Effect of Supplementing Grass Silage-Based Diets with Concentrate Carbohydrate Sources with Different Fermentation Profiles on N Metabolism of Beef Heifers Fed to Maintenance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Dietary Treatments
2.2. Data and Sample Collection
2.3. Chemical Analysis
3. Results
4. Discussion
4.1. In Sacco Degradability
4.2. N-Balance
4.3. Rumen pH
4.4. Rumen NH3 Concentration
4.5. VFA Concentrations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Warner, J.X.; Dickerson, R.R.; Wei, Z.; Strow, L.L.; Wang, Y.; Liang, Q. Increased atmospheric ammonia over the world’s major agricultural areas detected from space. Geophys. Res. Lett. 2017, 44, 2875–2884. [Google Scholar] [CrossRef]
- Aneja, V.P.; Schlesinger, W.H.; Li, Q.; Nahas, A.; Battye, W.H. Characterization of the Global Sources of Atmospheric Ammonia from Agricultural Soils. J. Geophys. Res. Atmos. 2020, 125, e2019JD031684. [Google Scholar] [CrossRef]
- Zeng, Y.; Tian, S.; Pan, Y. Revealing the Sources of Atmospheric Ammonia: A Review. Curr. Pollut. Rep. 2018, 4, 189–197. [Google Scholar] [CrossRef]
- EEA European Union Emission Inventory Report 1990-2018. Available online: https://www.eea.europa.eu/publications/european-union-emission-inventory-report-1990-2018 (accessed on 30 September 2020).
- Hristov, A.N.; Hanigan, M.; Cole, A.; Todd, R.; McAllister, T.A.; Ndegwa, P.M.; Rotz, A. Review: Ammonia emissions from dairy farms and beef feedlots. Can. J. Anim. Sci. 2011, 91, 1–35. [Google Scholar] [CrossRef] [Green Version]
- World Health Organization. World Health Statistics 2019: Monitoring Health for the SDGs, Sustainable Development Goals. Available online: https://apps.who.int/iris/handle/10665/324835 (accessed on 28 September 2020).
- Duffy, P.; Hyde, B.; Ryan, A.M.; Murphy, J.; Quirke, B.; Fahey, D. Air Pollutant Emissions In Ireland 1990–2017 Reported to the Secretariat of the UNECE Convention on Long-Range Transboundary Air Pollution and to the European Union. Johnstown Castle: Co. Wexford, Ireland; Available online: https://www.epa.ie/pubs/reports/air/airemissions/airpollutantemissions/iir2019/ (accessed on 12 September 2020).
- Cole, N.; Todd, R. Nitrogen and phosphorus balance of beef cattle feedyards. In Proceedings of the Texas animal manure management issues conference, Round Rock, TX, USA, 29–30 September 2009; pp. 17–24. [Google Scholar]
- Jarvis, S.; Hatch, D.; Lockyer, D. Ammonia fluxes from grazed grassland: Annual losses from cattle production systems and their relation to nitrogen inputs. J. Agric. Sci. 1989, 113, 99–108. [Google Scholar] [CrossRef]
- Varel, V.H.; Nienaber, J.A.; Freetly, H.C. Conservation of nitrogen in cattle feedlot waste with urease inhibitors. J. Anim. Sci. 1999, 77, 1162–1168. [Google Scholar] [CrossRef] [PubMed]
- Lanigan, G.; Donnellan, T.; Hanrahan, K.; Gultzer, C.; Forrestal, P.J.; Farrelly, N.; Shalloo, L.; O’Brien, D.; Ryan, M.; Murphy, P.; et al. A Response to the Draft National Mitigation Plan. Teagasc submission to the Department of Communications, Climate Action & theEnvironment. Teagasc: 2017. Available online: http://hdl.handle.net/11019/1946 (accessed on 6 September 2020).
