Applications of Microsatellites and Single Nucleotide Polymorphisms for the Genetic Characterization of Cattle and Small Ruminants: An Overview
Abstract
:1. Microsatellites
2. Single Nucleotide Polymorphisms
2.1. Traceability and Breed Assignment
2.2. Linkage Disequilibrium (LD)
2.3. Inbreeding
2.4. Ascertainment Bias (AB)
3. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- FAO. The Second Report on the State of the World’s Animal Genetic Resources for Food and Agriculture; Scherf, B.D., Pilling, D., Eds.; FAO Commission on Genetic Resources for Food and Agriculture Assessments: Rome, Italy, 2015. Available online: http://www.fao.org/3/a-i4787e/index.html (accessed on 2 November 2022).
- FAO. Status and Trends of Animal Genetic Resources—2020; FAO: Rome, Italy, 2021.
- FAO. The State of the World’s Biodiversity for Food and Agriculture; FAO: Rome, Italy, 2019. Available online: http://www.fao.org/3/CA3129EN/CA3129EN.pdf (accessed on 2 November 2022).
- Hoban, S.; Bruford, M.; D’Urban Jackson, J.; Lopes-Fernandes, M.; Heuertz, M.; Hohenlohe, P.A.; Paz-Vinas, I.; Sjögren-Gulve, P.; Segelbacher, G.; Vernesi, C.; et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 2020, 248, 108654. [Google Scholar] [CrossRef]
- Yaro, M.; Munyard, K.A.; Steer, M.J.; Growth, D.M. Molecular identification of livestock breeds: A tool for modern conservation biology. Biol. Rev. 2017, 92, 993–1010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Olschewsky, A.; Hinrichs, D. An Overview of the Use of Genotyping Techniques for Assessing Genetic Diversity in Local Farm Animal Breeds. Animals 2021, 11, 2016. [Google Scholar] [CrossRef] [PubMed]
- Litt, M.; Lutty, J.A. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am. J. Hum. Genet. 1989, 44, 397–401. [Google Scholar]
- Weber, J.L.; May, P.E. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 1989, 44, 388–396. [Google Scholar]
- Yang, W.; Kang, X.; Yang, Q.; Lin, Y.; Fang, M. Review on the development of genotyping methods for assessing farm animal diversity. J. Anim. Sci. Biotechnol. 2013, 4, 2. [Google Scholar] [CrossRef] [Green Version]
- Fries, R.; Eggen, A.; Stranzinger, G. The bovine genome contains polymorphic microsatellites. Genomics 1990, 8, 403–406. [Google Scholar] [CrossRef]
- Kemp, S.J.; Brezinsky, L.; Teale, A.J. A panel of bovine, ovine and caprine polymorphic microsatellites. Anim. Genet. 1993, 24, 363–365. [Google Scholar] [CrossRef]
- Stacia, R.E.; Rebecca, A.L.; Jeremy, F.T.; Scott, K.D. Conservation of Microsatellite Loci across Species of Artiodactyls: Implications for Population Studies. J. Mammal. 1996, 77, 504–518. [Google Scholar] [CrossRef] [Green Version]
- Seki, Y.; Wada, K.; Kikkawa, Y. Practical Applications of Microsatellite Markers in Goat Breeding. In Microsatellite Markers [Internet]; Abdurakhmonov, I.Y., Ed.; IntechOpen: London, UK, 2016; Available online: https://www.intechopen.com/chapters/51833 (accessed on 2 November 2022). [CrossRef] [Green Version]
- Eusebi, P.G.; Martinez, A.; Cortes, O. Genomic Tools for Effective Conservation of Livestock Breed Diversity. Diversity 2020, 12, 8. [Google Scholar] [CrossRef] [Green Version]
- Baumung, R.; Simianer, H.; Hoffmann, I. Genetic diversity studies in farm animals—A survey. J. Anim. Breed. Genet. 2004, 121, 361–373. [Google Scholar] [CrossRef]
- Machugh, D.E.; Loftus, R.T.; Bradley, D.G.; Sharp, P.M.; Cunningham, P. Microsatellite DNA variation within and among European cattle breeds. Proc. R. Soc. Lond. B 1994, 256, 25–31. [Google Scholar] [CrossRef]
- MacHugh, D.E.; Shriver, M.D.; Loftus, R.T.; Cunningham, P.; Bradley, D.G. Microsatellite DNA variation and the evolution, domestication and phylogeography of taurine and zebu cattle (Bos taurus and Bos indicus). Genetics 1997, 146, 1071–1086. [Google Scholar] [CrossRef]
- Hanotte, O.; Bradley, D.G.; Ochieng, J.W.; Verjee, Y.; Hill, E.W.; Rege, J.E. African pastoralism: Genetic imprints of origins and migrations. Science 2002, 12, 336–339. [Google Scholar] [CrossRef] [Green Version]
