Feasibility of United Arab Emirates Native Seaweed Ulva intestinalis as a Food Source: Study of Nutritional and Mineral Compositions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection and Preparation
2.2. Chemical Composition Analysis
2.2.1. Total Solid and Ash Content
2.2.2. Protein, Fat, Fiber, Carbohydrate, and Calorie Contents
2.2.3. Heavy Metals and Minerals
2.2.4. Vitamin B Complex and Vitamin C
3. Results and Discussion
3.1. Chemical Characterization and Caloric Value
3.2. Minerals and Heavy Metal Contents
3.3. Water-Soluble Vitamins
3.4. Nutritional Comparison between Ulva intestinalis and Palm Dates
3.5. Processing Seaweed as a Food Source and Mineral Supplement
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deaton, B.J.; Lipka, B. Political Instability and Food Security. J. Food Secur. 2015, 3, 29–33. [Google Scholar] [CrossRef]
- Stringer, L.; Akhtar-Schuster, M.; Marques, M.J.; Amiraslani, F.; Quatrini, S.; Abraham, E. Combating Land Degradation and Desertification and Enhancing Food Security: Towards Integrated Solutions. Ann. Arid Zone 2011, 50, 1–23. [Google Scholar]
- Hassen, T.B.; El Bilali, H. Food Security in the Gulf Cooperation Council Countries: Challenges and Prospects. J. Food Secur. 2019, 7, 159–169. [Google Scholar] [CrossRef]
- Matabadal, A. Country Report United Arab Emirates—RaboResearch. 2013. Available online: https://economics.rabobank.com/publications/2013/may/country-report-united-arab-emirates/ (accessed on 14 June 2021).
- Hamza, M. Grain and Feed Annual-UAE. 2020. Available online: https://www.fas.usda.gov/data/united-arab-emirates-grain-and-feed-annual-2 (accessed on 1 October 2021).
- Power, L. Scarcity and Abundance: UAE Food and Water Security. Glob. Food Water Cris. Res. Program. 2014. Available online: http://futuredirections.org.au/wp-content/uploads/2014/11/FDI_Strategic_Analysis_Paper_-_UAE_Scarcity_and_Abundance.pdf (accessed on 1 October 2021).
- FAO, AQUASTAT Database. 2014. Available online: http://www.fao.org/nr/aquastat (accessed on 14 June 2021).
- Bastidas-Oyanedel, J.-R.; Fang, C.; Almardeai, S.; Javid, U.; Yousuf, A.; Schmidt, J. Waste biorefinery in arid/semi-arid regions. Bioresour. Technol. 2016, 215, 21–28. [Google Scholar]
- Elshorbagy, W.; Azam, M.H.; Nakata, N.; Terasawa, T. Temperature-Salinity field of the shallow shelf of southern Arabian Gulf. Far East J. Ocean Res. 2008, 1, 99–126. [Google Scholar]
- Almardeai, S.; Oyanedel, J.-R.B.; Haris, S.; Schmidt, J.E. Avicennia marina biomass characterization towards bioproducts. Emirates J. Food Agric. 2017, 29, 710–715. [Google Scholar] [CrossRef] [Green Version]
- Marine Water Quality 2019 Annual Summary Report—Abu Dhabi. 2020. Available online: https://www.ead.gov.ae/-/media/Project/EAD/EAD/Documents/Resources/Marine-water-Quality-2019-annual-summary-report.pdf (accessed on 14 June 2021).