- McGee, M.; O’Riordan, E.; Moloney, A. Concentrate feed ingredients for growing-finishing cattle. In Proceedings of the National Beef Conference ‘Planning for Healthy Profits’, Tullamore, Ireland, 17 October 2017; p. 32. [Google Scholar]
- Drennan, M.J.; McGee, M.; Moloney, A.P. The effect of cereal type and feeding frequency on intake, rumen fermentation, digestibility, growth and carcass traits of finishing steers offered a grass silage-based diet. Ir. J. Agric. Food Res. 2006, 45, 135–147. [Google Scholar]
- Kung, L., Jr. Silage fermentation and additives. Sci. Tehcnol. Feed. Ind. 2001, 17, 145–159. [Google Scholar]
- Hersom, M. Opportunities to enhance performance and efficiency through nutrient synchrony in forage-fed ruminants 1. J. Anim. Sci. 2008, 86, E306–E317. [Google Scholar] [CrossRef] [PubMed]
- Van Vuuren, A.; Van der Koelen, C.; Valk, H.; De Visser, H. Effects of partial replacement of ryegrass by low protein feeds on rumen fermentation and nitrogen loss by dairy cows. J. Dairy Sci. 1993, 76, 2982–2993. [Google Scholar] [CrossRef]
- Lardy, G.; Ulmer, D.; Anderson, V.; Caton, J. Effects of increasing level of supplemental barley on forage intake, digestibility, and ruminal fermentation in steers fed medium-quality grass hay. J. Anim. Sci. 2004, 82, 3662–3668. [Google Scholar] [CrossRef] [PubMed]
- FAO. 2019 Food Outlook—Biannual Report on Global Food Markets; Licence: CC BY-NC-SA 3.0 IGO; FAO: Rome, Italy, 2019. [Google Scholar]
- CSO. Central Statistics Office. Available online: https://data.cso.ie/ (accessed on 4 January 2020).
- Nocek, J.E.; Tamminga, S. Site of digestion of starch in the gastrointestinal tract of dairy cows and its effect on milk yield and composition. J. Dairy Sci. 1991, 74, 3598–3629. [Google Scholar] [CrossRef]
- Castillo, A.; Kebreab, E.; Beever, D.; Barbi, J.; Sutton, J.; Kirby, H.; France, J. The effect of energy supplementation on nitrogen utilization in lactating dairy cows fed grass silage diets. J. Anim. Sci. 2001, 79, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Reynolds, C.; Sutton, J.; Beever, D. Effects of feeding starch to dairy cattle on nutrient availability and production. Recent Adv. Anim. Nutr. 2013, 1997, 105–134. [Google Scholar]
- Trater, A.M.; Titgemeyer, E.C.; Löest, C.A.; Lambert, B.D. Effects of supplemental alfalfa hay on the digestion of soybean hull-based diets by cattle. J. Anim. Sci. 2001, 79, 1346–1351. [Google Scholar] [CrossRef] [PubMed]
- Ipharraguerre, I.R.; Clark, J.H. Soyhulls as an Alternative Feed for Lactating Dairy Cows: A Review. J. Dairy Sci. 2003, 86, 1052–1073. [Google Scholar] [CrossRef]
- Lenehan, C.; Moloney, A.; O’Riordan, E.; Kelly, A.; McGee, M. Effect of substituting barley with maize on the performance of suckler-bred bulls offered a high concentrate diet. In Proceedings of the Agricultural Research Forum, Tullamore, Ireland, 9–10 March 2015; p. 82. [Google Scholar]
- Jarrige, R. Ruminant nutrition. In Recommended Allowances and Feeding Tables; INRA: Paris, France, 1989; Volume 389. [Google Scholar]
