Extruded Linseed and Oregano Dietary Supplementation: Effects on Growth Performance, Carcass Composition, and Meat Quality of Jonica Kids
Abstract
:1. Introduction
2. Materials and Methods
2.1. Animal Management and Diet
2.2. Growth Performance of Kids
2.3. Physical Parameters of Longissimus Lumborum Muscle
2.4. Analyses of Chemical Composition and Fatty Acid of Ll Muscle
2.5. Statistical Analysis
3. Results and Discussion
3.1. Growth Performance of Kids
3.2. Carcass Traits
3.3. Longissimus Lumborum Muscle Physical Characteristics
3.4. Chemical Composition of Longissimus Lumborum Muscle of Kids
3.5. Longissimus Lumborum Muscle Fatty Acid Composition
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- De Marzo, D.; Nicastro, F. The Jonica and Maltese Goat Breeds Reared in Different Regions of Italy. In Sustainable Goat Production in Adverse Environments: Volume II; Simões, J., Gutiérrez, C., Eds.; Springer: Cham, Switzerland, 2017. [Google Scholar] [CrossRef]
- Webb, E.C.; Casey, N.H.; Simela, L. Goat meat quality. Small Rumin. Res. 2005, 60, 153–166. [Google Scholar] [CrossRef]
- Borgogno, M.; Corazzin, M.; Saccà, E.; Bovolenta, S.; Piasentier, E. Influence of familiarity with goat meat on liking and preference for capretto and chevon. Meat Sci. 2015, 106, 69–77. [Google Scholar] [CrossRef] [PubMed]
- Dhanda, J.S.; Taylor, D.G.; McCosker, J.E.; Murray, P.J. The influence of goat genotype on the production of capretto and chevon carcass. 1. Growth and carcass characteristics. Meat Sci. 1999, 52, 355–361. [Google Scholar] [CrossRef]
- Todaro, M.; Corrao, A.; Alicara, M.L.; Schinelli, R.; Giaccone, P.; Priolo, A. Effects of litter size and sex on meat quality traits of kid meat. Small Rumin. Res. 2004, 54, 191–196. [Google Scholar] [CrossRef]
- Wahle, K.W.J.; Heys, S.D.; Rotondo, D. Conjugated linoleic acids: Are they beneficial or detrimental to health? Prog. Lipid Res. 2004, 43, 553–587. [Google Scholar] [CrossRef] [PubMed]
- Colonna, M.A.; Rotondi, P.; Selvaggi, M.; Jambrenghi, A.C.; Ragni, M.; Tarricone, S. Sustainable Rearing for Kid Meat Production in Southern Italy Marginal Areas: A Comparison among Three Genotypes. Sustainability 2020, 12, 6922. [Google Scholar] [CrossRef]
- Wood, J.; Richardson, R.; Nute, G.; Fisher, A.; Campo, M.; Kasapidou, E.; Sheard, P.; Enser, M. Effects of fatty acids on meat quality: A review. Meat Sci. 2004, 66, 21–32. [Google Scholar] [CrossRef]
- Cosentino, C.; Colonna, M.; Musto, M.; Dimotta, A.; Freschi, P.; Tarricone, S.; Ragni, M.; Paolino, R. Effects of dietary supplementation with extruded linseed and oregano in autochthonous goat breeds on the fatty acid profile of milk and quality of Padraccio cheese. J. Dairy Sci. 2021, 104, 1445–1453. [Google Scholar] [CrossRef]