- Yu, H.; Liu, Z.; Berné, S.; Jia, G.; Xiong, Y.; Dickens, G.R.; Wei, G.; Shi, X.; Liu, J.; Chen, F. Variations in temperature and salinity of the surface water above the middle Okinawa Trough during the past 37 kyr. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2009, 281, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Hwang, E.K.; Yotsukura, N.; Pang, S.; Su, L.; Shan, T. Seaweed breeding programs and progress in eastern Asian countries. Phycologia 2019, 58, 484–495. [Google Scholar] [CrossRef]
- Kim, S.-K. Marine Medicinal Foods Implications and Applications, Macro and Microalgae, 1st ed.; Elsevier: Waltham, MS, USA, 2011. [Google Scholar]
- Mahadevan, K. Seaweeds: A sustainable food source. In Seaweed Sustain: Food and Non-Food Applications; Academic Press: Cambridge, MA, USA, 2015; pp. 347–364. [Google Scholar] [CrossRef]
- Ferdouse, F.; Løvstad Holdt, S.; Smith, R.; Murúa, P.; Yang, Z. The Global Status Of Seaweed Production, Trade and Utilization; Globefish Research Programme; FAO: Rome, Italy, 2018; Volume 124, 120p. [Google Scholar]
- MacArtain, P.; Gill, C.I.; Brooks, M.; Campbell, R.; Rowland, I.R. Nutritional Value of Edible Seaweeds. Nutr. Rev. 2008, 65, 535–543. [Google Scholar] [CrossRef]
- Rasyid, A.; Ardiansyah, A.; Pangestuti, R. Nutrient Composition of Dried Seaweed Gracilaria gracilis. ILMU Kelaut Indones. J. Mar. Sci. 2019, 24, 1–6. [Google Scholar] [CrossRef]
- Ratana-Arporn, P.; Chirapart, A. Nutritional Evaluation of Tropical Green Seaweeds Caulerpa lentillifera and Ulva reticulata. Kasetsart J. Nat. Sci. 2006, 40, 75–83. [Google Scholar]
- Alvino, A.; Barbieri, G. Vegetables of Temperate Climates: Leafy Vegetables. In Encyclopedia of Food and Health; Walton Street: Oxford, UK, 2016; pp. 393–400. [Google Scholar] [CrossRef]
- Kasim, M.; Mustafa, A.; Munier, T. The growth rate of seaweed (Eucheuma denticulatum) cultivated in longline and floating cage. AACL Bioflux 2016, 9, 291–299. [Google Scholar]
- Borines, M.G.; de Leon, R.L.; McHenry, M.P. Bioethanol production from farming non-food macroalgae in Pacific island nations: Chemical constituents, bioethanol yields, and prospective species in the Philippines. Renew. Sustain. Energy Rev. 2011, 15, 4432–4435. [Google Scholar] [CrossRef] [Green Version]
- Sluiter, A.; Hames, B.; Ruiz, R.; Scarlata, C.; Sluiter, J.; Templeton, D. Determination of Ash in Biomass: Laboratory Analytical Procedure (LAP). Issue Date: 7/17/2005; 2008. Available online: www.nrel.gov (accessed on 16 June 2021).
- FDA. Elemental Analysis Manual for Food Products and Related Products. 2020. Available online: http://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm2006954.htm (accessed on 1 June 2021).
- Egan, H.; Kirk, R.S.; Sawyer, R. Pearson’s Composition and Analysis of Foods, 8th ed.; Churchill Livingstone: Edinburgh, UK, 1981. [Google Scholar]
- Rapid Determination of Oil/Fat Utilizing High Temperature Solvent Extraction. 2004. Available online: http://www.ssco.com.tw/Ankom/PDF_file/CrudeFatMethod.pdf (accessed on 1 July 2021).
