Effect of Feeding Lucerne and a Mixed Diet of Oats and Berseem Clover as a Source of Fresh Forage on Ruminal Characteristics and Nitrogen Use Efficiency in Dairy Cows during the Winter Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animals and Treatments
2.2. Forage and Concentrate Measurements
2.3. Sampling and Analysis of Ruminal Fluid
2.4. Ruminal Degradability
2.5. Nitrogen Use Efficiency
2.6. Statistical Analysis
3. Results
3.1. Chemical Composition of Forage Comprising the Diets
3.2. Botanical Composition of the Herbages
3.3. Dry Matter Intake and Ruminal Fermentation
3.4. In Situ Ruminal Degradation
3.5. Nitrogen Use Efficiency
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pérez-Prieto, L.A.; Peyraud, J.L.; Delagarde, R. Pasture Intake, Milk Production and Grazing Behaviour of Dairy Cows Grazing Low-Mass Pastures at Three Daily Allowances in Winter. Livest. Sci. 2011, 137, 151–160. [Google Scholar] [CrossRef]
- Wilkinson, J.M. Managing Silage Making to Reduce Losses. Livestock 2015, 20, 280–286. [Google Scholar] [CrossRef]
- Borreani, G.; Tabacco, E.; Schmidt, R.J.; Holmes, B.J.; Muck, R.E. Silage Review: Factors Affecting Dry Matter and Quality Losses in Silages. J. Dairy Sci. 2018, 101, 3952–3979. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van Soest, P.J. Nutritional Ecology of the Ruminant; Cornell University Press: Ithaca, NY, USA, 1994. [Google Scholar]
- Dunière, L.; Sindou, J.; Chaucheyras-Durand, F.; Chevallier, I.; Thévenot-Sergentet, D. Silage Processing and Strategies to Prevent Persistence of Undesirable Microorganisms. Anim. Feed Sci. Technol. 2013, 182, 1–15. [Google Scholar] [CrossRef]
- Kellems, R.O.; Church, D.C. Livestock Feeds and Feeding; Prentice Hall: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Grabber, J.H. Forage Management Effects on Protein and Fiber Fractions, Protein Degradability, and Dry Matter Yield of Red Clover Conserved as Silage. Anim. Feed Sci. Technol. 2009, 154, 284–291. [Google Scholar] [CrossRef]
- Enriquez-Hidalgo, D.; Teixeira, D.L.; Pinheiro Machado Filho, L.C.; Hennessy, D.; Toro-Mujica, P.; Williams, S.R.O.; Pereira, F.C. Incorporating a Fresh Mixed Annual Ryegrass and Berseem Clover Forage into the Winter Diet of Dairy Cows Resulted in Reduced Milk Yield, but Reduced Nitrogen Excretion and Reduced Methane Yield. Front. Vet. Sci. 2020, 7, 576944. [Google Scholar] [CrossRef]
- Elgersma, A.; Tamminga, S.; Ellen, G. Modifying Milk Composition through Forage. Anim. Feed Sci. Technol. 2006, 131, 207–225. [Google Scholar] [CrossRef]
- Ribeiro, C.V.D.M.; Karnati, S.K.R.; Eastridge, M.L. Biohydrogenation of Fatty Acids and Digestibility of Fresh Alfalfa or Alfalfa Hay Plus Sucrose in Continuous Culture*. J. Dairy Sci. 2005, 88, 4007–4017. [Google Scholar] [CrossRef] [Green Version]