- Pérez-Rosés, R.; Risco, E.; Vila, R.; Peñalver, P.; Cañigueral, S. Biological and nonbiological antioxidant activity of some essential oils. J. Agric. Food Chem. 2016, 64, 4716–4724. [Google Scholar] [CrossRef]
- Rotondi, P.; Colonna, M.A.; Marsico, G.; Giannico, F.; Ragni, M.; Facciolongo, A.M. Dietary Supplementation with Oregano and Linseed in Garganica Suckling Kids: Effects on Growth Performances and Meat Quality. Pak. J. Zool. 2018, 50, 1421–1433. [Google Scholar] [CrossRef]
- Scarpa, G.; Tarricone, S.; Ragni, M. Carcass Composition, Meat Quality and Sensory Quality of Gentile di Puglia Light Lambs: Effects of Dietary Supplementation with Oregano and Linseed. Animals 2021, 11, 607. [Google Scholar] [CrossRef] [PubMed]
- National Research Council. Nutrient Requirements of Small Ruminants: Sheep, Goats, Cervids and New World Camelids; The National Academy Press: Washington, DC, USA, 2007. [Google Scholar]
- Association of Official Agricultural Chemistry. Official Methods of Analysis of the AOAC, 17th ed.; Association of Official Analytical Chemists: Arlington, VA, USA, 2000. [Google Scholar]
- Lestingi, A.; Colonna, M.; Marsico, G.; Tarricone, S.; Facciolongo, A. Effects of legume seeds and processing treatment on growth, carcass traits and blood constituents of fattening lambs. S. Afr. J. Anim. Sci. 2019, 49, 799–809. [Google Scholar] [CrossRef] [Green Version]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- SAS. SAS/STAT 9.13 User’s Guide; Statistical Analysis System Institute: Cary, NC, USA, 2004. [Google Scholar]
- Wang, X.; Martin, G.B.; Wen, Q.; Liu, S.; Zhang, J.; Yu, Y.; Shi, B.; Guo, X.; Zhao, Y.; Yan, S. Linseed oil and heated linseed grain supplements have different effects on rumen bacterial community structures and fatty acid profiles in cashmere kids. J. Anim. Sci. 2019, 97, 2099–2113. [Google Scholar] [CrossRef]
- Liu, S.; Wang, X.; Li, Y.; Shi, B.; Guo, X.; Zhao, Y.; Yan, S. Flaxseed Oil and Heated Flaxseed Supplements Have Different Effects on Lipid Deposition and Ileal Microbiota in Albas Cashmere Goats. Animals 2021, 11, 790. [Google Scholar] [CrossRef]
- Tarricone, S.; Giannico, F.; Ragni, M.; Colonna, M.A.; Rotondi, P.; Cosentino, C.; Tufarelli, V.; Laudadio, V. Effects of dietary extruded linseed (Linum usitatissimum L.) and oregano (Origanum vulgare) on growth traits, carcass composition and meat quality of Grigia di Potenza suckling kids. Intern. J. Agric. Biol. 2021, 25, 1153–1160. [Google Scholar] [CrossRef]
- Guzman, J.L.; de la Vega, F.; Zarazaga, L.A.; Arguello, A.; Delgrado-Pertinez, M. Carcass characteristics and meat quality of conventionally and organically reared suckling dairy goat kids of the Payoya breed. Ann. Anim. Sci. 2019, 19, 1143–1159. [Google Scholar] [CrossRef] [Green Version]
- Simitzisa, P.E.; Deligeorgisa, S.G.; Bizelisa, J.A.; Dardamania, A.; Theodosioua, I.; Fegeros, K. Effect of dietary oregano oil supplementation on lamb meat characteristics. Meat Sci. 2008, 79, 217–223. [Google Scholar] [CrossRef]