- Kirk, R.S.; Sawyer, R. Pearson’s Composition and Analysis of Foods, 9th ed.; Longman Group Ltd.: London, UK, 1991. [Google Scholar]
- European Communities. Council Directive on nutrition labelling for foodstuff. Off. J. Eur. Communities 2000, 269, 1–15. [Google Scholar]
- Egan, H.; Kirk, R.S.; Sawyer, R.; Pearson, D. Pearson’s Chemical Analysis of Foods, 8th ed.; Churchill Livingstone: Edinburgh, UK, 1981. [Google Scholar]
- Ekinci, R.; Kadakal, C. Determination of seven water-soluble vitamins in tarhana, a traditional Turkish cereal food, by high-performance liquid chromatography. Acta Chromatogr. 2005, 15, 289–297. [Google Scholar]
- Da Silva, V.M.; Silva, L.A.; De Andrade, J.B.; Veloso, M.C.D.C.; Santos, G.V. Determination of moisture content and water activity in algae and fish by thermoanalytical techniques. Quím. Nova 2008, 31, 901–905. [Google Scholar] [CrossRef] [Green Version]
- Jatmiko, T.H.; Prasetyo, D.J.; Poeloengasih, C.D.; Hernawan; Khasanah, Y. Nutritional Evaluation of Ulva sp. from Sepanjang Coast, Gunungkidul, Indonesia. IOP Conf. Ser. Earth Environ. Sci. 2019, 251, 012011. [Google Scholar] [CrossRef]
- Benjama, O.; Payap, M. Nutritional composition and physicochemical properties of two green seaweeds (Ulva pertusa and U. intestinalis) from the Pattani Bay in Southern Thailand, Songklanakarin. J. Sci. Technol. 2011, 33, 575–583. [Google Scholar]
- Yaich, H.; Garna, H.; Besbes, S.; Paquot, M.; Blecker, C.; Attia, H. Chemical composition and functional properties of Ulva lactuca seaweed collected in Tunisia. Food Chem. 2011, 128, 895–901. [Google Scholar] [CrossRef]
- Taboada, M.; Lence, R.; Miguez, M. Nutritional value of the marine algae wakame (Undaria pinnatifida) and nori (Porphyra purpurea) as food supplements. J. Appl. Phycol. 2012, 25, 1271–1276. [Google Scholar] [CrossRef]
- Burtin, P. Nutritional value of seaweeds. Electron. J. Environ. Agric. Food Chem. 2003, 2, 498–503. [Google Scholar]
- Kazir, M.; Abuhassira-Cohen, Y.; Robin, A.; Nahor, O.; Luo, J.; Israel, A.; Golberg, A.; Livney, Y. Extraction of proteins from two marine macroalgae, Ulva sp. and Gracilaria sp., for food application, and evaluating digestibility, amino acid composition and antioxidant properties of the protein concentrates. Food Hydrocoll. 2018, 87, 194–203. [Google Scholar] [CrossRef]
- Fathy, A. Evaluation of nutritional composition of some attached and drifted marine algae from Alexandria, Egypt. Egypt. J. Phycol. 2007, 8, 131–141. [Google Scholar] [CrossRef]
- Magdugo, R.P.; Terme, N.; Lang, M.; Pliego-Cortés, H.; Marty, C.; Hurtado, A.Q.; Bedoux, G.; Bourgougnon, N. An Analysis of the Nutritional and Health Values of Caulerpa racemosa (Forsskål) and Ulva fasciata (Delile)—Two Chlorophyta Collected from the Philippines. Molecules 2020, 25, 2901. [Google Scholar] [CrossRef]
- Rasyid, A. Evaluation of Nutritional Composition of The Dried Seaweed Ulva lactuca from Pameungpeuk Waters, Indonesia. Trop. Life Sci. Res. 2017, 28, 119–125. [Google Scholar] [CrossRef]
- Stone, M.S.; Martyn, L.; Weaver, C.M. Potassium Intake, Bioavailability, Hypertension, and Glucose Control. Nutrients 2016, 8, 444. [Google Scholar] [CrossRef] [Green Version]