- Ginja, C.; Telo Gama, L.; Cortés, O.; Martin Burriel, I.; Vega-Pla, J.L.; Penedo, C.; Sponenberg, P.; Cañón, J.; Sanz, A.; Alves Do Egito, A.; et al. The genetic ancestry of American creole cattle inferred from uniparental and autosomal genetic markers. Sci. Rep. 2019, 9, 11486. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ajmone-Marsan, P.; Joost, S. Overview of econogene, an european project that integrates genetics, socioeconomics and geostatistics for the sustainable conservation of sheep and goat genetic resources. In Proceedings of the Role of Biotechnology for the Characterization and Conservation of Crop, Forestry, Animal and Fishery Genetic Resources. International Workshop, Turin, Italy, 5–7 March 2005. [Google Scholar]
- Laloë, D.; Moazami-Goudarzi, K.; Lenstra, J.A.; Marsan, P.A.; Azor, P.; Baumung, R.; Bradley, D.G.; Bruford, M.W.; Cañón, J.; Dolf, G.; et al. Spatial Trends of Genetic Variation of Domestic Ruminants in Europe. Diversity 2010, 2, 932–945. [Google Scholar] [CrossRef] [Green Version]
- Peter, C.; Bruford, M.; Perez, T.; Dalamitra, S.; Hewitt, G.; Erhardt, G. Genetic diversity and subdivision of 57 European and Middle-Eastern sheep breeds. Anim. Genet. 2007, 38, 37–44. [Google Scholar] [CrossRef] [PubMed]
- Cañón, J.; García, D.; García-Atance, M.A.; Obexer-Ruff, G.; Lenstra, J.A.; Ajmone-Marsan, P.; Dunner, S.; Econogene Consortium. Geographical partitioning of goat diversity in Europe and the Middle East. Anim. Genet. 2006, 37, 327–334. [Google Scholar] [CrossRef]
- Adamov, N.; Mickov, L.; Petkov, V.; Adamov, M. Microsatellite Markers for Pedigree Verification in Cattle. Maced. J. Anim. Sci. 2011, 1, 9–15. [Google Scholar] [CrossRef]
- McClure, M.C.; McCarthy, J.; Flynn, P.; McClure, J.C.; Dair, E.; O’Connell, D.K.; Kearney, J.F. SNP Data Quality Control in a National Beef and Dairy Cattle System and Highly Accurate SNP Based Parentage Verification and Identification. Front. Genet. 2018, 9, 84. [Google Scholar] [CrossRef] [Green Version]
- Kemp, S.J.; Hishida, O.; Wambugu, J.; Rink, A.; Longeri, M.L.; Ma, R.Z.; Da, Y.; Lewin, H.A.; Barendse, W.; Teale, A.J. A panel of polymorphic bovine, ovine and caprine microsatellite markers. Anim. Genet. 1995, 26, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Pépin, L.; Amigues, Y.; Lépingle, A.; Berthier, J.L.; Bensaid, A.; Vaiman, D. Sequence conservation of microsatellites between Bos taurus (cattle), Capra hircus (goat) and related species. Examples of use in parentage testing and phylogeny analysis. Heredity 1995, 74, 53–61. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Heyen, D.W.; Beever, J.E.; Da, Y.; Evert, R.E.; Green, C.; Bates, S.R.; Ziegle, J.S.; Lewin, H.A. Exclusion probabilities of 22 bovine microsatellite markers in fluorescent multiplexes for semiautomated parentage testing. Anim. Genet. 1997, 28, 21–27. [Google Scholar] [CrossRef]
- Vankan, D.M.; Faddy, M.J. Estimations of the efficacy and reliability of paternity assignments from DNA microsatellite analysis of multiple-sire matings. Anim. Genet. 1999, 30, 355–361. [Google Scholar] [CrossRef]
- Bishop, M.D.; Kappes, S.M.; Keele, J.W.; Stone, R.W.; Sunden, S.L.F.; Hawkins, G.A.; Toldo, S.S.; Fries, R.; Grosz, M.D.; Yoo, J.; et al. A genetic linkage map for cattle. Genetics 1994, 136, 619–639. [Google Scholar] [CrossRef] [PubMed]
- Barendse, W.; Vaiman, D.; Kemp, S.J.; Sugimoto, Y.; Armitage, S.M.; Williams, J.L.; Sun, H.S.; Eggen, A.; Agaba, M.; Aleyasin, S.A.; et al. A medium density genetic linkage map of the bovine genome. Mamm. Genome 1997, 8, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Barendse, W.; Armitage, S.M.; Kossarek, L.M.; Shalom, A.; Kirkpatrick, B.W.; Ryan, A.M.; Clayton, D.; Li, L.; Neibergs, H.L.; Zhang, N.; et al. A genetic linkage map of the bovine genome. Nat. Genet. 1994, 6, 227–235. [Google Scholar] [CrossRef]
- Kappes, S.M.; Keele, J.W.; Stone, R.T.; McGraw, R.A.; Sonstegard, T.S.; Smith, T.P.; Lopez-Corrales, N.L.; Beattie, C.W. A second-generation linkage map of the bovine genome. Genome Res. 1997, 7, 235–249. [Google Scholar] [CrossRef] [Green Version]
- Ma, R.Z.; Beever, J.E.; Da, Y.; Green, C.A.; Russ, I.; Park, C.; Heyen, D.W.; Everts, R.E.; Fisher, S.R.; Overton, K.M.; et al. A male linkage map of the cattle (Bos taurus) genome. J. Hered. 1996, 87, 267–271. [Google Scholar] [CrossRef] [Green Version]
- de Gortari, M.J.; Freking, B.A.; Cuthbertson, R.P.; Kappes, S.M.; Keele, J.W.; Stone, R.T.; Leymaster, K.A.; Dodds, K.G.; Crawford, A.M.; Beattie, C.W. A second-generation linkage map of the sheep genome. Mamm. Genome 1998, 9, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Schibler, L.; Vaiman, D.; Oustry, A.; Giraud-Delville, C.; Cribiu, E.P. Comparative gene mapping: A fine-scale survey of chromosome rearrangements between ruminants and humans. Genome Res. 1998, 8, 901–915. [Google Scholar] [CrossRef] [PubMed]
