Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, R.; Kang, E.Y.; Shin, Y.J.; Park, J.J.; Park, P.S.; Han, C.H.; Kim, B.; Moon, S.I.; Park, J.; Chung, P.S. Development of a consolidated anaerobic digester and microbial fuel cell to produce biomethane and electricity from cellulosic biomass using bovine rumen microorganisms. J. Sustain. Bioenergy Syst. 2019, 9, 17–28. [Google Scholar] [CrossRef]
- Castelán-Ortega, O.A.; Ku-Vera, J.C.; Estrada-Flores, J.G. Modeling methane emissions and methane inventories for cattle production systems in Mexico. Atmósfera 2014, 27, 185–191. [Google Scholar] [CrossRef]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed. Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Karlsson, J.; Ramin, M.; Kass, M.; Lindberg, M.; Holtenius, K. Effects of replacing wheat starch with glycerol on methane emissions, milk production, and feed efficiency in dairy cows fed grass silage-based diets. J. Dairy Sci. 2019, 102, 7927–7935. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Gerber, P.; Vellinga, T.; Garnett, T.; Leip, A.; Opio, C.; Westhoek, H.J.; Thornton, P.K.; Olesen, J.; Hutchings, N.; et al. Livestock and greenhouse gas emissions: The importance of getting the numbers right. Anim. Feed. Sci. Technol. 2011, 166–167, 779–782. [Google Scholar] [CrossRef]
- Morgavi, D.P.; Martin, C.; Jouany, J.; Ranilla, M.J. Rumen protozoa and methanogenesis: Not a simple cause-effect relationship. Br. J. Nutr. 2012, 107, 388–397. [Google Scholar] [CrossRef] [PubMed]
- Homem, J.A.C.; Bertocco, E.J.M.; Ruiz, F.V.; Costa, A.M.T.; Paschoaloto, J.R.; Pastori, D.A.; Barbosa, C.V.; Faleiros, N.B.; Fernandes, C.L. Methane production by in vitro ruminal fermentation of feed ingredients. Semin. Cienc. Agrar. 2017, 38, 877–884. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Clark, D.A. Greenhouse gas mitigation opportunities with immediate application to pastoral grazing for ruminants. Int. Congr. Ser. 2006, 1293, 107–110. [Google Scholar] [CrossRef]
- Kostik, V.; Memeti, S.; Bauer, B. Fatty acid composition of edible oils and fats. J. Hyg. Eng. Des. 2013, 4, 112–116. [Google Scholar]
- Villar, M.L.; Hegarty, R.S.; Nolan, J.V.; Godwin, I.R.; McPhee, M. The effect of dietary nitrate and canola oil alone or in combination on fermentation, digesta kinetics and methane emissions from cattle. Anim. Feed. Sci. Technol. 2020, 259, 114294. [Google Scholar] [CrossRef]
- Fiorentini, G.; Messana, J.D.; José-Neto, A.; Sgobi, E.G.; Castagnino, P.S.; Berchielli, T.T. Performance and meat quality of Nellore bulls fed crude glycerin combined with soybean oil. Anim. Feed. Sci. Technol. 2018, 241, 45–54. [Google Scholar] [CrossRef]
- Ortega-Cerrilla, M.E.; Hidalgo-Hernández, U.; Herrera-Haro, J.G.; Ramírez-Mella, M.; Zetina-Córdoba, P. Glicerol una alternativa para la alimentación de rumiantes. Agroproductividad 2018, 11, 124–129. Available online: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/386 (accessed on 22 October 2022).
- Peripolli, V.; Prates, Ê.R.; Barcellos, O.J.; Costa, J.J.B.; Lopes, R.B.; Camargo, C.M. Partial replacement of corn with glycerin: Digestibility and ruminal fermentation kinetics by in vitro gas production. Rev. Colomb. De Cienc. Pecu. 2016, 29, 218–225. [Google Scholar] [CrossRef]
- Rodríguez, R.; Sosa, A.; Rodríguez, Y. La síntesis de proteína microbiana en el rumen y su importancia para los rumiantes. Rev. Cuba. De Cienc. Agrícola 2007, 41, 303–331. Available online: https://www.redalyc.org/pdf/1930/193017712001.pdf (accessed on 28 November 2022).
- Conde, P.A.; Cuesta, P.A.; Morales, V.C.J. Funcionamiento ruminal y consumo voluntario en ovinos alimentados con fibra de palma de aceite amonificada con sulfato de amonio 11%. Palmas 2004, 25, 288–294. Available online: https://publicaciones.fedepalma.org/index.php/palmas/article/view/1043 (accessed on 12 October 2022).
- Troncoso, A.H. Engormix 2018. Uso de la Urea en la Alimentación de los Rumiantes. Available online: https://www.engormix.com/ganaderia-carne/articulos/uso-urea-alimentacion-rumiantes-t42253.htm (accessed on 18 February 2023).