- Pastorini, M.; Pomiés, N.; Repetto, J.L.; Mendoza, A.; Cajarville, C. Productive Performance and Digestive Response of Dairy Cows Fed Different Diets Combining a Total Mixed Ration and Fresh Forage. J. Dairy Sci. 2019, 102, 4118–4130. [Google Scholar] [CrossRef]
- Bargo, F.; Muller, L.; Delahoy, J.; Cassidy, T. Performance of High Producing Dairy Cows with Three Different Feeding Systems Combining Pasture and Total Mixed Rations. J. Dairy Sci. 2002, 85, 2948–2963. [Google Scholar] [CrossRef]
- Bargo, F.; Muller, L.D.; Varga, G.A.; Delahoy, J.E.; Cassidy, T.W. Ruminal Digestion and Fermentation of High-Producing Dairy Cows with Three Different Feeding Systems Combining Pasture and Total Mixed Rations. J. Dairy Sci. 2002, 85, 2964–2973. [Google Scholar] [CrossRef] [Green Version]
- Mendoza, A.; Cajarville, C.; Repetto, J. Intake, Milk Production, and Milk Fatty Acid Profile of Dairy Cows Fed Diets Combining Fresh Forage with a Total Mixed Ration. J. Dairy Sci. 2016, 99, 1938–1944. [Google Scholar] [CrossRef] [PubMed]
- Yucel, C. Forage Yield and Quality Attributes of Berseem Clover Genotypes under Mediterranean Climate. Int. J. Innov. Approaches Agric. Res. 2019, 3, 491–503. [Google Scholar] [CrossRef]
- Martiniello, P.; Iannucci, A. Genetic Variability in Herbage and Seed Yield in Selected Half-Sib Families of Berseem Clover, Trifolium alexandrinum L. Plant Breed. 1998, 117, 559–562. [Google Scholar] [CrossRef]
- Daneshnia, F.; Amini, A.; Chaichi, M.R. Berseem Clover Quality and Basil Essential Oil Yield in Intercropping System under Limited Irrigation Treatments with Surfactant. Agric. Water Manage. 2016, 164, 331–339. [Google Scholar] [CrossRef]
- Fraser, J.; McCartney, D.; Najda, H.; Mir, Z. Yield Potential and Forage Quality of Annual Forage Legumes in Southern Alberta and Northeast Saskatchewan. Can. J. Plant Sci. 2004, 84, 143–155. [Google Scholar] [CrossRef] [Green Version]
- Shrestha, A.; Hesterman, O.B.; Squire, J.M.; Fisk, J.W.; Sheaffer, C.C. Annual Medics and Berseem Clover as Emergency Forages. Agron. J. 1998, 90, 197–201. [Google Scholar] [CrossRef]
- Fulkerson, W.J.; Neal, J.S.; Clark, C.F.; Horadagoda, A.; Nandra, K.S.; Barchia, I. Nutritive Value of Forage Species Grown in the Warm Temperate Climate of Australia for Dairy Cows: Grasses and Legumes. Livest. Sci. 2007, 107, 253–264. [Google Scholar] [CrossRef]
- Giambalvo, D.; Ruisi, P.; Di Miceli, G.; Frenda, A.S.; Amato, G. Forage Production, N Uptake, N2 Fixation, and N Recovery of Berseem Clover Grown in Pure Stand and in Mixture with Annual Ryegrass under Different Managements. Plant Soil 2011, 342, 379–391. [Google Scholar] [CrossRef]
- Mustafa, A.F.; Seguin, P. Ensiling Characteristics, Ruminal Nutrient Degradabilities and Whole Tract Nutrient Utilization of Berseem Clover (Trifolium alexandrinum L.) Silage. Can. J. Anim. Sci. 2003, 83, 147–152. [Google Scholar] [CrossRef]
- Kaushal, S.; Wadhwa, M.; Bakshi, M.P.S. Non-Traditional Straws: Alternate Feedstuffs for Ruminants. Asian-Australas J. Anim. Sci. 2006, 19, 1722–1727. [Google Scholar] [CrossRef]