- Piumi, F.; Schibler, L.; Vaiman, D.; Oustry, A.; Cribiu, E.P. Comparative cytogenetic mapping reveals chromosome rearrangements between the X-chromosomes of two closely related mammalian species (cattle and goats). Cytogenet. Genome Res. 1998, 81, 36–41. [Google Scholar] [CrossRef] [PubMed]
- Maddox, J.F.; Davies, K.P.; Crawford, A.M.; Hulme, D.J.; Vaiman, D.; Cribiu, E.P.; Freking, B.A.; Beh, K.J.; Cockett, N.E.; Kang, N.; et al. An enhanced linkage map of the sheep genome comprising more than 1000 loci. Genome Res. 2001, 11, 1275–1289. [Google Scholar] [CrossRef]
- Cockett, N.E.; Shay, T.L.; Smit, M. Analysis of the sheep genome. Physiol. Genom. 2001, 21, 69–78. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cockett, N.E.; Jackson, S.P.; Shay, T.L.; Nielsen, D.; Moore, S.S.; Steele, M.R.; Barendse, W.; Green, R.D.; Georges, M. Chromosomal localization of the callipyge gene in sheep. Proc. Natl. Acad. Sci. USA 1994, 91, 3019–3023. [Google Scholar] [CrossRef] [Green Version]
- Montgomery, G.W.; Crawford, A.M.; Penty, J.M.; Dodds, K.G.; Ede, A.J.; Henry, H.M.; Pierson, C.A.; Lord, E.A.; Galloway, S.M.; Schmack, A.E.; et al. The ovine Booroola fecundity gene (FecB) is linked to markers from a region of human chromosome 4q. Nat. Genet. 1993, 4, 410–414. [Google Scholar] [CrossRef]
- Montgomery, G.W.; Lord, E.A.; Penty, J.M.; Dodds, K.G.; Broad, T.E.; Cambridge, L.; Sunden, S.L.F.; Stone, R.T.; Crawford, A.M. The Booroola fecundity (FecB) gene maps to sheep chromosome 6. Genomics 1994, 22, 149–153. [Google Scholar] [CrossRef]
- Montgomery, G.W.; Henry, H.M.; Dodds, K.G.; Beattie, A.E.; Wuliji, T.; Crawford, A.M. Mapping the Horns (Ho) locus in sheep: A further locus controlling horn development in domestic animals. J. Hered. 1996, 87, 358–363. [Google Scholar] [CrossRef] [Green Version]
- Julius, H.J.; van der Werf, K.M.; Sanghong, L. Methods and experimental designs for detection of QTL in sheep and goats. Small Rumin. Res. 2007, 70, 21–31. [Google Scholar] [CrossRef]
- Roldán, D.L.; Rabasa, A.E.; Saldaño, S.; Holgado, F.; Poli, M.A.; Cantet, R.J. QTL detection for milk production traits in goats using a longitudinal model. J. Anim. Breed. Genet. 2008, 125, 187–193. [Google Scholar] [CrossRef]
- Marrube, G.; Cano, E.M.; Roldán, D.L.; Bidinost, F.; Abad, M.; Allain, D.; Vaiman, D.; Taddeo, H.; Poli, M.A. QTL affecting conformation traits in Angora goats. Small Rumin. Res. 2007, 71, 255–263. [Google Scholar] [CrossRef]
- Esmailizadeh, A.K. Genome-scan analysis for genetic mapping of quantitative trait loci underlying birth weight and onset of puberty in doe kids (Capra hircus). Anim. Genet. 2014, 45, 849–854. [Google Scholar] [CrossRef] [PubMed]
- Mohammad Abadi, M.R.; Askari, N.; Baghizadeh, A.; Esmailizadeh, A.K. A directed search around caprine candidate loci provided evidence for microsatellites linkage to growth and cashmere yield in Rayini goats. Small Rumin. Res. 2009, 81, 146–151. [Google Scholar] [CrossRef]
- Vignal, A.; Milan, D.; Sancristobal, M.; Eggen, A. A review on SNP and other types of molecular markers and their use in animal genetics. Gen. Selec. Evol. 2002, 34, 275–306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Landegren, U.; Ilsson, N.; Wok, P.Y. Reading bits of genetic information: Methods for single-nucleotide polymorphism analysis. Gen. Res. 1998, 8, 769–776. [Google Scholar] [CrossRef] [Green Version]
- Zimmerman, S.J.; Aldridge, C.L.; Oyler-McCance, S.J. An empirical comparison of population genetic analyses using microsatellite and SNP data for a species of conservation concern. BMC Genom. 2020, 21, 382. [Google Scholar] [CrossRef]
- Illumina Inc. Infinium® iSelect® Custom Genotyping Assays. Guidelines for Using the DesignStudio™ Microarray Assay Designer Software to Create and Order Custom Arrays. Technical Note. 2016. Available online: www.illumina.com/documents/products/technotes/technote_iselect_design.pdf (accessed on 2 February 2021).
- Affymetrix Inc. Mitigating Sequencing Errors, Monomorphs, and Poor Performing Markers during De Novo SNP Selection for Genotyping Applications. Technical Note. 2020. Available online: http://tools.thermofisher.com/content/sfs/brochures/de_novo_variant_screening_appnote.pdf (accessed on 2 November 2022).
