Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chung, R.; Kang, E.Y.; Shin, Y.J.; Park, J.J.; Park, P.S.; Han, C.H.; Kim, B.; Moon, S.I.; Park, J.; Chung, P.S. Development of a consolidated anaerobic digester and microbial fuel cell to produce biomethane and electricity from cellulosic biomass using bovine rumen microorganisms. J. Sustain. Bioenergy Syst. 2019, 9, 17–28. [Google Scholar] [CrossRef][Green Version]
- Castelán-Ortega, O.A.; Ku-Vera, J.C.; Estrada-Flores, J.G. Modeling methane emissions and methane inventories for cattle production systems in Mexico. Atmósfera 2014, 27, 185–191. [Google Scholar] [CrossRef][Green Version]
- Janssen, P.H. Influence of hydrogen on rumen methane formation and fermentation balances through microbial growth kinetics and fermentation thermodynamics. Anim. Feed. Sci. Technol. 2010, 160, 1–22. [Google Scholar] [CrossRef]
- Karlsson, J.; Ramin, M.; Kass, M.; Lindberg, M.; Holtenius, K. Effects of replacing wheat starch with glycerol on methane emissions, milk production, and feed efficiency in dairy cows fed grass silage-based diets. J. Dairy Sci. 2019, 102, 7927–7935. [Google Scholar] [CrossRef] [PubMed]
- Herrero, M.; Gerber, P.; Vellinga, T.; Garnett, T.; Leip, A.; Opio, C.; Westhoek, H.J.; Thornton, P.K.; Olesen, J.; Hutchings, N.; et al. Livestock and greenhouse gas emissions: The importance of getting the numbers right. Anim. Feed. Sci. Technol. 2011, 166–167, 779–782. [Google Scholar] [CrossRef][Green Version]
- Morgavi, D.P.; Martin, C.; Jouany, J.; Ranilla, M.J. Rumen protozoa and methanogenesis: Not a simple cause-effect relationship. Br. J. Nutr. 2012, 107, 388–397. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Homem, J.A.C.; Bertocco, E.J.M.; Ruiz, F.V.; Costa, A.M.T.; Paschoaloto, J.R.; Pastori, D.A.; Barbosa, C.V.; Faleiros, N.B.; Fernandes, C.L. Methane production by in vitro ruminal fermentation of feed ingredients. Semin. Cienc. Agrar. 2017, 38, 877–884. [Google Scholar] [CrossRef]
- Waghorn, G.C.; Clark, D.A. Greenhouse gas mitigation opportunities with immediate application to pastoral grazing for ruminants. Int. Congr. Ser. 2006, 1293, 107–110. [Google Scholar] [CrossRef]
- Kostik, V.; Memeti, S.; Bauer, B. Fatty acid composition of edible oils and fats. J. Hyg. Eng. Des. 2013, 4, 112–116. [Google Scholar]
- Villar, M.L.; Hegarty, R.S.; Nolan, J.V.; Godwin, I.R.; McPhee, M. The effect of dietary nitrate and canola oil alone or in combination on fermentation, digesta kinetics and methane emissions from cattle. Anim. Feed. Sci. Technol. 2020, 259, 114294. [Google Scholar] [CrossRef]
- Fiorentini, G.; Messana, J.D.; José-Neto, A.; Sgobi, E.G.; Castagnino, P.S.; Berchielli, T.T. Performance and meat quality of Nellore bulls fed crude glycerin combined with soybean oil. Anim. Feed. Sci. Technol. 2018, 241, 45–54. [Google Scholar] [CrossRef][Green Version]
- Ortega-Cerrilla, M.E.; Hidalgo-Hernández, U.; Herrera-Haro, J.G.; Ramírez-Mella, M.; Zetina-Córdoba, P. Glicerol una alternativa para la alimentación de rumiantes. Agroproductividad 2018, 11, 124–129. Available online: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/386 (accessed on 22 October 2022).
- Peripolli, V.; Prates, Ê.R.; Barcellos, O.J.; Costa, J.J.B.; Lopes, R.B.; Camargo, C.M. Partial replacement of corn with glycerin: Digestibility and ruminal fermentation kinetics by in vitro gas production. Rev. Colomb. De Cienc. Pecu. 2016, 29, 218–225. [Google Scholar] [CrossRef]
- Rodríguez, R.; Sosa, A.; Rodríguez, Y. La síntesis de proteína microbiana en el rumen y su importancia para los rumiantes. Rev. Cuba. De Cienc. Agrícola 2007, 41, 303–331. Available online: https://www.redalyc.org/pdf/1930/193017712001.pdf (accessed on 28 November 2022).