- Zadoks, J.C.; Chang, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Kirwan, S.F.; Pierce, K.M.; Serra, E.; McDonald, M.; Rajauria, G.; Boland, T.M. Effect of Chitosan Inclusion and Dietary Crude Protein Level on Nutrient Intake and Digestibility, Ruminal Fermentation, and N Excretion in Beef Heifers Offered a Grass Silage Based Diet. Animals 2021, 11, 771. [Google Scholar] [CrossRef] [PubMed]
- Whelan, S.; Mulligan, F.; Flynn, B.; McCarney, C.; Pierce, K. Effect of forage source and a supplementary methionine hydroxy analog on nitrogen balance in lactating dairy cows offered a low crude protein diet. J. Dairy Sci. 2011, 94, 5080–5089. [Google Scholar] [CrossRef] [Green Version]
- Ørskov, E.; McDonald, I. The estimation of protein degradability in the rumen from incubation measurements weighted according to rate of passage. J. Agric. Sci. 1979, 92, 499–503. [Google Scholar] [CrossRef] [Green Version]
- Mulligan, F.; Caffrey, P.; Rath, M.; Callan, J.; Brophy, P.; O’Mara, F. An investigation of feeding level effects on digestibility in cattle for diets based on grass silage and high fibre concentrates at two forage: Concentrate ratios. Livest. Prod. Sci. 2002, 77, 311–323. [Google Scholar] [CrossRef]
- Weatherburn, M. Phenol-hypochlorite reaction for determination of ammonia. Anal. Chem. 1967, 39, 971–974. [Google Scholar] [CrossRef]
- DeFeo, M.E.; Shampoe, K.V.; Carvalho, P.H.; Silva, F.A.; Felix, T.L. In vitro and in situ techniques yield different estimates of ruminal disappearance of barley. Transl. Anim. Sci. 2020, 4, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Cooper, R.; Milton, C.; Klopfenstein, T.J.; Scott, T.; Wilson, C.; Mass, R. Effect of corn processing on starch digestion and bacterial crude protein flow in finishing cattle. J. Anim. Sci. 2002, 80, 797–804. [Google Scholar] [CrossRef] [PubMed]
- Offner, A.; Bach, A.; Sauvant, D. Quantitative review of in situ starch degradation in the rumen. Anim. Feed. Sci. Technol. 2003, 106, 81–93. [Google Scholar] [CrossRef]
- Nocek, J.E. In situ and other methods to estimate ruminal protein and energy digestibility: A review. J. Dairy Sci. 1988, 71, 2051–2069. [Google Scholar] [CrossRef]
- Jane, J.L.; Kasemsuwan, T.; Leas, S.; Zobel, H.; Robyt, J.F. Anthology of starch granule morphology by scanning electron microscopy. Starch-Stärke 1994, 46, 121–129. [Google Scholar] [CrossRef]
- Pérez, S.; Bertoft, E. The molecular structures of starch components and their contribution to the architecture of starch granules: A comprehensive review. Starch-Stärke 2010, 62, 389–420. [Google Scholar] [CrossRef]
- Yang, J.; Xiao, A.; Wang, C. Novel development and characterisation of dietary fibre from yellow soybean hulls. Food Chem. 2014, 161, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Mulligan, F.; Caffrey, P.; Rath, M.; Callan, J.; O’Mara, F. The relationship between feeding level, rumen particulate and fluid turnover rate and the digestibility of soya hulls in cattle and sheep (including a comparison of Cr-mordanted soya hulls and Cr2O3 as particulate markers in cattle). Livest. Prod. Sci. 2001, 70, 191–202. [Google Scholar] [CrossRef]