- Cortés, O.; Eusebi, P.; Dunner, S.; Sevane, N.; Cañón, J. Comparison of diversity parameters from SNP, microsatellites and pedigree records in the Lidia cattle breed. Livest. Sci. 2019, 219, 80–85. [Google Scholar] [CrossRef]
- Laoun, A.; Harkat, S.; Lafri, M.; Gaouar, S.B.S.; Belabdi, I.; Ciani, E.; De Groot, M.; Blanquet, V.; Leroy, G.; Rognon, X.; et al. Inference of Breed Structure in Farm Animals: Empirical Comparison between SNP and Microsatellite Performance. Genes 2020, 11, 57. [Google Scholar] [CrossRef] [Green Version]
- Álvarez, I.; Fernández, I.; Traoré, A.; Menéndez-Arias, N.A.; Goyache, F. Population Structure Assessed Using Microsatellite and SNP Data: An Empirical Comparison in West African Cattle. Animals 2021, 11, 151. [Google Scholar] [CrossRef]
- Miller, J.M.; Malenfant, R.M.; David, P.; Davis, C.S.; Poissant, J.; Hogg, J.T. Estimating genome-wide heterozygosity: Effects of demographic history and marker type. Heredity 2014, 112, 240–247. [Google Scholar] [CrossRef] [Green Version]
- Ryynänen, H.J.; Tonteri, A.; Vasemägi, A.; Primmer, C.R. A comparison of biallelic markers and microsatellites for the estimation of population and conservation genetic parameters in Atlantic salmon (Salmo salar). J. Hered. 2007, 98, 692–704. [Google Scholar] [CrossRef] [PubMed]
- Langin, K.M.; Aldridge, C.L.; Fike, J.A.; Cornman, R.S.; Martin, K.; Wann, G.T. Characterizing range-wide divergence in an alpine-endemic bird: A comparison of genetic and genomic approaches. Conserv Genet. 2018, 19, 1471–1485. [Google Scholar] [CrossRef]
- Lemopoulos, A.; Prokkola, J.M.; Uusi-Heikkilä, S.; Vasemägi, A.; Huusko, A.; Hyvärinen, P. Comparing RADseq and microsatellites for estimating genetic diversity and relatedness implications for brown trout conservation. Ecol. Evol. 2019, 9, 2106–2120. [Google Scholar] [CrossRef] [Green Version]
- Fischer, M.C.; Rellstab, C.; Leuzinger, M.; Roumet, M.; Gugerli, F.; Shimizu, K.K. Estimating genomic diversity and population differentiation—An empirical comparison of microsatellite and SNP variation in Arabidopsis halleri. BMC Genom. 2017, 18, 69. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Coates, B.S.; Sumerford, D.V.; Miller, N.J.; Kim, K.S.; Sappington, T.W.; Siegfried, B.D. Comparative performance of single nucleotide polymorphism and microsatellite markers for population genetic analysis. J. Hered. 2009, 100, 556–564. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morin, P.A.; Martien, K.K.; Taylor, B.L. Assessing statistical power of SNPs for population structure and conservation studies. Mol. Ecol. Resour. 2009, 9, 66–73. [Google Scholar] [CrossRef]
- Saravanan, K.A.; Panigrahi, M.; Kumar, H.; Bhushan, B. Advanced software programs for the analysis of genetic diversity in livestock genomics: A mini review. Biol. Rhythm Res. 2019, 53, 358–368. [Google Scholar] [CrossRef]
- Dodds, K.G.; Auvray, B.; Newman, S.A.N.; McEwan, J.C. Genomic breed prediction in New Zealand sheep. BMC Genet. 2014, 15, 92. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J.; Abas, Z.; Dadousis, C.; Lykidis, D.; Paschou, P.; Drineas, P. Tracing cattle breeds with principal components analysis ancestry informative SNPs. PLoS ONE 2011, 6, e18007. [Google Scholar] [CrossRef] [Green Version]
- Dimauro, C.; Nicoloso, L.; Cellesi, M.; Macciotta, N.P.P.; Ciani, E.; Moioli, B.; Pilla, F.; Crepaldi, P. Selection of discriminant SNP markers for breed and geographic assignment of Italian sheep. Small Rumin. Res. 2015, 128, 27–33. [Google Scholar] [CrossRef]
- Wilkinson, S.; Wiener, P.; Archibald, A.L.; Law, A.; Schnabel, R.D.; Mckay, S.D.; Taylor, J.F.; Ogden, R. Evaluation of approaches for identifying population informative markers from high density SNP Chips. BMC Genet. 2011, 12, 45. [Google Scholar] [CrossRef] [PubMed]
- Cappuccio, I.; Pariset, L.; Ajmone-Marsan, P.; Dunner, S.; Cortes, O.; Erhardt, G.; Lühken, G.; Gutscher, K.; Joost, S.; Nijman, I.J.; et al. Allele frequencies and diversity parameters of 27 single nucleotide polymorphisms within and across goat breeds. Mol. Ecol. Notes 2006, 6, 992–997. [Google Scholar] [CrossRef]
- Denoyelle, L.; Talouarn, E.; Bardou, P.; Colli, L.; Alberti, A.; Danchin, C.; Del Corvo, M.; Engelen, S.; Orvain, C.; Palhière, I.; et al. VarGoats project: A dataset of 1159 whole-genome sequences to dissect Capra hircus global diversity. Genet. Sel. Evol. 2021, 53, 86. [Google Scholar] [CrossRef] [PubMed]
- Gebrehiwot, N.Z.; Strucken, E.M.; Marshall, K.; Aliloo, H.; Gibson, J.P. SNP panels for the estimation of dairy breed proportion and parentage assignment in African crossbred dairy cattle. Genet. Sel. Evol. 2021, 53, 21. [Google Scholar] [CrossRef] [PubMed]
- Kumar, H.; Panigrahi, M.; Saravanan, K.A.; Parida, S.; Bhushan, B.; Gaur, G.K.; Dutt, T.; Mishra, B.P.; Singh, R.K. SNPs with intermediate minor allele frequencies facilitate accurate breed assignment of Indian Tharparkar cattle. Gene 2021, 777, 145473. [Google Scholar] [CrossRef]