- Conde, P.A.; Cuesta, P.A.; Morales, V.C.J. Funcionamiento ruminal y consumo voluntario en ovinos alimentados con fibra de palma de aceite amonificada con sulfato de amonio 11%. Palmas 2004, 25, 288–294. Available online: https://publicaciones.fedepalma.org/index.php/palmas/article/view/1043 (accessed on 12 October 2022).
- Troncoso, A.H. Engormix 2018. Uso de la Urea en la Alimentación de los Rumiantes. Available online: https://www.engormix.com/ganaderia-carne/articulos/uso-urea-alimentacion-rumiantes-t42253.htm (accessed on 18 February 2023).
- Ojeda, A.; Reyes, M.; Rodríguez, W. Efecto de la liberación controlada de nitrógeno sobre la fermentación y la degradabilidad in situ de Cynodon dactylon. Rev. MVZ Córdoba 2012, 17, 3133–3139. [Google Scholar] [CrossRef][Green Version]
- Satter, L.D.; Slyter, L.L. Effect of ammonia concentration on rumen microbial protein production in vitro. Br. J. Nutr. 1974, 32, 199. [Google Scholar] [CrossRef][Green Version]
- González, G.H.; Martínez, D.L.R.R.; Orozco, E.A.; Perea, N.H.; López, M.B.; Holguin, L.C.; Hernández, C.H.E. 2011. Efecto del Tipo de Dieta y del Grupo Racial Sobre el Comportamiento Digestivo en Borregos: Efecto del Nivel de Consumo y de la Relación Forraje: Concentrado Sobre el Comportamiento Digestivo en Borregos. Universidad Autónoma de Ciudad Juárez. Colección Reportes Técnicos de Investigación. ISBN 978-607-7953-80-7. Serie ICB, Vol. 2. Available online: http://www3.uacj.mx/DGDCDC/SP/Documents/RTI/RTI/9.%20Efecto%20del%20tipo%20de%20dieta.pdf (accessed on 10 July 2022).
- Garriz, M.; López, A. Suplementación Con Nitrógeno No Proteico en Rumiantes. Sitio Argent. De Prod. Anim. 2002, 1–24. Available online: http://www.produccion-animal.com.ar/informacion_tecnica/suplementacion_proteica_y_con_nitrogeno_no_proteico/07-suplementacion_con_nitrogeno.pdf (accessed on 2 March 2023).
- Herrero, M.; Henderson, B.; Havlík, P.; Thornton, P.K.; Conant, R.; Smith, P.; Wirsenius, S.; Hristov, A.N.; Gerber, P.; Gill, M.; et al. Greenhouse gas mitigation potentials in the livestock sector. Nat. Clim. Chang. 2016, 6, 452–461. [Google Scholar] [CrossRef][Green Version]
- Ortiz-Romero, N.; Delgado, E.; Antonio Pámanes-Carrasco, G.; Medrano-Roldán, H.; Hernández-Vargas, V.; Reyes-Jáquez, D. Development and Evaluation of an Extruded Balanced Food for Sheep Based on Cottonseed Meal (Gossypium hirsutum). In Cotton, 1st ed.; Abdurakhmonov, I.Y., Ed.; IntechOpen Limited: London, UK, 2022; Volume 1, pp. 1–14. [Google Scholar] [CrossRef]
- Goering, H.K.; VanSoest, P.J. Forage Fibre Analysis; Agricultural Research Service, US Department of Agriculture: Washington, DC, USA, 1970. [Google Scholar]
- Menke, K.H.; Steingass, H. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim. Res. Dev. 1988, 28, 7–55. Available online: https://www.scienceopen.com/document?vid=e1859372-e696-424a-85fb-d305b0b594bc (accessed on 12 December 2022).