- Cole, N.A.; Clark, R.N.; Todd, R.W.; Richardson, C.R.; Gueye, A.; Greene, L.W.; McBride, K. Influence of dietary crude protein concentration and source on potential ammonia emissions from beef cattle manure123. J. Anim. Sci. 2005, 83, 722–731. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Swanson, K.S.; Schook, L.B.; Fahey Jr, G.C. Nutritional genomics: Implications for companion animals. J. Nutr. 2003, 133, 3033–3040. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Waldrip, H.; Todd, R.; Cole, N. Prediction of nitrogen excretion by beef cattle: A meta-analysis. J. Anim. Sci. 2013, 91, 4290–4302. [Google Scholar] [CrossRef] [PubMed]
- Colmenero, J.O.; Broderick, G. Effect of dietary crude protein concentration on milk production and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 1704–1712. [Google Scholar] [CrossRef] [Green Version]
- Powell, J.; Wattiaux, M.; Broderick, G. Evaluation of milk urea nitrogen as a management tool to reduce ammonia emissions from dairy farms. J. Dairy Sci. 2011, 94, 4690–4694. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, E.; Pires, A.V.; Susin, I.; Mendes, C.; Queiroz, M.; Araujo, R.; Gentil, R.; Loerch, S. Apparent digestibility, nitrogen balance, and ruminal constituents in ram lambs fed high-concentrate diets containing soybean hulls. J. Anim. Sci. 2011, 89, 4127–4133. [Google Scholar] [CrossRef] [PubMed]
- Yan, T.; Frost, J.; Keady, T.; Agnew, R.; Mayne, C. Prediction of nitrogen excretion in feces and urine of beef cattle offered diets containing grass silage. J. Anim. Sci. 2007, 85, 1982–1989. [Google Scholar] [CrossRef] [Green Version]
- Hristov, A.; McAllister, T.; Cheng, K.-J. In Effect of carbohydrate level and ammonia availability on utilization of proportional to-amino nitrogen by mixed ruminal microorganisms in vitro. In Proceedings-American Society of Animal Science Western Section; New Mexico State University: Las Cruces, NM, USA, 1997; pp. 186–189. [Google Scholar]
- Castillo, A.; Kebreab, E.; Beever, D.; France, J. A review of efficiency of nitrogen utilisation in lactating dairy cows and its relationship with environmental pollution. J. Anim. Feed. Sci. 2000, 9, 1–32. [Google Scholar] [CrossRef]
- Surber, L.; Bowman, J. Monensin effects on digestion of corn or barley high-concentrate diets. J. Anim. Sci. 1998, 76, 1945–1954. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Dairy Cattle 6; National Academy Sciences: Washington, DC, USA, 1985. [Google Scholar]
- Philippeau, C.; Martin, C.; Michalet-Doreau, B. Influence of grain source on ruminal characteristics and rate, site, and extent of digestion in beef steers1. J. Anim. Sci. 1999, 77, 1587–1596. [Google Scholar] [CrossRef]
- Hoffman, P.C.; Esser, N.M.; Shaver, R.D.; Coblentz, W.K.; Scott, M.P.; Bodnar, A.L.; Schmidt, R.J.; Charley, R.C. Influence of ensiling time and inoculation on alteration of the starch-protein matrix in high-moisture corn. J. Dairy Sci. 2011, 94, 2465–2474. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nagaraja, T.; Titgemeyer, E. Ruminal acidosis in beef cattle: The current microbiological and nutritional outlook. J. Dairy Sci. 2007, 90, E17–E38. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dado, R.; Allen, M. Intake limitations, feeding behavior, and rumen function of cows challenged with rumen fill from dietary fiber or inert bulk. J. Dairy Sci. 1995, 78, 118–133. [Google Scholar] [CrossRef]