- Sottile, G.; Sardina, M.T.; Mastrangelo, S.; Di Gerlando, R.; Tolone, M.; Chiodi, M.; Portolano, B. Penalized classification for optimal statistical selection of markers from high-throughput genotyping: Application in sheep breeds. Animal 2018, 12, 1118–1125. [Google Scholar] [CrossRef] [Green Version]
- Talenti, A.; Palhière, I.; Tortereau, F.; Pagnacco, G.; Stella, A.; Nicolazzi, E.L.; Crepaldi, P.; Tosser-Klopp, G. AdaptMap Consortium. Functional SNP panel for parentage assessment and assignment in worldwide goat breeds. Genet. Sel. Evol. 2018, 50, 55. [Google Scholar] [CrossRef] [Green Version]
- Werner, F.A.O.; Durstewitz, G.; Habermann, F.A.; Thaller, G.; Krämer, W.; Kollers, S.; Buitkamp, J.; Georges, M.; Brem, G.; Mosner, J.; et al. Detection and characterization of SNPs useful for identity control and parentage testing in major European dairy breeds. Anim. Genet. 2004, 35, 44–49. [Google Scholar] [CrossRef] [Green Version]
- Heaton, M.; Harhay, G.; Bennett, G.; Stone, R.; Grosse, W.; Casas, E.; Keele, J.; Smith, T.; Chitko-McKown, C.; Laegreid, W. Selection and use of SNP markers for animal identification and paternity analysis in U.S. beef cattle. Inc. Mouse Gen. 2002, 13, 272–281. [Google Scholar] [CrossRef]
- Heaton, M.P.; Leymaster, K.A.; Kalbfleisch, T.S.; Kijas, J.W.; Clarke, S.M.; McEwan, J.; Maddox, J.F.; Basnayake, V.; Petrik, D.T.; Simpson, B.; et al. SNPs for Parentage Testing and Traceability in Globally Diverse Breeds of Sheep. PLoS ONE 2014, 9, e94851. [Google Scholar] [CrossRef] [Green Version]
- Strucken, E.M.; Gudex, B.; Ferdosi, M.H.; Lee, H.K.; Song, K.D.; Gibson, J.P.; Kelly, M.; Piper, E.K.; Porto-Neto, L.R.; Lee, S.H.; et al. Performance of different SNP panels for parentage testing in two East Asian cattle breeds. Anim. Genet. 2014, 45, 572–575. [Google Scholar] [CrossRef] [PubMed]
- Domínguez-Viveros, J.; Rodríguez-Almeida, F.A.; Jahuey-Martínez, F.J.; Martínez-Quintana, J.A.; Aguilar-Palma, G.N.; Ordoñez-Baquera, P. Definition of a SNP panel for paternity testing in ten sheep populations in Mexico. Small Rumin. Res. 2020, 193, 106262. [Google Scholar] [CrossRef]
- Talenti, A.; Nicolazzi, E.L.; Chessa, S.; Frattini, S.; Moretti, R.; Coizet, B.; Nicoloso, L.; Colli, L.; Pagnacco, G.; Stella, A.; et al. A method for single nucleotide polymorphism selection for parentage assessment in goats. J. Dairy Sci. 2016, 99, 3646–3653. [Google Scholar] [CrossRef] [Green Version]
- El Hou, A.; Rocha, D.; Venot, E.; Blanquet, V.; Philippe, R. Long-range linkage disequilibrium in French beef cattle breeds. Genet. Sel. Evol. 2021, 53, 63. [Google Scholar] [CrossRef] [PubMed]
- Jennings, H.S. The numerical results of diverse systems of breeding, with respect to two pairs of characters, linked or independent, with special relation to the effects of linkage. Genetics 1917, 2, 97–154. [Google Scholar] [CrossRef]
- Lewontin, R.C.; Kojima, K. The evolutionary dynamics of complex polymorphisms. Evolution 1960, 14, 458–472. [Google Scholar] [CrossRef]
- Waples, R.K.; Larson, W.A.; Waples, R.S. Estimating contemporary effective population size in non-model species using linkage disequilibrium across thousands of loci. Heredity 2016, 117, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Berihulay, H.; Islam, R.; Jiang, L.; Ma, Y. Genome-Wide Linkage Disequilibrium and the Extent of Effective Population Sizes in Six Chinese Goat Populations Using a 50K Single Nucleotide Polymorphism Panel. Animals 2019, 9, 350. [Google Scholar] [CrossRef] [Green Version]
- Usai, M.G.; Casu, S.; Sechi, T.; Salaris, S.L.; Miari, S.; Sechi, S.; Carta, P.; Carta, A. Mapping genomic regions affecting milk traits in Sarda sheep by using the OvineSNP50 Beadchip and principal components to perform combined linkage and linkage disequilibrium analysis. Genet. Sel. Evol. 2019, 51, 65. [Google Scholar] [CrossRef] [Green Version]
- Fabbri, M.C.; Dadousis, C.; Bozzi, R. Estimation of Linkage Disequilibrium and Effective Population Size in Three Italian Autochthonous Beef Breeds. Animals 2020, 10, 1034. [Google Scholar] [CrossRef]
- Ghoreishifar, S.M.; Eriksson, S.; Johansson, A.M.; Khansefid, M.; Moghaddaszadeh-Ahrabi, S.; Parna, N.; Davoudi, P.; Javanmard, A. Signatures of selection reveal candidate genes involved in economic traits and cold acclimation in five Swedish cattle breeds. Genet. Sel. Evol. 2020, 52, 52. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues de Sousa, D.; Bezerra, A.M.; Lôbo, O.; Lôbo, R.N.B. Linkage disequilibrium and effective population size in Brazilian Saanen goats. Small Rumin. Res. 2021, 202, 106471. [Google Scholar] [CrossRef]
- Rahimmadar, S.; Ghaffari, M.; Mokhber, M.; Williams, J.L. Linkage Disequilibrium and Effective Population Size of Buffalo Populations of Iran, Turkey, Pakistan, and Egypt Using a Medium Density SNP Array. Front. Genet. 2021, 12, 608186. [Google Scholar] [CrossRef] [PubMed]