- Ojeda, A.; Reyes, M.; Rodríguez, W. Efecto de la liberación controlada de nitrógeno sobre la fermentación y la degradabilidad in situ de Cynodon dactylon. Rev. MVZ Córdoba 2012, 17, 3133–3139. [Google Scholar] [CrossRef]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199. [Google Scholar] [CrossRef]
- González, G.H.; Martínez, D.L.R.R.; Orozco, E.A.; Perea, N.H.; López, M.B.; Holguin, L.C.; Hernández, C.H.E. 2011. Efecto del Tipo de Dieta y del Grupo Racial Sobre el Comportamiento Digestivo en Borregos: Efecto del Nivel de Consumo y de la Relación Forraje: Concentrado Sobre el Comportamiento Digestivo en Borregos. Universidad Autónoma de Ciudad Juárez. Colección Reportes Técnicos de Investigación. ISBN 978-607-7953-80-7. Serie ICB, Vol. 2. Available online: http://www3.uacj.mx/DGDCDC/SP/Documents/RTI/RTI/9.%20Efecto%20del%20tipo%20de%20dieta.pdf (accessed on 10 July 2022).
- Garriz, M.; López, A. Suplementación Con Nitrógeno No Proteico en Rumiantes. Sitio Argent. De Prod. Anim. 2002, 1–24. Available online: http://www.produccion-animal.com.ar/informacion_tecnica/suplementacion_proteica_y_con_nitrogeno_no_proteico/07-suplementacion_con_nitrogeno.pdf (accessed on 2 March 2023).
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef]
- Ortiz-Romero, N.; Delgado, E.; Antonio Pámanes-Carrasco, G.; Medrano-Roldán, H.; Hernández-Vargas, V.; Reyes-Jáquez, D. Development and Evaluation of an Extruded Balanced Food for Sheep Based on Cottonseed Meal (Gossypium hirsutum). In Cotton, 1st ed.; Abdurakhmonov, I.Y., Ed.; IntechOpen Limited: London, UK, 2022; Volume 1, pp. 1–14. [Google Scholar] [CrossRef]
- Goering, H.K.; VanSoest, P.J. Forage Fibre Analysis; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1970. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. Available online: https://www.scienceopen.com/document?vid=e1859372-e696-424a-85fb-d305b0b594bc (accessed on 12 December 2022).
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- González-Arreola, A.; Murillo-Ortiz, M.; Pámanes-Carrasco, G.; Reveles-Saucedo, F.; Herrera-Torres, E. Nutritive quality and gas production of corn silage with the addition of fresh and fermented prickly pear cladodes. J. Anim. Plant Sci. 2019, 40, 6544–6553. [Google Scholar]
- Schofield, P.; Pitt, R.E.; Pell, A.N. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 1994, 72, 2980–2991. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L. Laboratory Procedures in Animal Nutrition Research; Department of Animal and Food Sciences, Texas Tech University: Lubbock, TX, USA, 2010; Available online: https://www.depts.ttu.edu/afs/home/mgalyean/lab_man.pdf (accessed on 10 February 2023).
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Valenzuela-Rodríguez, E.I.; Pámanes-Carrasco, G.A.; Mata-Escobedo, M.I.; Medrano-Roldan, H.; Reyes-Jáquez, D. An in vitro and in situ evaluation of a diet for cattle added with organic oils. Agro Product. 2021, 14, 135–143. [Google Scholar] [CrossRef]
- Dschaak, C.M.; Eun, J.S.; Young, A.J.; Bergman, J.W. Nutritive merits of whole Nutrasaff safflower seed when fed to Holstein dairy cows during mid-lactation. Anim. Feed. Sci. Technol. 2010, 156, 26–36. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Zhang, X.M.; Smith, M.L.; Kung, L., Jr.; Vyas, D.; McGinn, S.M.; Kindermann, M.; Wang, M.; Tan, Z.L.; Beauchemin, K.A. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community. Anim. Microbiome 2022, 4, 35. [Google Scholar] [CrossRef]
- Syahniar, T.M.; Ridla, M.; Samsudin, A.A.B.; Jayanegara, A. Glycerol as an Energy Source for Ruminants: A Meta-Analysis of In Vitro Experiments. Media Peterakan 2016, 39, 189–194. [Google Scholar] [CrossRef]
Sample | Moisture [%] | Total Dry Matter [%] | g 100 g−1 | ||||
---|---|---|---|---|---|---|---|
Crude Protein | Crude Fat | Crude Fiber | Nitrogen Free Extract | Ashes | |||
Optimal food | 8.66 | 91.34 | 27.25 | 4.24 | 12.21 | 46.95 | 9.35 |
Requirement * | - | 90 | 14.5 | 3 | 10 | 52 | 7.5 |