- Hristov, A.N.; Etter, R.P.; Ropp, J.K.; Grandeen, K.L. Effect of dietary crude protein level and degradability on ruminal fermentation and nitrogen utilization in lactating dairy cows1. J. Anim. Sci. 2004, 82, 3219–3229. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tamminga, S. Protein degradation in the forestomachs of ruminants. J. Anim. Sci. 1979, 49, 1615–1630. [Google Scholar] [CrossRef]
- Grigsby, K.; Kerley, M.; Paterson, J.; Weigel, J. Site and extent of nutrient digestion by steers fed a low-quality bromegrass hay diet with incremental levels of soybean hull substitution. J. Anim. Sci. 1992, 70, 1941–1949. [Google Scholar]
- He, Z.X.; Walker, N.D.; McAllister, T.A.; Yang, W.Z. Effect of wheat dried distillers grains with solubles and fibrolytic enzymes on ruminal fermentation, digestibility, growth performance, and feeding behavior of beef cattle1. J. Anim. Sci. 2015, 93, 1218–1228. [Google Scholar] [CrossRef]
- Rotger, A.; Ferret, A.; Calsamiglia, S.; Manteca, X. Effects of nonstructural carbohydrates and protein sources on intake, apparent total tract digestibility, and ruminal metabolism in vivo and in vitro with high-concentrate beef cattle diets. J. Anim. Sci. 2006, 84, 1188–1196. [Google Scholar] [CrossRef] [Green Version]
- Kang-Meznarich, J.H.; Broderick, G.A. Effects of Incremental Urea Supplementation on Ruminal Ammonia Concentration and Bacterial Protein Formation2. J. Anim. Sci. 1980, 51, 422–431. [Google Scholar] [CrossRef]
- Bannink, A.; Dijkstra, J.; Koopmans, S.-J.; Mroz, Z. Physiology, regulation and multifunctional activity of the gut wall: A rationale for multicompartmental modelling. Nutr. Res. Rev. 2006, 19, 227–253. [Google Scholar] [CrossRef] [Green Version]
- Dijkstra, J.; Boer, H.; Van Bruchem, J.; Bruining, M.; Tamminga, S. Absorption of volatile fatty acids from the rumen of lactating dairy cows as influenced by volatile fatty acid concentration, pH and rumen liquid volume. Br. J. Nutr. 1993, 69, 385–396. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Valkeners, D.; Thewis, A.; Van Laere, M.; Beckers, Y. Effect of rumen-degradable protein balance deficit on voluntary intake, microbial protein synthesis, and nitrogen metabolism in growing double-muscled Belgian Blue bulls fed corn silage-based diet. J. Anim. Sci. 2008, 86, 680–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- McAllister, T.; Phillippe, R.; Rode, L.; Cheng, K.-J. Effect of the protein matrix on the digestion of cereal grains by ruminal microorganisms. J. Anim. Sci. 1993, 71, 205–212. [Google Scholar] [CrossRef] [PubMed]
- Owens, F.; Zinn, R.; Kim, Y. Limits to starch digestion in the ruminant small intestine. J. Anim. Sci. 1986, 63, 1634–1648. [Google Scholar] [CrossRef]
- Feng, P.; Hunt, C.; Pritchard, G.; Parish, S. Effect of barley variety and dietary barley content on digestive function in beef steers fed grass hay-based diets. J. Anim. Sci. 1995, 73, 3476–3484. [Google Scholar] [CrossRef]