- Cortes-Hernández, J.; García-Ruiz, A.; Vásquez-Peláez, C.G.; Ruiz-Lopez, F.J. Correlation of Genomic and Pedigree Inbreeding Coefficients in Small Cattle Populations. Animals 2021, 11, 3234. [Google Scholar] [CrossRef] [PubMed]
- Bovine HapMap Consortium; Gibbs, R.A.; Taylor, J.F.; Van Tassell, C.P.; Barendse, W.; Eversole, K.A.; Gill, C.A.; Green, R.D.; Hamernik, D.L.; Kappes, S.M.; et al. Genome-wide survey of SNP variation uncovers the genetic structure of cattlebreeds. Science 2009, 324, 528–532. [Google Scholar] [PubMed] [Green Version]
- Porto-Neto, L.R.; Kijas, J.W.; Reverter, A. The extent of linkage disequilibrium in beef cattle breeds using high-density SNP genotypes. Genet. Sel. Evol. 2014, 46, 22. [Google Scholar] [CrossRef] [Green Version]
- Zhang, S.; Yao, Z.; Li, X.; Zhang, Z.; Liu, X.; Yang, P.; Chen, N.; Xia, X.; Lyu, S.; Shi, Q.; et al. Assessing genomic diversity and signatures of selection in Pinan cattle using whole-genome sequencing data. BMC Genom. 2022, 23, 460. [Google Scholar] [CrossRef]
- Kijas, J.W.; Lenstra, J.A.; Hayes, B.; Boitard, S.; Porto-Neto, L.R.; San Cristobal, M.; Servin, B.; McCulloch, R.; Whan, V.; Gietzen, K.; et al. Genome-wide analysis of the world’s sheep breeds reveals high levels of historic mixture and strong recent selection. PLoS Biol. 2012, 10, e1001258. [Google Scholar] [CrossRef] [Green Version]
- Lv, F.H.; Cao, Y.H.; Liu, G.J.; Luo, L.Y.; Lu, R.; Liu, M.J.; Li, W.R.; Zhou, P.; Wang, X.H.; Shen, M.; et al. Whole-Genome Resequencing of Worldwide Wild and Domestic Sheep Elucidates Genetic Diversity, Introgression, and Agronomically Important Loci. Mol. Biol. Evol. 2022, 39, msab353. [Google Scholar] [CrossRef]
- Li, X.; Yang, J.; Shen, M.; Xie, X.L.; Liu, G.J.; Xu, Y.X.; Lv, F.H.; Yang, H.; Yang, Y.L.; Liu, C.B.; et al. Whole-genome resequencing of wild and domestic sheep identifies genes associated with morphological and agronomic traits. Nat. Commun. 2020, 11, 2815. [Google Scholar] [CrossRef]
- Zheng, Z.; Wang, X.; Li, M.; Li, Y.; Yang, Z.; Wang, X.; Pan, X.; Gong, M.; Zhang, Y.; Guo, Y.; et al. The origin of domestication genes in goats. Sci. Adv. 2020, 6, 5216. [Google Scholar] [CrossRef] [PubMed]
- Ceballos, F.C.; Joshi, P.K.; Clark, D.W.; Ramsay, M.; Wilson, J.F. Runs of homozygosity: Windows into population history and trait architecture. Nat. Rev. Genet. 2018, 19, 220–234. [Google Scholar] [CrossRef] [PubMed]
- Purcell, S.; Neale, B.; Todd-Brown, K.; Thomas, L.; Ferreira, M.A.; Bender, D.; Maller, J.; Sklar, P.; De Bakker, P.I.; Daly, M.J.; et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 2007, 81, 559–575. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mastrangelo, S.; Tolone, M.; Gerlando, R.D.; Fontanesi, L.; Sardina, M.T.; Portolano, B. Genomic inbreeding estimation in small populations: Evaluation of runs of homozygosity in three local dairy cattle breeds. Anim. Consor. 2016, 10, 746–754. [Google Scholar] [CrossRef] [Green Version]
- Meyermans, R.; Gorssen, W.; Buys, N.; Janssens, S. How to study runs of homozygosity using PLINK? A guide for analyzing medium density SNP data in livestock and pet species. BMC Genom. 2020, 21, 94. [Google Scholar] [CrossRef]
- Peripolli, E.; Munari, D.P.; Silva, M.V.G.B.; Lima, A.L.F.; Irgang, R.; Baldi, F. Runs of homozygosity: Current knowledge and applications in livestock. Anim. Genet. 2017, 48, 255–271. [Google Scholar] [CrossRef]
- Guangul, S.A. Design of Community Based Breeding Programs for Two Indigenous Goat Breeds of Ethiopia. Ph.D. Thesis, University of Natural Resources and Life Sciences, Vienna, Austria, 2014. [Google Scholar]
- Beynon, S.E.; Slavov, G.T.; Farré, M.; Sunduimijid, B.; Waddams, K.; Davies, B.; Haresign, W.; Kijas, J.; MacLeod, I.M.; Newbold, C.J.; et al. Population structure and history of the Welsh sheep breeds determined by whole genome genotyping. BMC Genet. 2015, 16, 65. [Google Scholar] [CrossRef] [Green Version]
- Ferencakovi, M.; Hamzi, E.; Gredler, B.; Solberg, T.R.; Klemetsdal, G.; Curik, I.; Solkner, J. Estimates of autozygosity derived from runs of homozygosity: Empirical evidence from selected cattle populations. J. Anim. Breed. Genet. 2013, 130, 286–293. [Google Scholar] [CrossRef]
- Williams, J.L.; Hall, S.J.G.; Del Corvo, M.; Ballingall, K.T.; Colli, L.; Marsan, P.A.; Biscarini, F. Inbreeding and purging at the genomic level: The Chillingham cattle reveal extensive, non-random SNP heterozygosity. Anim. Genet. 2015, 47, 19–27. [Google Scholar]
- Gorssen, W.; Meyermans, R.; Janssens, S.; Buys, N. A publicly available repository of ROH islands reveals signatures of selection in different livestock and pet species. Genet. Sel. Evol. 2021, 53, 2. [Google Scholar] [CrossRef]