- Karsli, M.A.; Russell, J.R.; Hersom, M.J. Evaluation of Berseem Clover in Diets of Ruminants Consuming Corn Crop Residues. J. Anim. Sci. 1999, 77, 2873–2882. [Google Scholar] [CrossRef] [PubMed]
- Shoaib, M.; Khan, M.N.; Akhtar, N.; Ayub, M.; Ashraf, M.S.; Ghaffar, A.; Ullah, S. Productivity of Oat (Avena Sativa L.)-Berseem (Trifolium alexandrinum L.) Forage Mixture in Irrigated Plain of Pakistan. Pak. J. Agric. Sci. 2018, 55, 303–312. [Google Scholar]
- Ross, S.; King, J.; O’Donovan, J.; Spaner, D. The Productivity of Oats and Berseem Clover Intercrops. I. Primary Growth Characteristics and Forage Quality at Four Densities of Oats. Grass Forage Sci. 2005, 60, 74–86. [Google Scholar] [CrossRef]
- Ross, S.M.; King, J.R.; O’Donovan, J.T.; Spaner, D. Intercropping Berseem Clover with Barley and Oat Cultivars for Forage. Agron. J. 2004, 96, 1719–1729. [Google Scholar] [CrossRef]
- NRC. National Research Council, Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- AOAC. Association of Official Analytical Chemists. Official Methods of Analysis of the Association of Analytical Chemists; Association of Official Analytical Chemists: Rockville, MD, USA, 2005. [Google Scholar]
- Van Soest, P.J.; Robertson, J.B.; Lewis, B.A. Methods for Dietary Fiber, Neutral Detergent Fiber, and Nonstarch Polysaccharides in Relation to Animal Nutrition. J. Dairy Sci. 1991, 74, 3583–3597. [Google Scholar] [CrossRef]
- Bal, M.A.; Shaver, R.D.; Jirovec, A.G.; Shinners, K.J.; Coors, J.G. Crop Processing and Chop Length of Corn Silage: Effects on Intake, Digestion, and Milk Production by Dairy Cows. J. Dairy Sci. 2000, 83, 1264–1273. [Google Scholar] [CrossRef]
- Mehrez, A.Z.; Ørskov, E.R. A Study of Artificial Fibre Bag Technique for Determining the Dig Estibility of Feeds in the Rumen. J. Agric. Sci. 1977, 88, 645–650. [Google Scholar] [CrossRef]
- Ørskov, E.R.; McDonald, I. The Estimation of Protein Degradability in the Rumen from Incubation Measurements Weighted According to Rate of Passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Colmenero, J.O.; Broderick, G. Effect of Dietary Crude Protein Concentration on Milk Production and Nitrogen Utilization in Lactating Dairy Cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Peede, L.S. Evaluación Del Uso De La Pradera Mixta De Trébol Alejandrino Con Avena Como Alternativa De Forraje Invernal Para Lecherías De La Zona Central De Chile; Pontificia Universidad Catóilica de Chile: Santiago, Chile, 2017; p. 67. [Google Scholar]
- Plaizier, J.C.; Krause, D.O.; Gozho, G.N.; McBride, B.W. Subacute Ruminal Acidosis in Dairy Cows: The Physiological Causes, Incidence and Consequences. Vet. J. 2008, 176, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Morgante, M.; Stelletta, C.; Berzaghi, P.; Gianesella, M.; Andrighetto, I. Subacute Rumen Acidosis in Lactating Cows: An Investigation in Intensive Italian Dairy Herds. J. Anim. Physiol. Anim. Nutr. 2007, 91, 226–234. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.R.F.; Merry, R.J.; Davies, D.R.; Moorby, J.M.; Humphreys, M.O.; Theodorou, M.K.; MacRae, J.C.; Scollan, N.D. Effect of Increasing Availability of Water-Soluble Carbohydrates on In Vitro Rumen Fermentation. Anim. Feed Sci. Technol. 2003, 104, 59–70. [Google Scholar] [CrossRef]