- Hapsari, L.; Lestari, D.A. Fruit characteristic and nutrient values of four Indonesian banana cultivars (Musa spp.) at different genomic groups. Agrivita J. Agric. Sci. 2016, 38, 303–311. [Google Scholar] [CrossRef] [Green Version]
- Ramu, A.; Ganesan, K.S. Nutrient and nutraceutical potentials of seaweed biomass Ulva lactuca and Kappaphycus alvarezii. J. Agric. Sci. Technol. 2011, 5, 109–115. [Google Scholar]
- Grillo, A.; Salvi, L.; Coruzzi, P.; Salvi, P.; Parati, G. Sodium Intake and Hypertension. Nutrients 2019, 11, 1970. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mou, B. Nutrient Content of Lettuce and its Improvement. Curr. Nutr. Food Sci. 2009, 5, 242–248. [Google Scholar] [CrossRef]
- García-Casal, M.N.; Pereira, A.C.; Leets, I.; Ramírez, J.; Quiroga, M.F. High iron content and bioavailability in humans from four species of marine algae. J. Nutr. 2007, 137, 2691–2695. [Google Scholar] [CrossRef] [PubMed]
- Filippini, M.; Baldisserotto, A.; Menotta, S.; Fedrizzi, G.; Rubini, S.; Gigliotti, D.; Valpiani, G.; Buzzi, R.; Manfredini, S.; Vertuani, S. Heavy metals and potential risks in edible seaweed on the market in Italy. Chemosphere 2021, 263, 127983. [Google Scholar] [CrossRef]
- Matsushima, F.; Meshitsuka, S.; Nose, T. Aluminum contents in dried and cooked sea vegetables. Nihon Eiseigaku Zasshi 1997, 51, 763–769. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Krewski, D.; Yokel, R.A.; Nieboer, E.; Borchelt, D.; Cohen, J.; Harry, J.; Kacew, S.; Lindsay, J.; Mahfouz, A.M.; Rondeau, V. Human health risk assessment for aluminium, aluminium oxide, and aluminium hydroxide. J. Toxicol. Environ. Health B. Crit. Rev. 2007, 10 (Suppl. S1), 1–269. [Google Scholar] [CrossRef]
- Dastyar, W.; Zhao, M.; Yuan, W.; Li, H.; Ting, Z.J.; Ghaedi, H.; Yuan, H.; Li, X.; Wang, W. Effective Pretreatment of Heavy Metal-Contaminated Biomass Using a Low-Cost Ionic Liquid (Triethylammonium Hydrogen Sulfate): Optimization by Response Surface Methodology–Box Behnken Design. ACS Sustain Chem. Eng. 2019, 7, 11571–11581. [Google Scholar] [CrossRef]
- Hajeb, P.; Sloth, J.J.; Shakibazadeh, S.; Mahyudin, N.A.; Afsah-Hejri, L. Toxic Elements in Food: Occurrence, Binding, and Reduction Approaches. Compr. Rev. Food Sci. Food Saf. 2014, 13, 457–472. [Google Scholar] [CrossRef]
- Yu-Qing, T.; Mahmood, K.; Shehzadi, R.; Ashraf, M.F. Ulva Lactuca and Its Polysaccharides: Food and Biomedical Aspects. J. Biol. Agric. Healthc. 2016, 6, 140–151. [Google Scholar]
- Mageswaran, R.; Balakrishnan, V.; Balasubramaniam, S. Boron content of marine algae from the Mandaitivu and Kirinda coasts and mineral content of nine species of algae from the Kirinda coast. J. Natl. Sci. Found. Sri Lanka 1985, 13, 131–140. [Google Scholar] [CrossRef]
- National Research Council. Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium, and Zinc; National Academies Press: Washington, DC, USA, 2001. [Google Scholar] [CrossRef] [Green Version]
- Pereira, L. A Review of the Nutrient Composition of Selected Edible Seaweeds. Seaweed Ecol. Nutr. Compos. Med. Uses 2011, 7, 15–47. [Google Scholar]
- Smith, J.; Summers, G.; Wong, R. Nutrient and heavy metal content of edible seaweeds in New Zealand. N. Z. J. Crop Hortic. Sci. 2010, 38, 19–28. [Google Scholar] [CrossRef]
- Kim, M.-H.; Kim, J.; Noh, C.-H.; Choi, S.; Joo, Y.-S.; Lee, K.-W. Monitoring Arsenic Species Content in Seaweeds Produced off the Southern Coast of Korea and Its Risk Assessment. Environments 2020, 7, 68. [Google Scholar] [CrossRef]