- Cardoso, D.F.; Fernandes Junior, G.A.; Scalez, D.C.B.; Alves, A.A.C.; Magalhães, A.F.B.; Bresolin, T.; Ventura, R.V.; Li, C.; de Sena Oliveira, M.C.; Porto-Neto, L.R.; et al. Uncovering sub-structure and genomic profiles in across-countries subpopulations of Angus cattle. Sci. Rep. 2020, 10, 8770. [Google Scholar] [CrossRef] [PubMed]
- Howrigan, D.P.; Simonson, M.A.; Keller, M.C. Detecting autozygosity through runs of homozygosity: A comparison of three autozygosity detection algorithms. BMC Genom. 2011, 12, 460. [Google Scholar] [CrossRef]
- Zhang, Q.; Calus, M.P.L.; Guldbrandtsen, B.; Lund, M.S.; Sahana, G. Estimation of inbreeding using pedigree, 50k SNP chip genotypes and full sequence data in three cattle breeds. BMC Genet. 2015, 16, 88. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodríguez-Ramilo, S.T.; Elsen, J.M.; Legarra, A. Inbreeding and effective population size in French dairy sheep: Comparison between genomic and pedigree estimates. J. Dairy Sci. 2019, 102, 4227–4237. [Google Scholar] [CrossRef] [PubMed]
- Berton, M.P.; da Silva, R.P.; Banchero, G.; Mourão, G.B.; Ferraz, J.B.S.; Schenkel, F.S.; Baldi, F. Genomic integration to identify molecular biomarkers associated with indicator traits of gastrointestinal nematode resistance in sheep. J. Anim. Breed. Genet. 2022, 139, 502–516. [Google Scholar] [CrossRef] [PubMed]
- Luigi-Sierra, M.G.; Fernández, A.; Martínez, A.; Guan, D.; Delgado, J.V.; Álvarez, J.F.; Landi, V.; Such, F.X.; Jordana, J.; Saura, M.; et al. Genomic patterns of homozygosity and inbreeding depression in Murciano-Granadina goats. J. Anim. Sci. Biotechnol. 2022, 13, 35. [Google Scholar] [CrossRef]
- Mulim, H.A.; Brito, L.F.; Pinto, L.F.B.; Ferraz, J.B.S.; Grigoletto, L.; Silva, M.R.; Pedrosa, V.B. Characterization of runs of homozygosity, heterozygosity-enriched regions, and population structure in cattle populations selected for different breeding goals. BMC Genom. 2022, 23, 209. [Google Scholar] [CrossRef] [PubMed]
- Fabbri, M.C.; Dadousis, C.; Tiezzi, F.; Maltecca, C.; Lozada-Soto, E.; Biffani, S.; Bozzi, R. Genetic diversity and population history of eight Italian beef cattle breeds using measures of autozygosity. PLoS ONE 2021, 16, e0248087. [Google Scholar] [CrossRef] [PubMed]
- Pilon, B.; Hinterneder, K.; Hay, E.H.A.; Fragomeni, B. Inbreeding Calculated with Runs of Homozygosity Suggests Chromosome-Specific Inbreeding Depression Regions in Line 1 Hereford. Animals 2021, 11, 3105. [Google Scholar] [CrossRef]
- Islam, R.; Liu, Z.; Li, Y.; Jiang, L.; Ma, Y. Conservation Assessment of the State Goat Farms by Using SNP Genotyping Data. Genes 2020, 11, 652. [Google Scholar] [CrossRef]
- Biscarini, F.; Biffani, S.; Morandi, N.; Nicolazzi, E.L.; Stella, A. Using runs of homozygosity to detect genomic regions associated with susceptibility to infectious and metabolic diseases in dairy cows under intensive farming conditions. arXiv 2016, arXiv:1601.07062v1. [Google Scholar]
- Peripolli, E.; Stafuzza, N.B.; Munari, D.P.; Lima, A.L.F.; Irgang, R.; Machado, M.A.; Panetto, J.C.D.C.; Ventura, R.V.; Baldi, F.; da Silva, M.V.G.B. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. BMC Genom. 2018, 19, 34. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Purfield, D.C.; McParland, S.; Wall, E.; Berry, D.P. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLoS ONE 2017, 12, e0176780. [Google Scholar] [CrossRef] [PubMed]
- Nandolo, W.; Utsunomiya, Y.T.; Mészáros, G.; Wurzinger, M.; Khayadzadeh, N.; Torrecilha, R.B.; Mulindwa, H.A.; Gondwe, T.N.; Waldmann, P.; Ferenčaković, M.; et al. Misidentification of runs of homozygosity islands in cattle caused by interference with copy number variation or large intermarker distances. Genet. Sel. Evol. 2018, 50, 43. [Google Scholar] [CrossRef] [Green Version]
- Albrechtsen, A.; Nielsen, F.C.; Nielsen, R. Ascertainment biases in SNP chips affect measures of population divergence. Mol. Biol. Evol. 2010, 27, 2534–2547. [Google Scholar] [CrossRef] [Green Version]
- Heslot, N.; Rutkoski, J.; Poland, J.; Jannink, J.-L.; Sorrells, M.E. Impact of marker ascertainment bias on genomic selection accuracy and estimates of genetic diversity. PLoS ONE 2013, 8, e74612. [Google Scholar] [CrossRef] [Green Version]
- Lachance, J.; Tishkoff, S.A. SNP ascertainment bias in population genetic analyses: Why it is important, and how to correct it. Bioessays 2013, 35, 780–786. [Google Scholar] [CrossRef] [Green Version]
- McTavish, E.J.; Hillis, D.M. How do SNP ascertainment schemes and population demographics affect inferences about population history? BMC Genom. 2015, 16, 266. [Google Scholar] [CrossRef] [Green Version]
- Malomane, D.K.; Reimer, C.; Weigend, S.; Weigend, A.; Sharifi, A.R.; Simianer, H. Efficiency of different strategies to mitigate ascertainment bias when using SNP panels in diversity studies. BMC Genom. 2018, 19, 22. [Google Scholar] [CrossRef] [Green Version]
