In Vitro Antifungal Effect of Selected Essential Oils Against Clinical Isolates Causing Fungal Keratitis: A Preliminary Pharmacological Evaluation
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients and Ethical Issues
2.2. Collection and Processing of Ocular Samples
2.3. Molecular Identification of Fungal Pathogens
2.4. Preparation of Essential Oils
2.5. Evaluation of Antifungal Activity of Essential Oils
2.6. Statistical Analysis
3. Results
3.1. Characterization of Fungal Keratitis Patients
3.2. Phylogenetic Identification of Fungal Pathogens
3.3. In Vitro Evaluation of Antifungal Activity of Essential Oils
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Trovato, L.; Marino, A.; Pizzo, G.; Oliveri, S. Case Report: Molecular Diagnosis of Fungal Keratitis Associated with Contact Lenses Caused by Fusarium solani. Front. Med. 2021, 8, 579516. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.; Leck, A.K.; Gichangi, M.; Burton, M.J.; Denning, D.W. The global incidence and diagnosis of fungal keratitis. Lancet Infect. Dis. 2021, 21, e49–e57. [Google Scholar] [CrossRef]
- Silva, B.T. Agreement Between In Vitro Fungal Drugs Sensitivity Tests and Clinical Response to Treatment in Fungal Keratitis. Master’s Thesis, University of Coimbra, Coimbra, Portugal, 2020. [Google Scholar]
- Cunha, A.M.; Loja, J.T.; Torrão, L.; Moreira, R.; Pinheiro, D.; Falcão-Reis, F.; Pinheiro-Costa, J. A 10-Year Retrospective Clinical Analysis of Fungal Keratitis in a Portuguese Tertiary Centre. Clin. Ophthalmol. 2020, 14, 3833–3839. [Google Scholar] [CrossRef]
- Ting, D.S.J.; Galal, M.; Kulkarni, B.; Elalfy, M.S.; Lake, D.; Hamada, S.; Said, D.G.; Dua, H.S. Clinical Characteristics and Outcomes of Fungal Keratitis in the United Kingdom 2011-2020: A 10-Year Study. J. Fungi 2021, 7, 966. [Google Scholar] [CrossRef]
- Sharma, N.; Bagga, B.; Singhal, D.; Nagpal, R.; Kate, A.; Saluja, G.; Maharana, P.K. Fungal keratitis: A review of clinical presentations, treatment strategies and outcomes. Ocul. Surf. 2022, 24, 22–30. [Google Scholar] [CrossRef]
- Cai, Y.; Song, S.; Chen, Y.; Xu, X.; Zou, W. Oral voriconazole monotherapy for fungal keratitis: Efficacy, safety, and factors associated with outcomes. Front. Med. 2023, 10, 1174264. [Google Scholar] [CrossRef]
- Awad, R.; Ghaith, A.A.; Awad, K.; Mamdouh Saad, M.; Elmassry, A.A. Fungal Keratitis: Diagnosis, Management, and Recent Advances. Clin. Ophthalmol. 2024, 18, 85–106. [Google Scholar] [CrossRef]
- Pezantes-Orellana, C.; German Bermúdez, F.; Matías De la Cruz, C.; Montalvo, J.L.; Orellana-Manzano, A. Essential oils: A systematic review on revolutionizing health, nutrition, and omics for optimal well-being. Front. Med. 2024, 11, 1337785. [Google Scholar] [CrossRef]
- Tyagi, A.K.; Malik, A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011, 126, 228–235. [Google Scholar] [CrossRef]
- Hu, F.; Tu, X.F.; Thakur, K.; Hu, F.; Li, X.L.; Zhang, Y.S.; Zhang, J.G.; Wei, Z.J. Comparison of antifungal activity of essential oils from different plants against three fungi. Food Chem. Toxicol. 2019, 134, 110821. [Google Scholar] [CrossRef] [PubMed]
- Mani-López, E.; Cortés-Zavaleta, O.; López-Malo, A. A review of the methods used to determine the target site or the mechanism of action of essential oils and their components against fungi. SN Appl. Sci. 2021, 3, 44. [Google Scholar] [CrossRef]
- Tariq, S.; Wani, S.; Rasool, W.; Shafi, K.; Bhat, M.A.; Prabhakar, A.; Shalla, A.H.; Rather, M.A. A comprehensive review of the antibacterial, antifungal and antiviral potential of essential oils and their chemical constituents against drug-resistant microbial pathogens. Microb. Pathog. 2019, 134, 103580. [Google Scholar] [CrossRef]