- Reka, P.; Banu, A.T.; Seethalakshmi, M. Nutrient Content, Phytonutrient Composition and Functional Properties of Selected Seaweeds Collected from Gulf of Mannar, Tamil Nadu, India. Int. J. Nutr. Diet 2017, 4, 145–159. [Google Scholar] [CrossRef]
- Nielsen, C.; Rustad, T.; Holdt, S. Vitamin C from seaweed: A review assessing seaweed as contributor to daily intake. Foods 2021, 10, 198. [Google Scholar] [CrossRef] [PubMed]
- Al-Alawi, R.A.; Al-Mashiqri, J.H.; Al-Nadabi, J.S.M.; Al-Shihi, B.I.; Baqi, Y. Date Palm Tree (Phoenix dactylifera L.): Natural Products and Therapeutic Options. Front. Plant Sci. 2017, 8, 845. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chao, C.T.; Krueger, R.R. The Date Palm (Phoenix dactylifera L.): Overview of Biology, Uses, and Cultivation. HortScience 2007, 42, 1077–1082. [Google Scholar] [CrossRef] [Green Version]
- Dhehibi, B.; Ben Salah, M.; Frija, A. Date Palm Value Chain Analysis and Marketing Opportunities for the Gulf Cooperation Council (GCC) Countries. In Agricultural Economics; Kulshreshtha, N., Ed.; Intechopen: London, UK, 2018; pp. 1–17. [Google Scholar] [CrossRef] [Green Version]
- Shahin, S.; Salem, M. Review Future Concerns on Irrigation Requirements of Date Palm Tree in the United Arab Emirates (UAE): Call for Quick Actions. In Proceedings of the 5th International Date Palm Conference, Abu Dhabi, United Arab Emirates, 16–18 March 2014. [Google Scholar]
- Ahmed, J.; Aljasass, F.; Siddiq, M. Date Fruit Composition and Nutrition. In Dates: Postharvest Science, Processing Technology and Health Benefits; Siddiq, M., Aleid, S.M., Kadel, A.A., Eds.; Wiley: Hoboken, NJ, USA, 2014; pp. 261–284. [Google Scholar] [CrossRef]
- Habib, H.M.; Ibrahim, W.H. Nutritional quality of 18 date fruit varieties. Int. J. Food Sci. Nutr. 2011, 62, 544–551. [Google Scholar] [CrossRef]
- Al-Farsi, M.A.; Lee, C.Y. Nutritional and Functional Properties of Dates: A Review. Crit. Rev. Food Sci. Nutr. 2008, 48, 877–887. [Google Scholar] [CrossRef]
- Al-Harrasi, A.; Rehman, N.; Hussain, J.; Khan, A.L.; Al-Rawahi, A.; Gilani, S.A.; Al-Broumi, M.; Ali, L. Nutritional assessment and antioxidant analysis of 22 date palm (Phoenix dactylifera) varieties growing in Sultanate of Oman. Asian Pac. J. Trop. Med. 2014, 7, S591–S598. [Google Scholar] [CrossRef] [Green Version]
- Nisizawa, K. Preparation and marketing of seaweeds as foods. FAO Fish. Tech. Paper. 1987, 273532, 614912. [Google Scholar]
- Fleurence, J.; Levine, I. Chapter 5—Seaweeds as Food. In Seaweed in Health and Disease Prevention; Academic Press: San Diego, CA, USA, 2016; pp. 149–167. [Google Scholar] [CrossRef]
- Figueroa, V.; Farfan, M.; Aguilera, J.M. Seaweeds as Novel Foods and Source of Culinary Flavors. Food Rev. Int. 2021, 1–26. [Google Scholar] [CrossRef]
- Roohinejad, S.; Koubaa, M.; Barba, F.J.; Saljoughian, S.; Amid, M.; Greiner, R. Application of seaweeds to develop new food products with enhanced shelf-life, quality and health-related beneficial properties. Food Res. Int. 2017, 99, 1066–1083. [Google Scholar] [CrossRef] [PubMed]