- Kirkpinar, F.; Ünlü, H.B.; Serdaroğlu, M.; Turp, G.Y. Effects of dietary oregano and garlic essential oils on carcass characteristics, meat composition, colour, pH and sensory quality of broiler meat. Br. Poult. Sci. 2014, 55, 157–166. [Google Scholar] [CrossRef]
- Simitzis, P.E.; Symeon, G.K.; Charismiadou, M.A.; Bizelis, J.A.; Deligeorgis, S.G. The effects of dietary oregano oil supplementation on pig meat characteristics. Meat Sci. 2010, 84, 670–676. [Google Scholar] [CrossRef]
- Tarricone, S.; Colonna, M.; Giannico, F.; Ragni, M.; Lestingi, A.; Facciolongo, A. Effect of an extruded linseed diet on meat quality traits in Nero Lucano pigs. S. Afr. J. Anim. Sci. 2020, 49, 1093–1103. [Google Scholar] [CrossRef]
- Cimmino, R.; Barone, C.M.A.; Claps, S.; Varricchio, E.; Rufrano, D.; Caroprese, M.; Albenzio, M.; De Palo, P.; Campanile, G.; Neglia, G. Effects of dietary supplementation with polyphenols on meat quality in Saanen goat kids. BMC Vet. Res. 2018, 14, 181. [Google Scholar] [CrossRef]
- De souza, P.P.S.; Barros Gomes, H.F.; Gonçalves, H.C.; Lima Meirelles, P.R.; Marques, R.O.; Prestes Brito, E.; de Oliveira, G.M.; Corrêa, H.L. Effects of feeding systems and breed group on carcass characteristics and meat quality of feedlot goat kids. Semin. Ciências Agrárias 2018, 39, 1759–1774. [Google Scholar] [CrossRef]
- Liotta, L.; Chiofalo, V.; Lo Presti, V.; Chiofalo, B. Effect of production system on growth performances and meat traits of suckling Messinese goat kids. Ital. J. Anim. Sci. 2020, 19, 245–252. [Google Scholar] [CrossRef]
- Kerry, J.P.; Buckley, D.J.; Morrissey, P.A.; O’Sullivan, K.; Lynch, P.B. Endogenous and exogenous α-tocopherol supplementation: Effects on lipid stability (TBARS) and warmed-over flavour (WOF) in porcine M. longissimus dorsi roasts held in aerobic and vacuum packs. Food Res. Int. 1998, 31, 211–216. [Google Scholar]
- Surai, P.F. Polyphenol compounds in the chicken/animal diet: From the past to the future. J. Anim. Phys. Anim. Nutr. 2014, 98, 19–31. [Google Scholar] [CrossRef] [PubMed]
- Hukerdi, Y.J.; Nasri, M.F.; Rashidi, L.; Ganjkhanlou, M.; Emami, A. Effects of dietary olive leaves on performance, carcass traits, meat stability and antioxidant status of fattening Mahabadi male kids. Meat Sci. 2019, 153, 2–8. [Google Scholar] [CrossRef]
- Huang, X.; Ahn, D.U. Lipid oxidation and its implications to meat quality and human health. Food Sci. Biotechnol. 2019, 28, 1275–1285. [Google Scholar] [CrossRef] [PubMed]
- Ripoll, G.; Joy, M.; Muñoz, F. Use of dietary vitamin E and selenium (Se) to increase the shelf life of modified atmosphere packaged light lamb meat. Meat Sci. 2011, 87, 88–93. [Google Scholar] [CrossRef]