- Bhattacharya, R.; Rolta, R.; Dev, K.; Sourirajan, A. Synergistic potential of essential oils with antibiotics to combat fungal pathogens: Present status and future perspectives. Phytother. Res. 2021, 35, 6089–6100. [Google Scholar] [CrossRef]
- Sahal, G.; Woerdenbag, H.J.; Hinrichs, W.L.J.; Visser, A.; Tepper, P.G.; Quax, W.J.; van der Mei, H.C.; Bilkay, I.S. Antifungal and biofilm inhibitory effect of Cymbopogon citratus (lemongrass) essential oil on biofilm forming by Candida tropicalis isolates; an in vitro study. J. Ethnopharmacol. 2020, 246, 112188. [Google Scholar] [CrossRef]
- Zhang, Z.; Mo, Z.; Zhang, X.; Wang, J.; Li, J.; Shi, H.; Wang, P.; Lin, Z. The Antifungal Activity and Action Mechanism of Lemongrass (Cymbopogon flexuosus) Essential Oil Against Fusarium avenaceum. J. Essent. Oil Bear. Plants 2022, 25, 536–547. [Google Scholar]
- Chroho, M.; El Karkouri, J.; Hadi, N.; Elmoumen, B.; Zair, T.; Bouissane, L. Chemical composition, Antibacterial and Antioxidant Activities of the Essential Oil of Lavandula Pedunculata from Khenifra Morocco. IOP Conf. Ser. Earth Environ. Sci. 2022, 1090, 012022. [Google Scholar] [CrossRef]
- Zuzarte, M.; Gonçalves, M.J.; Cavaleiro, C.; Dinis, A.M.; Canhoto, J.M.; Salgueiro, L.R. Chemical composition and antifungal activity of the essential oils of Lavandula pedunculata (Miller) Cav. Chem. Biodivers. 2009, 6, 1283–1292. [Google Scholar] [CrossRef]
- Cox-Georgian, D.; Ramadoss, N.; Dona, C.; Basu, C. Therapeutic and Medicinal Uses of Terpenes. In Medicinal Plants: From Farm to Pharmacy; Joshee, N., Dhekney, S.A., Parajuli, P., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 333–359. [Google Scholar]
- Homa, M.; Fekete, I.P.; Böszörményi, A.; Singh, Y.R.; Selvam, K.P.; Shobana, C.S.; Manikandan, P.; Kredics, L.; Vágvölgyi, C.; Galgóczy, L. Antifungal Effect of Essential Oils against Fusarium Keratitis Isolates. Planta Medica 2015, 81, 1277–1284. [Google Scholar] [CrossRef]
- Manganyi, M.C.; Regnier, T.; Olivier, E.I. Antimicrobial activities of selected essential oils against Fusarium oxysporum isolates and their biofilms. S. Afr. J. Bot. 2015, 99, 115–121. [Google Scholar] [CrossRef]
- Paiva, D.S.; Trovão, J.; Fernandes, L.; Mesquita, N.; Tiago, I.; Portugal, A. Expanding the Microcolonial Black Fungi Aeminiaceae Family: Saxispiralis lemnorum gen. et sp. nov. (Mycosphaerellales), Isolated from Deteriorated Limestone in the Lemos Pantheon, Portugal. J. Fungi 2023, 9, 916. [Google Scholar] [CrossRef] [PubMed]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Consejo de Europa. European Directorate for the Quality of Medicines & HealthCare. In The European Pharmacopoeia (Ph. Eur.), 9th ed.; Consejo de Europa: Strasbourg, France, 2016. [Google Scholar]
- Marques, M.P.; Neves, B.G.; Varela, C.; Zuzarte, M.; Gonçalves, A.C.; Dias, M.I.; Amaral, J.S.; Barros, L.; Magalhães, M.; Cabral, C. Essential Oils from Côa Valley Lamiaceae Species: Cytotoxicity and Antiproliferative Effect on Glioblastoma Cells. Pharmaceutics 2023, 15, 341. [Google Scholar] [CrossRef]
- Berkow, E.L.; Lockhart, S.R.; Ostrosky-Zeichner, L. Antifungal Susceptibility Testing: Current Approaches. Clin. Microbiol. Rev. 2020, 33, e00069-19. [Google Scholar] [CrossRef]
- Fernandes, L.; Paiva, D.S.; Pereira, E.; Rufino, A.C.; Landim, E.; Marques, M.P.; Cabral, C.; Portugal, A.; Mesquita, N. Evaluating the Antifungal Activity of Volatilized Essential Oils on Fungi Contaminating Artifacts from a Museum Collection. Appl. Sci. 2025, 15, 2378. [Google Scholar] [CrossRef]
- IBM Corp. IBM SPSS Statistics for Windows, version 26.0; IBM Corp: Armonk, NY, USA, 2019.
- WHO. WHO Fungal Priority Pathogens List to Guide Research, Development and Public Health Action; World Health Organization: Geneva, Switzerland, 2022; Available online: https://www.who.int/publications/i/item/9789240060241 (accessed on 29 September 2025).