- Yang, H.J.; Tamminga, S.; Williams, B.A.; Dijkstra, J.; Boer, H. In Vitro Gas and Volatile Fatty Acids Production Profiles of Barley and Maize and Their Soluble and Washout Fractions after Feed Processing. Anim. Feed Sci. Technol. 2005, 120, 125–140. [Google Scholar] [CrossRef]
- Santana, A.; Cajarville, C.; Mendoza, A.; Repetto, J.L. Combination of Legume-Based Herbage and Total Mixed Ration (TMR) Maintains Intake and Nutrient Utilization of TMR and Improves Nitrogen Utilization of Herbage in Heifers. Animal 2017, 11, 616–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valderrama, X.L.; Anrique, R.G. In Situ Rumen Degradation Kinetics of High-Protein Forage Crops in Temperate Climates. Chil. J. Agric. Res. 2011, 71, 572. [Google Scholar] [CrossRef] [Green Version]
- Cerrato-Sánchez, M.; Calsamiglia, S.; Ferret, A. Effects of Time at Suboptimal Ph on Rumen Fermentation in a Dual-Flow Continuous Culture System. J. Dairy Sci. 2007, 90, 1486–1492. [Google Scholar] [CrossRef] [Green Version]
- Calsamiglia, S.; Ferret, A.; Devant, M. Effects of Ph and Ph Fluctuations on Microbial Fermentation and Nutrient Flow from a Dual-Flow Continuous Culture System. J. Dairy Sci. 2002, 85, 574–579. [Google Scholar] [CrossRef]
- Elizalde, J.C.; Merchen, N.R.; Faulkner, D.B. In Situ Dry Matter and Crude Protein Degradation of Fresh Forages During the Spring Growth. J. Dairy Sci. 1999, 82, 1978–1990. [Google Scholar] [CrossRef]
- Givens, D.; Rulquin, H. Utilisation by Ruminants of Nitrogen Compounds in Silage-Based Diets. Anim. Feed Sci. Technol. 2004, 114, 1–18. [Google Scholar] [CrossRef]
- Broderick, G.A.; Brito, A.F.; Colmenero, J.J.O. Effects of Feeding Formate-Treated Alfalfa Silage or Red Clover Silage on the Production of Lactating Dairy Cows1. J. Dairy Sci. 2007, 90, 1378–1391. [Google Scholar] [CrossRef]
- Karsli, M.; Russell, J. The Effect of Maturity and Frost Killing of Forages on Degradation Kinetics and Escape Protein Concentration; Iowa State University Animal Industry Report; Iowa State University: Ames, IA, USA, 1999; Volume 1. [Google Scholar]
- Dewhurst, R.J.; Evans, R.T.; Scollan, N.D.; Moorby, J.M.; Merry, R.J.; Wilkins, R.J. Comparison of Grass and Legume Silages for Milk Production. 2. In Vivo and in Sacco Evaluations of Rumen Function. J. Dairy Sci. 2003, 86, 2612–2621. [Google Scholar] [PubMed]
- Sinclair, K.D.; Kuran, M.; Gebbie, F.E.; Webb, R.; McEvoy, T.G. Nitrogen Metabolism and Fertility in Cattle: Ii. Development of Oocytes Recovered from Heifers Offered Diets Differing in Their Rate of Nitrogen Release in the Rumen. J Anim Sci 2000, 78, 2670–2680. [Google Scholar] [CrossRef] [PubMed]