- Facciolongo, A.M.; De Marzo, D.; Ragni, M.; Lestingi, A.; Toteda, F. Use of alternative protein sources for finishing lambs. 2. Effects on chemical and physical characteristics and fatty acid composition of meat. Prog. Nutr. 2015, 17, 165–173. [Google Scholar]
- WHO/FAO (World Health Organization/Food and Agriculture Organization). Diet, Nutrition and the Prevention of Chronic Diseases; WHO Technical Report Series; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- Wang, X.; Martin, G.B.; Liu, S.L.; Shi, B.L.; Guo, X.Y.; Zhao, Y.L.; Yan, S.M. The mechanism through which dietary supplementation with heated linseed grain increases n-3 long-chain polyunsaturated fatty acid concentration in subcutaneous adipose tissue of cashmere kids. J. Anim. Sci. 2018, 97, 385–397. [Google Scholar] [CrossRef] [PubMed]
Diet 1 | SEM 2 | p-Value | |||
---|---|---|---|---|---|
C | L | L + O | |||
Initial—20 d BW 3 (kg) | 6.65 | 6.75 | 6.76 | 1.225 | 0.25 |
60 d BW (kg) | 11.70 | 12.28 | 12.56 | 2.211 | 0.55 |
Average daily BW gain 20–60 (kg/d) | 0.13 | 0.14 | 0.14 | 0.030 | 0.12 |
Average daily feed intake (kg/d) | 0.58 | 0.63 | 0.67 | 0.158 | 0.47 |
Feed conversion ratio | 5.23 | 5.17 | 5.68 | 0.546 | 0.52 |
Diet 1 | SEM | p-Value | |||
---|---|---|---|---|---|
C | L | L + O | |||
Final body weight (kg) | 11.70 | 12.28 | 12.56 | 2.211 | 0.55 |
Slaughter weight (kg) | 10.37 | 12.20 | 11.42 | 1.816 | 0.64 |
Skin (%) 2 | 7.31 | 8.19 | 7.88 | 0.867 | 0.74 |
Hot carcass dressing (%) 2 | 68.87 | 69.96 | 67.07 | 2.146 | 0.46 |
Cold carcass dressing (%) 2 | 66.35 | 66.04 | 64.67 | 2.211 | 0.59 |
Carcass weight (kg) | 6.42 | 6.64 | 6.68 | 1.096 | 0.42 |
Meat cuts (%) 3 | |||||
Neck | 6.50 | 6.72 | 6.93 | 0.413 | 0.25 |
Shoulder | 17.00 b | 17.26 ab | 17.62 a | 0.520 | 0.04 |
Leg | 24.15 | 21.89 | 24.48 | 0.662 | 0.33 |
Steaks | 11.74 | 12.00 | 11.74 | 0.476 | 0.13 |
Abdominal region | 3.98 | 3.75 | 3.64 | 0.409 | 0.21 |
Loin | 5.34 | 5.00 | 5.30 | 0.239 | 0.19 |
Brisket | 6.97 ab | 7.10 a | 6.01 b | 0.500 | 0.046 |
Offal | 8.74 | 8.60 | 7.83 | 0.952 | 0.18 |
Diet 1 | SEM | p-Value | |||
---|---|---|---|---|---|
C | L | L + O | |||
Leg (kg) | 0.34 | 0.37 | 0.37 | 0.070 | 0.35 |
Lean (%) | 41.68 | 43.63 | 40.06 | 4.862 | 0.38 |
Dissectible fat (%) | 10.92 A | 9.90 a | 6.75 Bb | 2.132 | 0.002 |
Bone (%) | 47.40 ab | 46.47 b | 53.19 a | 4.746 | 0.04 |
Loin (kg) | 1.46 | 1.80 | 1.56 | 0.303 | 0.29 |
Lean (%) | 63.20 | 64.15 | 62.88 | 2.447 | 0.35 |
Dissectible fat (%) | 6.31 ab | 7.73 a | 4.82 b | 2.083 | 0.047 |
Bone (%) | 30.49 | 28.12 | 32.30 | 3.240 | 0.66 |
Diet 1 | SEM | p-Value | |||
---|---|---|---|---|---|
C | L | L + O | |||
pH1 # | 6.55 b | 6.65 ab | 6.76 a | 0.116 | 0.03 |
pH24 ## | 5.61 a | 5.73 A | 5.34 Bb | 0.117 | 0.009 |
3 day | |||||
L* | 45.65 | 46.56 | 46.23 | 2.480 | 0.59 |
a* | 5.36 | 5.60 | 5.04 | 0.807 | 0.41 |
b* | 10.50 | 11.07 | 10.98 | 0.684 | 0.38 |
WBS, kg/cm2 | 44.30 | 43.02 | 49.00 | 13.52 | 0.87 |