- Casper, D.P.; Maiga, H.A.; Brouk, M.J.; Schingoethe, D.J. Synchronization of carbohydrate and protein sources on fermentation and passage rates in dairy cows. J. Dairy Sci. 1999, 82, 1779–1790. [Google Scholar] [CrossRef]
- Tothi, R.; Lund, P.; Weisbjerg, M.R.; Hvelplund, T. Effect of expander processing on fractional rate of maize and barley starch degradation in the rumen of dairy cows estimated using rumen evacuation and in situ techniques. Anim. Feed. Sci. Technol. 2003, 104, 71–94. [Google Scholar] [CrossRef]
- Grigsby, K.; Kerley, M.; Paterson, J.; Weigel, J. Combinations of starch and digestible fiber in supplements for steers consuming a low-quality bromegrass hay diet. J. Anim. Sci. 1993, 71, 1057–1064. [Google Scholar] [CrossRef] [PubMed]
Ingredient Composition (kg DM−1) | DIET | ||
---|---|---|---|
RB | MM | SH | |
Rolled barley | 3.0 | - | - |
Maize meal | - | 3.0 | - |
Soya hulls | - | - | 3.0 |
Soya bean meal | 0.77 | 0.94 | 0.77 |
Grass silage | 1.47 | 1.47 | 1.47 |
Barley straw | 1.0 | 1.0 | 1.0 |
Mineral premix | 0.10 | 0.10 | 0.10 |
Chemical composition (g kg DM−1) | |||
Dry matter (g kg−1) | 44.72 | 44.12 | 44.01 |
Crude protein | 13.45 | 13.33 | 13.62 |
Starch | 17.14 | 19.09 | 0.67 |
Neutral detergent fibre | 30.35 | 28.99 | 49.63 |
Acid detergent fibre | 16.85 | 16.36 | 32.49 |
Ash | 6.37 | 6.70 | 7.15 |
Ether extract | 1.77 | 1.44 | 0.87 |
Gross energy (MJ/kg DM) | 15.22 | 15.31 | 15.14 |
Dietary Treatment 1 | |||||
---|---|---|---|---|---|
RB | MM | SH | SEM | p-Value | |
Intake (kg d −1) | |||||
Dry matter | 6.04 | 6.03 | 6.03 | 0.031 | 0.958 |
Organic matter | 5.65 | 5.62 | 5.60 | 0.028 | 0.442 |
Crude protein | 0.89 | 0.87 | 0.87 | 0.011 | 0.577 |
Neutral detergent fibre | 1.99 b | 1.89 c | 3.13 a | 0.009 | 0.001 |
Starch | 1.12 b | 1.25 a | 0.04 c | 0.006 | 0.001 |
Apparent total tract digestibility, % | |||||
Dry matter | 76.24 | 74.90 | 75.03 | 0.635 | 0.311 |
Organic matter | 77.74 | 76.33 | 76.62 | 0.643 | 0.310 |
Crude protein | 72.02 | 66.82 | 68.12 | 1.396 | 0.061 |
Neutral detergent fibre | 61.44 b | 59.89 b | 73.81 a | 0.831 | 0.001 |
Starch 2 | 96.89 a | 95.67 b | - | 0.328 | 0.039 |
DM 2 | Rolled Barley | Maize Meal | Soya Hulls | SEM | p-Value |
---|---|---|---|---|---|
a | 0.641 a | 0.572 b | 0.170 c | 0.0045 | <0.0001 |
b | 0.246 a | 0.381 a | 1.106 b | 0.0142 | <0.0001 |
c | 0.371 a | 0.100 c | 0.014 c | 0.0383 | 0.001 |
ED | 0.877 a | 0.847 a | 0.568 b | 0.0181 | <0.0001 |
Dietary Treatment 1 | |||||
---|---|---|---|---|---|
RB | MM | SH | SEM | p-Value | |
N intake (g d −1) | 142 | 143 | 143 | 4.0 | 0.105 |
N output (g d −1) | |||||
Urine N | 81 | 76 | 82 | 4.0 | 0.553 |
Faecal N | 39 b | 46 a | 43 ab | 1.3 | 0.025 |
Total excretion | 120 | 118 | 126 | 4.8 | 0.514 |
Retained | 21.0 | 23.9 | 15.9 | 4.9 | 0.538 |
N recovery 2 | |||||
Urine | 0.57 | 0.51 | 0.57 | 0.031 | 0.250 |
Faeces | 0.28 | 0.32 | 0.31 | 0.012 | 0.062 |
N excreted (%) 3 | 85.19 | 83.21 | 85.21 | 2.360 | 0.777 |
NUE (%) 4 | 14.81 | 16.79 | 14.79 | 2.360 | 0.777 |
% total excreted 5 | |||||
Urine | 67.20 a | 61.70 b | 64.74 ab | 1.553 | 0.045 |
Faeces | 32.80 b | 39.30 a | 35.26 ab | 1.553 | 0.045 |
Urine metabolites | |||||