Treatment | Control | Canola | Corn | Safflower | Sunflower | Glycerol | EE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 0% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | |
A | 2.50 a | 2.50 a | 2.49 a | 2.48 a | 2.57 a | 2.47 a | 2.51 a | 2.61 a | 2.65 a | 2.51 a | 2.67 a | 0.030 |
Gmax | 128.85 d | 132.55 d | 140.45 c | 139.20 c | 152.30 b | 157.05 b | 151.45 b | 177.80 a | 180.97 a | 179.95 a | 173.20 a | 2.133 |
k | 0.18 a | 0.19 a | 0.17 a | 0.16 a | 0.13 a | 0.11 b | 0.14 a | 0.16 a | 0.17 a | 0.11 b | 0.11 b | 0.007 |
Intercept | Dose | Canola | Corn | Safflower | Glycerol | Sunflower | Dose*Canola | Dose*Corn | Dose*Safflower | Dose*Glycerol | Dose*Sunflower | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 2.539 | 0.026 | −0.038 | −0.017 | −0.049 | 0.052 | 0.092 | −0.029 | 0.016 | −0.007 | 0.051 | −0.005 | 0.728 |
Gmax | 153.551 | 0.985 | −17.051 | −7.801 | 0.699 | 23.024 | 25.832 | 2.965 | 5.565 | −3.785 | −4.3597 | 0.599 | 0.974 |
k | 0.152 | 0.0001 | 0.031 | −0.006 | −0.029 | −0.039 | 0.012 | −0.009 | −0.012 | 0.016 | 0.001 | 0.003 | 0.875 |
Treatment | Control | Canola | Corn | Safflower | Sunflower | Glycerol | EE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 0% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | |
CH4 | 8.73 b | 10.18 b | 9.08 b | 8.19 b | 7.15 c | 10.89 b | 8.88 b | 11.74 b | 13.09 a | 10.61 b | 9.65 b | 0.357 |
CO2 | 55.01 c | 62.04 b | 56.40 b | 55.64 b | 49.96 c | 57.35 b | 53.68 c | 73.38 a | 73.70 a | 61.18 b | 55.59 b | 2.101 |
CH4/CO2 ratio | 0.1587 i | 0.1641 f | 0.1609 g | 0.1472 j | 0.1431 k | 0.1900 a | 0.1655 e | 0.159 h | 0.1777 b | 0.1734 d | 0.1737 c | 0.00003 |
Treatment | Control | Canola | Corn | Safflower | Sunflower | Glycerol | EE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 0% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | |
Acetic | 55.59 c | 73.82 a | 72.24 a | 70.95 a | 62.10 b | 61.38 b | 72.77 a | 73.45 a | 78.29 a | 70.13 a | 74.90 a | 2.100 |
Propionic | 18.99 a | 12.61 b | 13.86 b | 14.71 b | 18.35 a | 17.18 a | 12.87 b | 12.58 b | 10.75 b | 13.99 b | 12.57 b | 0.896 |
Butyric | 6.01 a | 7.22 a | 7.12 a | 6.85 a | 8.80 a | 9.42 a | 7.59 a | 7.36 a | 6.13 a | 8.34 a | 7.02 a | 0.615 |
TVFA (mM) | 70.49 b | 75.70 b | 69.34 b | 44.59 c | 33.54 d | 29.42 d | 76.45 b | 78.80 b | 103.40 a | 65.28 b | 77.45 b | 2.625 |
A/P ratio | 2.95 c | 6.10 b | 5.38 b | 5.34 b | 3.41 c | 3.61 c | 5.87 b | 6.27 b | 7.83 a | 5.17 b | 6.28 b | 0.568 |
Treatment | Control | Canola | Corn | Safflower | Sunflower | Glycerol | EE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 0% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | |
Concentration | 3.34 c | 3.74 b | 2.97 c | 1.90 d | 1.88 d | 5.06 a | 4.18 b | 3.89 b | 5.15 a | 4.11 b | 4.15 b | 0.152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda-Rodríguez, C.S.; Pámanes-Carrasco, G.A.; Páez-Lerma, J.B.; Herrera-Torres, E.; Araiza-Rosales, E.E.; Hernández-Vargas, V.; Medrano-Roldán, H.; Reyes-Jáquez, D. Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases. Ruminants 2023, 3, 140-148. https://doi.org/10.3390/ruminants3020013
Castañeda-Rodríguez CS, Pámanes-Carrasco GA, Páez-Lerma JB, Herrera-Torres E, Araiza-Rosales EE, Hernández-Vargas V, Medrano-Roldán H, Reyes-Jáquez D. Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases. Ruminants. 2023; 3(2):140-148. https://doi.org/10.3390/ruminants3020013
Chicago/Turabian StyleCastañeda-Rodríguez, Cynthia Sofía, Gerardo Antonio Pámanes-Carrasco, Jesús Bernardo Páez-Lerma, Esperanza Herrera-Torres, Elia Esther Araiza-Rosales, Vicente Hernández-Vargas, Hiram Medrano-Roldán, and Damián Reyes-Jáquez. 2023. "Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases" Ruminants 3, no. 2: 140-148. https://doi.org/10.3390/ruminants3020013
APA StyleCastañeda-Rodríguez, C. S., Pámanes-Carrasco, G. A., Páez-Lerma, J. B., Herrera-Torres, E., Araiza-Rosales, E. E., Hernández-Vargas, V., Medrano-Roldán, H., & Reyes-Jáquez, D. (2023). Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases. Ruminants, 3(2), 140-148. https://doi.org/10.3390/ruminants3020013