- Mojica, F.J.M.; Juez, G.; Rodrıguez-Valera, F. Transcription at different salinities of Haloferax mediterranei sequences adjacent to partially modified PstI sites. Mol. Microbiol. 1993, 9, 613–621. [Google Scholar] [CrossRef]
- Menchaca, A.; dos Santos-Neto, P.C.; Mulet, A.P.; Crispo, M. CRISPR in livestock: From editing to printing. Theriogenology 2020, 150, 247–254. [Google Scholar] [CrossRef] [PubMed]
Parameter | n | % | Software |
---|---|---|---|
Wright’s F-statistics | 61 | 90 | Arlequin, Cervus, FSTAT, GDA, GenAlEx, Genepop, Genetix, HP-Rare, MolKin, POPGENE, Populations, SAS |
Observed Heterozygosity | 58 | 85 | Arlequin, Cervus, GenAlEx, Genetix, FSTAT, Microsatellite, Toolkit, MolKin, PHYLIP, POPGENE |
Expected Heterozygosity | 58 | 85 | Arlequin, Cervus, FSTAT, GenAlEx, Genetix, Microsatellite, Toolkit, MolKin, POPGENE, PHYLIP |
Population structure/Admixture | 51 | 75 | BAPS, CLUMPP, Distruct, Genetix, Leadmix, Structure |
Genetic distances | 49 | 72 | Arlequin, Dispan, Genetix, MolKin, Phase, PHYLIP, POPGENE, Populations |
Effective/mean number of alleles | 48 | 71 | Arlequin, FSTAT, GenAlEx, Genetix, Microsatellite Toolkit, MolKin, POPGENE |
Hardy–Weinberg equilibrium test | 48 | 71 | Arlequin, Cervus, GenAlEx, Genepop, POPGENE, SAS |
Neighbor-joining-/phylogenetic tree | 37 | 54 | Dispan, Mega, PHYLIP, r, SplitsTree |
Allele frequencies | 36 | 53 | Cervus, FSTAT, GenAlEx, Genetix, Genepop, Microsatellite Toolkit, MolKin, Populations |
Allelic richness | 28 | 41 | FSTAT, GenAlEx, HP-RARE, POPGENE |
Polymorphic information content | 23 | 34 | Cervus, Excel, Microsatellite Toolkit, MolKin |
Analysis of molecular variance | 16 | 24 | Arlequin, GenAlEx |
Principal component analysis | 15 | 22 | Fortran, GenAlEx, MVSP, r, SAS, SPSS, XLSTAT |
Private alleles | 12 | 18 | FSTAT, GenAlEx, GDA, HP-RARE, Microsatellite Toolkit |
Populations Linkage disequilibrium | 10 | 15 | Genepop, SAS |
Null alleles | 8 | 12 | Cervus, FreeNA, Micro-Checker |
Genetic relationships/coancestry | 8 | 12 | Admixture, Genetix, MolKin, r |
Gene diversity | 5 | 7 | FSTAT, Genetix, Microsatellite Toolkit |
Proportion of shared alleles | 5 | 7 | Microstat |
Effective population size | 4 | 6 | Cervus, GenAlEx, POPGENE |
Multidimensional scaling | 4 | 6 | r, DARwin, GenAlEx |
Allelic diversity per locus | 3 | 4 | Microsatellite Toolkit, MolKin |
Multiple co-inertia analysis | 2 | 3 | r |
Percentage of polymorphic loci | 1 | 1 | POPGENE |
Parameter | n | % | Software |
---|---|---|---|
Population structure/Admixture | 35 | 85 | Admixture, fastSTRUCTURE, Python, Structure, TreeMix |
Wright’s F-statistics | 32 | 78 | Arlequin, Genepop, Golden Helix SNP Variation Suite, Powermarker, Plink, r, VCFtools |
Neighbor net/ neighbor-joining-/max. likelihood tree | 28 | 68 | Arlequin, hapFLK, Mega, PHYLIP, r, RAxML, SplitsTree, TreeMix |
FROH/other inbreeding coefficients than FIS | 28 | 68 | Arlequin, Haploview, Plink, r |
Principal component analysis | 26 | 63 | Eigensoft, Eigenstrat, GCTA, Golden Helix SNP variation Suite, Plink, r |
Linkage disequilibrium | 26 | 63 | Haploview, Plink, r, SNeP |
Expected heterozygosity | 26 | 63 | Arlequin, Plink, r |
Observed heterozygosity | 23 | 56 | Arlequin, Plink, r |
Effective population size | 21 | 51 | NeESTIMATOR, Plink, r, SNeP |
Genetic distances | 20 | 49 | Arlequin, hapFLK, Genepop, PHYLIP, Plink, Power marker, r |
Multidimensional scaling | 15 | 37 | Haploview, Plink, r |
Relationship/coancestry | 11 | 27 | Admixture, GCTA, Haploview, Plink, r |
Allelic richness | 10 | 24 | Adze, r |
Analysis of molecular variance | 7 | 17 | Arlequin |
Proportion of polymorphic markers/loci | 6 | 15 | Plink, r |
Allele frequency | 5 | 12 | Plink, Golden Helix SNP variation Suite |
Hardy–Weinberg equilibrium test | 4 | 10 | Plink |
Proportion of shared alleles | 3 | 7 | Plink |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cortes, O.; Cañon, J.; Gama, L.T. Applications of Microsatellites and Single Nucleotide Polymorphisms for the Genetic Characterization of Cattle and Small Ruminants: An Overview. Ruminants 2022, 2, 456-470. https://doi.org/10.3390/ruminants2040032
Cortes O, Cañon J, Gama LT. Applications of Microsatellites and Single Nucleotide Polymorphisms for the Genetic Characterization of Cattle and Small Ruminants: An Overview. Ruminants. 2022; 2(4):456-470. https://doi.org/10.3390/ruminants2040032
Chicago/Turabian StyleCortes, Oscar, Javier Cañon, and Luis Telo Gama. 2022. "Applications of Microsatellites and Single Nucleotide Polymorphisms for the Genetic Characterization of Cattle and Small Ruminants: An Overview" Ruminants 2, no. 4: 456-470. https://doi.org/10.3390/ruminants2040032
APA StyleCortes, O., Cañon, J., & Gama, L. T. (2022). Applications of Microsatellites and Single Nucleotide Polymorphisms for the Genetic Characterization of Cattle and Small Ruminants: An Overview. Ruminants, 2(4), 456-470. https://doi.org/10.3390/ruminants2040032