1866–1873. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choudhury, A.K.R. Principles of Colour and Appearance Measurement: Visual Measurement of Colour, Colour Comparison and Management; Woodhead Publishing: Sawston, UK, 2014. [Google Scholar]
- Körner, J.; Arnold, A.; Döpfner, K. WKB-based scheme with adaptive step size control for the Schrödinger equation in the highly oscillatory regime. J. Comput. Appl. Math. 2022, 404, 113905. [Google Scholar] [CrossRef]
- Dietert, H.; Evans, J. Finding the jump rate for fastest decay in the Goldstein-Taylor model. arXiv 2021, arXiv:2103.10064. [Google Scholar] [CrossRef]
- Pryce, J.D. Numerical Solution of Sturm–Liouville Problems; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Knudsen, K.; Mueller, J.; Siltanen, S. Numerical solution method for the dbar-equation in the plane. J. Comput. Phys. 2004, 198, 500–517. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ponomarev, D. A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts. AppliedMath 2022, 2, 433-445. https://doi.org/10.3390/appliedmath2030024
Ponomarev D. A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts. AppliedMath. 2022; 2(3):433-445. https://doi.org/10.3390/appliedmath2030024
Chicago/Turabian StylePonomarev, Dmitry. 2022. "A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts" AppliedMath 2, no. 3: 433-445. https://doi.org/10.3390/appliedmath2030024
APA StylePonomarev, D. (2022). A Note on the Appearance of the Simplest Antilinear ODE in Several Physical Contexts. AppliedMath, 2(3), 433-445. https://doi.org/10.3390/appliedmath2030024