Creatinine (µmol L−1) | 183.4 | 215.2 | 180.4 | 55.99 | 0.882 |
Urea (mmol L−1) | 5.72 | 6.13 | 8.46 | 1.30 | 0.352 |
Blood metabolites | |||||
Urea (mmol L−1) | 3.05 a | 2.52 b | 2.86 b | 0.075 | 0.002 |
Creatinine (µmol L−1) | 140.9 | 141.7 | 137.3 | 5.13 | 0.285 |
Glucose (mmol L−1) | 3.76 | 3.77 | 3.83 | 0.050 | 0.616 |
Dietary Treatment 1 | Time after Feeding | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
RB | MM | SH | SEM | Diet | 0 h | 1 h | 2 h | 4 h | 6 h | SEM | Time | Diet × Time | |
pH | 6.50 b | 6.46 b | 6.65 a | 0.040 | <0.01 | 6.73 a | 6.40 d | 6.43 d | 6.53 bc | 6.60 b | 0.037 | <0.001 | 0.110 |
(mmol L −1) | |||||||||||||
NH3 | 2.80 | 2.70 | 2.61 | 0.133 | 0.53 | 1.95 d | 2.98 c | 4.03 ab | 3.00 bc | 1.56 e | 0.125 | <0.001 | 0.019 |
Acetic | 66.53 | 66.33 ⸸ | 68.97 ⸸ | 0.801 | 0.080 | 66.82 | 66.86 | 68.43 | 66.94 | 67.36 | 0.982 | 0.747 | 0.153 |
Propionic | 10.51 ⸸ | 9.94 | 9.68 ⸸ | 0.255 | 0.079 | 8.13 d | 11.36 b | 11.88 ab | 9.86 c | 8.98 cd | 0.286 | <0.001 | 0.772 |
Butyric | 8.87 ⸸ | 8.27 | 7.59 ⸸ | 0.435 | 0.090 | 7.11 d | 8.45 c | 9.31 a | 8.47 bc | 7.89 cd | 0.385 | <0.001 | 0.584 |
Valeric | 0.96 a | 0.88 b | 0.86 b | 0.018 | 0.006 | 0.70 e | 0.88 cd | 1.11 a | 0.98 b | 0.84 d | 0.024 | <0.001 | 0.304 |
Isovaleric | 1.40 | 1.36 | 1.44 | 0.067 | 0.733 | 1.29 d | 1.38 bcd | 1.63 a | 1.42 b | 1.29 d | 0.047 | <0.001 | 0.372 |
Isobutyric | 1.36 | 1.36 | 1.37 | 0.050 | 0.983 | 1.37 c | 1.21 d | 1.54 ab | 1.41 bc | 1.30 cd | 0.046 | <0.001 | 0.447 |
Ac: Pr 2 | 6.53 b | 7.07 a | 7.49 a | 0.145 | 0.003 | 8.40 a | 6.13 e | 5.90 de | 6.99 c | 7.74 b | 0.173 | <0.001 | 0.507 |
TVFA 3 | 89.66 | 88.15 | 90.05 | 1.319 | 0.508 | 85.48 ac | 90.18 ab | 93.93 ab | 89.15 ac | 87.70 c | 0.173 | <0.001 | 0.345 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kirwan, S.F.; Pierce, K.M.; Serra, E.; Gath, V.; Rajauria, G.; Boland, T.M. Effect of Supplementing Grass Silage-Based Diets with Concentrate Carbohydrate Sources with Different Fermentation Profiles on N Metabolism of Beef Heifers Fed to Maintenance. Ruminants 2022, 2, 188-200. https://doi.org/10.3390/ruminants2020012
Kirwan SF, Pierce KM, Serra E, Gath V, Rajauria G, Boland TM. Effect of Supplementing Grass Silage-Based Diets with Concentrate Carbohydrate Sources with Different Fermentation Profiles on N Metabolism of Beef Heifers Fed to Maintenance. Ruminants. 2022; 2(2):188-200. https://doi.org/10.3390/ruminants2020012
Chicago/Turabian StyleKirwan, Stuart F., Karina M. Pierce, Eleonora Serra, Vivian Gath, Gaurav Rajauria, and Tommy M. Boland. 2022. "Effect of Supplementing Grass Silage-Based Diets with Concentrate Carbohydrate Sources with Different Fermentation Profiles on N Metabolism of Beef Heifers Fed to Maintenance" Ruminants 2, no. 2: 188-200. https://doi.org/10.3390/ruminants2020012
APA StyleKirwan, S. F., Pierce, K. M., Serra, E., Gath, V., Rajauria, G., & Boland, T. M. (2022). Effect of Supplementing Grass Silage-Based Diets with Concentrate Carbohydrate Sources with Different Fermentation Profiles on N Metabolism of Beef Heifers Fed to Maintenance. Ruminants, 2(2), 188-200. https://doi.org/10.3390/ruminants2020012