- Das, A.; Singh, G. Effect of Different Levels of Berseem (Trifolium alexdrinum) Supplementation of Wheat Straw on Some Physical Factors Regulating Intake and Digestion. Anim. Feed Sci. Technol. 1999, 81, 133–149. [Google Scholar] [CrossRef]
- Kafilzadeh, F.; Heidary, N. Chemical Composition, In Vitro Digestibility and Kinetics of Fermentation of Whole-Crop Forage from 18 Different Varieties of Oat (Avena sativa L.). J. Appl. Anim. Res. 2013, 41, 61–68. [Google Scholar] [CrossRef]
- Currier, T.A.; Bohnert, D.W.; Falck, S.J.; Schauer, C.S.; Bartle, S.J. Daily and Alternate-Day Supplementation of Urea or Biuret to Ruminants Consuming Low-Quality Forage: Ii. Effects on Site of Digestion and Microbial Efficiency in Steers. J. Anim. Sci. 2004, 82, 1518–1527. [Google Scholar] [CrossRef] [Green Version]
- Xin, H.; Khan, N.A.; Liu, X.; Jiang, X.; Sun, F.; Zhang, S.; Sun, Y.; Zhang, Y.; Li, X. Profiles of Odd- and Branched-Chain Fatty Acids and Their Correlations with Rumen Fermentation Parameters, Microbial Protein Synthesis, and Bacterial Populations Based on Pure Carbohydrate Incubation In Vitro. Front. Nutr. 2021, 8, 733352. [Google Scholar] [CrossRef]
- Bauman, D.E.; Griinari, J.M. Nutritional Regulation of Milk Fat Synthesis. Annu. Rev. Nutr. 2003, 23, 203–227. [Google Scholar] [CrossRef] [Green Version]
Diets | |||
---|---|---|---|
Ingredients (kg of DM) | CON | LEG | MIX |
Lucerne hay | 2.77 | - | - |
Maize silage | 5.13 | - | - |
Fresh berseem clover/oat forage | - | 7.90 | |
Fresh lucerne forage | 7.90 | ||
High moisture maize grain | 0.62 | 0.62 | 0.62 |
Crushed soybean | 1.71 | 1.71 | 1.71 |
Wheat middling | 2.77 | 2.77 | 2.77 |
CON | LEG | MIX | SEM | p Value | |
---|---|---|---|---|---|
DM (g/kg) | 546 a | 193 b | 217 b | 65.7 | <0.001 |
CP (g/kg) | 102 c | 238 a | 149 b | 4.2 | <0.001 |
NDF (g/kg) | 457 a | 348 c | 392 b | 7.0 | <0.001 |
ADF (g/kg) | 284 a | 274 ab | 245 b | 8.6 | <0.01 |
Lignin (g/kg) | 42 b | 61 a | 36 b | 3.0 | <0.001 |
Ether extract (g/kg) | 23 | 19 | 18 | 1.5 | 0.10 |
Ash (g/kg) | 65 b | 109 a | 105 a | 2.8 | <0.001 |
NDIN (g/kg) | 5.0 c | 12.1 a | 8.8 b | 0.98 | <0.01 |
ADIN (g/kg) | 2.9 | 3.8 | 3.8 | 0.77 | 0.36 |
TDN (%) | 65.9 | 62.9 | 65.0 | 0.88 | 0.09 |
Metabolizable energy (kcal/kg) | 2471 | 2527 | 2484 | 36.5 | 0.68 |
TDDM (%) | 76.0 a | 73.5 b | 77.4 a | 0.91 | 0.04 |
CON | LEG | MIX | SEM | p Value | |
---|---|---|---|---|---|
Dry matter intake | 12.77 | 12.70 | 12.75 | 0.126 | 0.98 |
Ruminal pH | 6.44 | 6.47 | 6.38 | 0.118 | 0.90 |
N-NH4+ (mmol/L) | 6.33 b | 14.82 a | 7.38 b | 0.806 | <0.001 |
Total VFA (mmol/L) | 128.5 | 133.1 | 132.6 | 15.86 | 0.96 |
Acetic acid (%) | 71.17 | 68.37 | 69.16 | 0.809 | 0.06 |
Propionic acid (%) | 14.18 | 15.58 | 15.13 | 0.560 | 0.13 |
Butyric acid (%) | 9.59 | 10.19 | 10.54 | 0.492 | 0.29 |
Valeric acid (%) | 1.31 | 1.58 | 1.63 | 0.127 | 0.05 |