- Turner, M.L.; Nguyen, M.; Schallhorn, J.; Seitzman, G.D. Ocular scedosporiosis: A case series. Am. J. Ophthalmol. Case Rep. 2024, 36, 102190. [Google Scholar] [CrossRef] [PubMed]
- Fathima, L.; Annapurneswari, L.; Rao, P.; Mendonca, T. Scedosporium-induced keratitis: Insights from a case study. J. Ophthalmic Inflamm. Infect. 2025, 15, 72. [Google Scholar] [CrossRef] [PubMed]


| Mold | Yeast | Total | |
|---|---|---|---|
| Age, y | |||
| Mean ± SD | 56 ± 20 | 70 ± 10 | 63 ± 17 |
| Range | 20–80 | 57–84 | 20–84 |
| Sex, n (%) | |||
| Female | 2 (28.6%) | 4 (57.1%) | 6 (42.9%) |
| Male | 5 (71.4%) | 3 (42.9%) | 8 (57.1%) |
| Risk factors, n (%) | |||
| Contact lens use | 3 (42.9%) | – | 3 (21.4%) |
| Ocular surface disease | 2 (28.6%) | 2 (28.6%) | 4 (28.6%) |
| Previous keratoplasty | 1 (14.3%) | 3 (42.9%) | 4 (28.6%) |
| Trauma | 1 (14.3%) | 2 (28.6%) | 3 (21.4%) |
| Season, n (%) | |||
| Winter | – | 2 (28.6%) | 2 (14.3%) |
| Spring | 3 (42.9%) | 3 (42.9%) | 6 (42.9%) |
| Summer | 4 (57.1%) | 2 (28.6%) | 6 (42.9%) |
| Presenting VA, logMAR | |||
| Mean ± SD | 0.33 ± 0.40 | 1.74 ± 0.96 | 1.15 ± 1.04 |
| Range | 0.05–1.00 | 0.00–2.40 | 0.00–2.40 |
| Final VA, logMAR | |||
| Mean ± SD | 0.87 ± 0.63 | 2.03 ± 1.07 | 1.54 ± 1.06 |
| Range | 0.05–1.80 | 0.22–3.00 | 0.05–3.00 |
| Clinical Isolate Number | Fungal Species | NCBI BLAST® Similarity (%) |
|---|---|---|
| 1 | Aspergillus fumigatus | 97.9 |
| 2 | Beauveria bassiana | 99.8 |
| 3 | Candida albicans | 99.8 |
| 4 | Candida albicans | 100.0 |
| 5 | Candida albicans | 99.8 |
| 6 | Candida albicans | 99.8 |
| 7 | Candida parapsilosis | 100.0 |
| 8 | Candida parapsilosis | 100.0 |
| 9 | Candida parapsilosis | 100.0 |
| 10 | Dicyma olivacea | 99.6 |
| 11 | Dicyma olivacea | 99.8 |
| 12 | Epicoccum nigrum | 99.8 |
| 13 | Penicillium tealii | 99.6 |
| 14 | Scedosporium boydii | 100.0 |
| Fungal Species | Number of Clinical Isolates | Percentage (%) |
|---|---|---|
| Molds | 7 | 50.0 |
| Aspergillus fumigatus | 1 | 7.1 |
| Beauveria bassiana | 1 | 7.1 |
| Dicyma olivacea | 2 | 14.2 |
| Epicoccum nigrum | 1 | 7.1 |
| Penicillium tealii | 1 | 7.1 |
| Scedosporium boydii | 1 | 7.1 |
| Yeasts | 7 | 50.0 |
| Candida albicans | 4 | 28.6 |
| Candida parapsilosis | 3 | 21.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akegbe, E.; Mesquita, N.; Cabral, C.; Pereira, E.; Fernandes, L.; do Carmo, A.; Tomé, R.; Pinheiro, D.; Pinheiro-Costa, J.; Rosa, A.M.; et al. In Vitro Antifungal Effect of Selected Essential Oils Against Clinical Isolates Causing Fungal Keratitis: A Preliminary Pharmacological Evaluation. Future Pharmacol. 2025, 5, 73. https://doi.org/10.3390/futurepharmacol5040073
Akegbe E, Mesquita N, Cabral C, Pereira E, Fernandes L, do Carmo A, Tomé R, Pinheiro D, Pinheiro-Costa J, Rosa AM, et al. In Vitro Antifungal Effect of Selected Essential Oils Against Clinical Isolates Causing Fungal Keratitis: A Preliminary Pharmacological Evaluation. Future Pharmacology. 2025; 5(4):73. https://doi.org/10.3390/futurepharmacol5040073
Chicago/Turabian StyleAkegbe, Elijah, Nuno Mesquita, Célia Cabral, Emília Pereira, Luís Fernandes, Anália do Carmo, Rui Tomé, Dolores Pinheiro, João Pinheiro-Costa, Andreia M. Rosa, and et al. 2025. "In Vitro Antifungal Effect of Selected Essential Oils Against Clinical Isolates Causing Fungal Keratitis: A Preliminary Pharmacological Evaluation" Future Pharmacology 5, no. 4: 73. https://doi.org/10.3390/futurepharmacol5040073
APA StyleAkegbe, E., Mesquita, N., Cabral, C., Pereira, E., Fernandes, L., do Carmo, A., Tomé, R., Pinheiro, D., Pinheiro-Costa, J., Rosa, A. M., & Campos, E. J. (2025). In Vitro Antifungal Effect of Selected Essential Oils Against Clinical Isolates Causing Fungal Keratitis: A Preliminary Pharmacological Evaluation. Future Pharmacology, 5(4), 73. https://doi.org/10.3390/futurepharmacol5040073