- Komatsuzaki, N.; Arai, S.; Fujihara, S.; Shima, J.; Wijesekara, R.S.; De Croos, M.D.S.T. Development of Novel Bread by Combining Seaweed Kappaphycus alvarezii from Sri Lanka and Saccharomyces cerevisiae Isolated from Nectarine. J. Agric. Sci. Technol. B 2019, 9, 339–346. [Google Scholar] [CrossRef]
- Metin, C.; Baygar, T. Determination of nutritional composition of Enteromorpha intestinalis and investigation of its usage as food. Ege J. Fish. Aquat. Sci. 2018, 35, 7–14. [Google Scholar] [CrossRef]
- Kadam, S.U.; Álvarez, C.; Tiwari, B.K.; O’Donnell, C.P. Chapter 4—Processing of Seaweeds. In Seaweed Sustainability; Tiwari, B.K., Troy, D.J., Eds.; Academic Press: San Diego, CA, USA, 2015; pp. 61–78. [Google Scholar] [CrossRef]
Components | Value |
---|---|
Caloric value by calculation | 34.38 ± 0.24 |
Carbohydrates | 5.16 ± 0.04 |
Crude fiber | 1.01 ± 0.13 |
Fat | 0.04 ± 0.01 |
Moisture | 85.83 ± 3.28 |
Protein | 3.32 ± 0.14 |
Total ash | 5.62 ± 3.20 |
Elements | Value |
---|---|
Potassium | 7947 ± 319 ppm |
Magnesium | 3076 ± 1357 ppm |
Sodium | 756 ± 478 ppm |
Iron | 10.11 ± 1.26 ppm |
Aluminum | 3.57 ± 0.43 ppm |
Chromium | 2.26 ± 0.30 ppm |
Boron | 4.18 ± 2.30 ppm |
Manganese | 7.65 ± 2.91 ppm |
Nickel | 3.21 ± 0.77 ppm |
Copper | 2.09 ± 0.46 ppm |
Selenium | 0.92 ± 0.61 ppm |
Arsenic | 0.24 ± 0.05 ppm |
Zinc | 5.01 ± 0.96 ppm |
Lead | 0.26 ± 0.07 ppm |
Mercury | 0.03 ± 0.03 ppm |
Cadmium | <0.00001 ppm * |
Components | Value |
---|---|
Ascorbic acid (Vitamin C) | <10.0 ppm * |
Nicotinamide (B3) | <3.0 ppm * |
Pyridoxine (B6) | <3.0 ppm * |
Riboflavin (B2) | <3.0 ppm * |
Thiamine hydrochloride (B1) | <3.0 ppm * |
Components | Phoenix dactylifera |
---|---|
Ash | 1.67% |
Carbohydrate | 80.6% |
Dietary fiber | 4.8% |
Fat | 0.38% |
Moisture | 15.2% |
Protein | 2.14% |
Elements | Phoenix dactylifera (According to Cited Data) |
---|---|
Potassium | 7130 ppm |
Magnesium | 642 ppm |
Sodium | 329 ppm |
Iron | 8.3 ppm |
Aluminum | 30 ppm |
Chromium | 0.686 ppm |
Manganese | 2.7 ppm |
Nickel | 0.82 ppm |
Copper | 2.4 ppm |
Selenium | 3.1 ppm |
Arsenic | 0.58 ppm |
Zinc | 2.7 ppm |
Lead | 0.18 ppm |
Cadmium | 0.01 ppm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farzanah, R.; Clausen, M.P.; Arnspang, E.C.; Schmidt, J.E.; Bastidas-Oyanedel, J.-R. Feasibility of United Arab Emirates Native Seaweed Ulva intestinalis as a Food Source: Study of Nutritional and Mineral Compositions. Phycology 2022, 2, 120-131. https://doi.org/10.3390/phycology2010008
Farzanah R, Clausen MP, Arnspang EC, Schmidt JE, Bastidas-Oyanedel J-R. Feasibility of United Arab Emirates Native Seaweed Ulva intestinalis as a Food Source: Study of Nutritional and Mineral Compositions. Phycology. 2022; 2(1):120-131. https://doi.org/10.3390/phycology2010008
Chicago/Turabian StyleFarzanah, Rashed, Mathias Porsmose Clausen, Eva Christensen Arnspang, Jens Ejbye Schmidt, and Juan-Rodrigo Bastidas-Oyanedel. 2022. "Feasibility of United Arab Emirates Native Seaweed Ulva intestinalis as a Food Source: Study of Nutritional and Mineral Compositions" Phycology 2, no. 1: 120-131. https://doi.org/10.3390/phycology2010008
APA StyleFarzanah, R., Clausen, M. P., Arnspang, E. C., Schmidt, J. E., & Bastidas-Oyanedel, J. -R. (2022). Feasibility of United Arab Emirates Native Seaweed Ulva intestinalis as a Food Source: Study of Nutritional and Mineral Compositions. Phycology, 2(1), 120-131. https://doi.org/10.3390/phycology2010008