Isobutyric acid (%) | 1.27 | 1.59 | 1.37 | 0.102 | 0.07 |
Isovaleric acid (%) | 1.88 | 1.98 | 1.75 | 0.157 | 0.32 |
Hexanoic acid (%) | 0.67 | 0.67 | 0.64 | 0.060 | 0.82 |
Acetic acid/Propionic acid | 5.05 | 4.49 | 4.63 | 0.202 | 0.10 |
Lipoacids/glucoacids ((acetic + butiric)/propionic)) | 5.72 | 5.16 | 5.27 | 0.218 | 0.10 |
CON | LEG | MIX | SEM | p Value | |
---|---|---|---|---|---|
DM | |||||
a | 42.4 | 40.8 | 42.1 | 0.47 | 0.11 |
b | 46.2 | 46.9 | 50.6 | 2.36 | 0.90 |
c | 0.033 b | 0.116 a | 0.080 ab | 0.017 | 0.05 |
P | 58.1 b | 71.5 a | 70.1 a | 1.89 | 0.02 |
CP | |||||
a | 53.4 a | 43.8 b | 37.0 c | 0.85 | <0.001 |
b | 37.5 c | 50.4 b | 57.2 a | 1.20 | <0.001 |
c | 0.045 b | 0.144 a | 0.110 ab | 0.016 | 0.03 |
P | 69.4 b | 78.9 a | 73.8 a | 1.67 | 0.04 |
NDF | |||||
a | 5.2 | 11.1 | 9.2 | 1.29 | 0.07 |
b | 79.1 | 60.6 | 77.4 | 16.8 | 0.31 |
c | 0.028 | 0.092 | 0.072 | 0.017 | 0.09 |
P | 28.3 b | 47.6 a | 49.3 a | 3.62 | 0.03 |
ADF | |||||
a | 0.04 | 3.8 | 3.1 | 1.04 | 0.10 |
b | 91.8 | 60.6 | 82.2 | 12.00 | 0.36 |
c | 0.024 | 0.084 | 0.062 | 0.015 | 0.12 |
P | 21.6 b | 38.9 a | 41.6 a | 3.12 | <0.05 |
CON | LEG | MIX | SEM | p Value | |
---|---|---|---|---|---|
Plasma ureic N (mg/dL) | 16.2 b | 22.0 a | 16.5 b | 1.54 | 0.03 |
Urinary urea (g/d) | 205 a | 136 ab | 114 b | 20.3 | 0.04 |
Faecal N (%) | 16.2 | 22.0 | 16.5 | 1.54 | 0.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Enriquez-Hidalgo, D.; Barrera, K.; Rivero, M.J.; Merino, V.M.; Teixeira, D.L.; Vargas-Bello-Pérez, E. Effect of Feeding Lucerne and a Mixed Diet of Oats and Berseem Clover as a Source of Fresh Forage on Ruminal Characteristics and Nitrogen Use Efficiency in Dairy Cows during the Winter Period. Ruminants 2022, 2, 212-225. https://doi.org/10.3390/ruminants2020014
Enriquez-Hidalgo D, Barrera K, Rivero MJ, Merino VM, Teixeira DL, Vargas-Bello-Pérez E. Effect of Feeding Lucerne and a Mixed Diet of Oats and Berseem Clover as a Source of Fresh Forage on Ruminal Characteristics and Nitrogen Use Efficiency in Dairy Cows during the Winter Period. Ruminants. 2022; 2(2):212-225. https://doi.org/10.3390/ruminants2020014
Chicago/Turabian StyleEnriquez-Hidalgo, D., K. Barrera, M. J. Rivero, V. M. Merino, D. L. Teixeira, and E. Vargas-Bello-Pérez. 2022. "Effect of Feeding Lucerne and a Mixed Diet of Oats and Berseem Clover as a Source of Fresh Forage on Ruminal Characteristics and Nitrogen Use Efficiency in Dairy Cows during the Winter Period" Ruminants 2, no. 2: 212-225. https://doi.org/10.3390/ruminants2020014
APA StyleEnriquez-Hidalgo, D., Barrera, K., Rivero, M. J., Merino, V. M., Teixeira, D. L., & Vargas-Bello-Pérez, E. (2022). Effect of Feeding Lucerne and a Mixed Diet of Oats and Berseem Clover as a Source of Fresh Forage on Ruminal Characteristics and Nitrogen Use Efficiency in Dairy Cows during the Winter Period. Ruminants, 2(2), 212-225. https://doi.org/10.3390/ruminants2020014