- Theodorou, M.K.; Williams, B.A.; Dhanoa, M.S.; McAllan, A.B.; France, J. A simple gas production method using a pressure transducer to determine the fermentation kinetics of ruminant feeds. Anim. Feed. Sci. Technol. 1994, 48, 185–197. [Google Scholar] [CrossRef]
- González-Arreola, A.; Murillo-Ortiz, M.; Pámanes-Carrasco, G.; Reveles-Saucedo, F.; Herrera-Torres, E. Nutritive quality and gas production of corn silage with the addition of fresh and fermented prickly pear cladodes. J. Anim. Plant Sci. 2019, 40, 6544–6553. [Google Scholar]
- Schofield, P.; Pitt, R.E.; Pell, A.N. Kinetics of fiber digestion from in vitro gas production. J. Anim. Sci. 1994, 72, 2980–2991. [Google Scholar] [CrossRef] [PubMed]
- Galyean, M.L. Laboratory Procedures in Animal Nutrition Research; Department of Animal and Food Sciences, Texas Tech University: Lubbock, TX, USA, 2010; Available online: https://www.depts.ttu.edu/afs/home/mgalyean/lab_man.pdf (accessed on 10 February 2023).
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids, and New World Camelids; The National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- Valenzuela-Rodríguez, E.I.; Pámanes-Carrasco, G.A.; Mata-Escobedo, M.I.; Medrano-Roldan, H.; Reyes-Jáquez, D. An in vitro and in situ evaluation of a diet for cattle added with organic oils. Agro Product. 2021, 14, 135–143. [Google Scholar] [CrossRef]
- Dschaak, C.M.; Eun, J.S.; Young, A.J.; Bergman, J.W. Nutritive merits of whole Nutrasaff safflower seed when fed to Holstein dairy cows during mid-lactation. Anim. Feed. Sci. Technol. 2010, 156, 26–36. [Google Scholar] [CrossRef]
- Gruninger, R.J.; Zhang, X.M.; Smith, M.L.; Kung, L., Jr.; Vyas, D.; McGinn, S.M.; Kindermann, M.; Wang, M.; Tan, Z.L.; Beauchemin, K.A. Application of 3-nitrooxypropanol and canola oil to mitigate enteric methane emissions of beef cattle results in distinctly different effects on the rumen microbial community. Anim. Microbiome 2022, 4, 35. [Google Scholar] [CrossRef]
- Syahniar, T.M.; Ridla, M.; Samsudin, A.A.B.; Jayanegara, A. Glycerol as an Energy Source for Ruminants: A Meta-Analysis of In Vitro Experiments. Media Peterakan 2016, 39, 189–194. [Google Scholar] [CrossRef][Green Version]
Sample | Moisture [%] | Total Dry Matter [%] | g 100 g−1 | ||||
---|---|---|---|---|---|---|---|
Crude Protein | Crude Fat | Crude Fiber | Nitrogen Free Extract | Ashes | |||
Optimal food | 8.66 | 91.34 | 27.25 | 4.24 | 12.21 | 46.95 | 9.35 |
Requirement * | - | 90 | 14.5 | 3 | 10 | 52 | 7.5 |
Treatment | Control | Canola | Corn | Safflower | Sunflower | Glycerol | EE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 0% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | |
A | 2.50 a | 2.50 a | 2.49 a | 2.48 a | 2.57 a | 2.47 a | 2.51 a | 2.61 a | 2.65 a | 2.51 a | 2.67 a | 0.030 |
Gmax | 128.85 d | 132.55 d | 140.45 c | 139.20 c | 152.30 b | 157.05 b | 151.45 b | 177.80 a | 180.97 a | 179.95 a | 173.20 a | 2.133 |
k | 0.18 a | 0.19 a | 0.17 a | 0.16 a | 0.13 a | 0.11 b | 0.14 a | 0.16 a | 0.17 a | 0.11 b | 0.11 b | 0.007 |
Intercept | Dose | Canola | Corn | Safflower | Glycerol | Sunflower | Dose*Canola | Dose*Corn | Dose*Safflower | Dose*Glycerol | Dose*Sunflower | R2 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
A | 2.539 | 0.026 | −0.038 | −0.017 | −0.049 | 0.052 | 0.092 | −0.029 | 0.016 | −0.007 | 0.051 | −0.005 | 0.728 |
Gmax | 153.551 | 0.985 | −17.051 | −7.801 | 0.699 | 23.024 | 25.832 | 2.965 | 5.565 | −3.785 | −4.3597 | 0.599 | 0.974 |
k | 0.152 | 0.0001 | 0.031 | −0.006 | −0.029 | −0.039 | 0.012 | −0.009 | −0.012 | 0.016 | 0.001 | 0.003 | 0.875 |
Treatment | Control | Canola | Corn | Safflower | Sunflower | Glycerol | EE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 0% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | |
CH4 | 8.73 b | 10.18 b | 9.08 b | 8.19 b | 7.15 c | 10.89 b | 8.88 b | 11.74 b | 13.09 a | 10.61 b | 9.65 b | 0.357 |
CO2 | 55.01 c | 62.04 b | 56.40 b | 55.64 b | 49.96 c | 57.35 b | 53.68 c | 73.38 a | 73.70 a | 61.18 b | 55.59 b | 2.101 |
CH4/CO2 ratio | 0.1587 i | 0.1641 f | 0.1609 g | 0.1472 j | 0.1431 k | 0.1900 a | 0.1655 e | 0.159 h | 0.1777 b | 0.1734 d | 0.1737 c | 0.00003 |
Treatment | Control | Canola | Corn | Safflower | Sunflower | Glycerol | EE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 0% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | |
Acetic | 55.59 c | 73.82 a | 72.24 a | 70.95 a | 62.10 b | 61.38 b | 72.77 a | 73.45 a | 78.29 a | 70.13 a | 74.90 a | 2.100 |
Propionic | 18.99 a | 12.61 b | 13.86 b | 14.71 b | 18.35 a | 17.18 a | 12.87 b | 12.58 b | 10.75 b | 13.99 b | 12.57 b | 0.896 |
Butyric | 6.01 a | 7.22 a | 7.12 a | 6.85 a | 8.80 a | 9.42 a | 7.59 a | 7.36 a | 6.13 a | 8.34 a | 7.02 a | 0.615 |
TVFA (mM) | 70.49 b | 75.70 b | 69.34 b | 44.59 c | 33.54 d | 29.42 d | 76.45 b | 78.80 b | 103.40 a | 65.28 b | 77.45 b | 2.625 |
A/P ratio | 2.95 c | 6.10 b | 5.38 b | 5.34 b | 3.41 c | 3.61 c | 5.87 b | 6.27 b | 7.83 a | 5.17 b | 6.28 b | 0.568 |
Treatment | Control | Canola | Corn | Safflower | Sunflower | Glycerol | EE | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Dose | 0% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | 2% | 4% | |
Concentration | 3.34 c | 3.74 b | 2.97 c | 1.90 d | 1.88 d | 5.06 a | 4.18 b | 3.89 b | 5.15 a | 4.11 b | 4.15 b | 0.152 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Castañeda-Rodríguez, C.S.; Pámanes-Carrasco, G.A.; Páez-Lerma, J.B.; Herrera-Torres, E.; Araiza-Rosales, E.E.; Hernández-Vargas, V.; Medrano-Roldán, H.; Reyes-Jáquez, D. Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases. Ruminants 2023, 3, 140-148. https://doi.org/10.3390/ruminants3020013
Castañeda-Rodríguez CS, Pámanes-Carrasco GA, Páez-Lerma JB, Herrera-Torres E, Araiza-Rosales EE, Hernández-Vargas V, Medrano-Roldán H, Reyes-Jáquez D. Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases. Ruminants. 2023; 3(2):140-148. https://doi.org/10.3390/ruminants3020013
Chicago/Turabian StyleCastañeda-Rodríguez, Cynthia Sofía, Gerardo Antonio Pámanes-Carrasco, Jesús Bernardo Páez-Lerma, Esperanza Herrera-Torres, Elia Esther Araiza-Rosales, Vicente Hernández-Vargas, Hiram Medrano-Roldán, and Damián Reyes-Jáquez. 2023. "Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases" Ruminants 3, no. 2: 140-148. https://doi.org/10.3390/ruminants3020013
APA StyleCastañeda-Rodríguez, C. S., Pámanes-Carrasco, G. A., Páez-Lerma, J. B., Herrera-Torres, E., Araiza-Rosales, E. E., Hernández-Vargas, V., Medrano-Roldán, H., & Reyes-Jáquez, D. (2023). Effect of Vegetable Oils or Glycerol on the In Vitro Ruminal Production of Greenhouse Gases. Ruminants, 3(2), 140-148. https://doi.org/10.3390/ruminants3020013