T-BARS (mg MDA/kg meat) | 0.398 A | 0.434 A | 0.247 B | 0.122 | 0.004 |
10 day | |||||
L* | 43.32 | 44.84 | 45.28 | 2.827 | 0.90 |
a* | 6.39 | 6.49 | 5.66 | 1.100 | 0.74 |
b* | 10.96 | 11.60 | 10.96 | 0.701 | 0.16 |
WBS, kg/cm2 | 41.36 | 42.14 | 47.92 | 10.58 | 0.49 |
T-BARS (mg MDA/kg meat) | 0.417 AB | 0.645 A | 0.298 B | 0.278 | 0.006 |
Diet 1 | SEM | p-Value | |||
---|---|---|---|---|---|
C | L | L + O | |||
Moisture | 76.96 AB | 75.86 B | 77.56 A | 0.350 | 0.001 |
Protein | 19.75 b | 20.11 a | 19.92 ab | 0.241 | 0.04 |
Lipid | 1.39 B | 2.15 A | 1.88 AB | 0.249 | 0.004 |
Ash | 1.14 | 1.27 | 1.15 | 0.122 | 0.21 |
Diet 1 | SEM | p-Value | |||
---|---|---|---|---|---|
C | L | L + O | |||
Total Fatty acids (g/100 g muscle) | 1.21 | 1.72 | 1.56 | 0.29 | 0.25 |
C10:0 (capric) | 0.29 | 0.35 | 0.37 | 0.902 | 0.36 |
C12:0 (lauric) | 1.20 a | 0.85 b | 0.99 ab | 0.286 | 0.04 |
C14:0 (myristic) | 2.82 A | 1.85 B | 1.45 B | 0.587 | 0.007 |
C15:0 | 0.23 | 0.18 | 0.40 | 0.438 | 0.048 |
C16:0 (palmitic) | 26.37 | 25.20 | 24.35 | 2.039 | 0.75 |
C17:0 | 0.87 | 0.98 | 0.97 | 0.223 | 0.69 |
C18:0 (stearic) | 15.74 | 16.13 | 16.12 | 2.024 | 0.67 |
C20:0 | 0.71 | 0.74 | 0.68 | 0.513 | 0.81 |
∑ SFA | 48.85 a | 46.84 ab | 45.95 b | 2.066 | 0.04 |
C14:1 | 0.33 | 0.66 | 0.65 | 0.580 | 0.48 |
C15:1 | 0.10 | 0.14 | 0.43 | 0.338 | 0.77 |
C16:1 n7 (palmitoleic) | 1.73 | 1.48 | 1.70 | 0.441 | 0.34 |
C17:1 | 0.41 | 0.48 | 0.33 | 0.180 | 0.42 |
C18:1 n9 trans (elaidic) | 2.33 | 2.33 | 2.17 | 0.506 | 0.30 |
C18:1 n9 cis (oleic) | 36.09 Bb | 38.39 A | 37.81 a | 1.630 | 0.005 |
∑ MUFA | 42.45 b | 45.19 a | 45.24 a | 2.110 | 0.03 |
C18:2 n6 (linoleic) | 6.58 a | 5.41 b | 5.97 ab | 0.626 | 0.04 |
CLA c9, t11 | 0.16 | 0.17 | 0.11 | 0.116 | 0.23 |
CLA t10, c12 | 0.17 | 0.10 | 0.13 | 0.080 | 0.33 |
C18:3 n6 | 0.57 | 0.45 | 0.54 | 0.312 | 0.15 |
C18:3 n3 (α-linolenic) | 0.36 Bb | 0.73 A | 0.59 a | 0.159 | 0.004 |
C20:3 n3 | 0.17 B | 0.25 b | 0.34 Aa | 0.075 | 0.001 |
C20:4 n6 (arachidonic) | 0.14 b | 0.12 B | 0.29 Aa | 0.108 | 0.006 |
C20:5 n3 (eicosapentaenoic) | 0.19 | 0.22 | 0.26 | 0.074 | 0.12 |
C22:5 n3 (docosapentaenoic) | 0.06 | 0.08 | 0.09 | 0.047 | 0.06 |
C22:6 n3 (docosaesaenoico) | 0.18 B | 0.25 AB | 0.33 A | 0.086 | 0.001 |
∑ PUFA | 8.69 ab | 7.94 b | 8.80 a | 0.823 | 0.04 |
∑ UFA | 51.15 b | 53.16 ab | 54.05 a | 2.066 | 0.02 |
Total n-6 | 7.39 A | 6.05 Bb | 6.89 a | 0.714 | 0.007 |
Total n-3 | 0.91 B | 1.47 A | 1.52 A | 0.163 | 0.004 |
n-6/n-3 | 8.60 A | 4.26 B | 4.57 B | 1.113 | 0.008 |
A.I. | 0.77 A | 0.64 B | 0.60 B | 0.091 | 0.002 |
T.I. | 1.61 Aa | 1.42 b | 1.36 B | 0.142 | 0.004 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vizzielli, F.; Tarricone, S.; Claps, S.; De Mastro, G.; Ragni, M. Extruded Linseed and Oregano Dietary Supplementation: Effects on Growth Performance, Carcass Composition, and Meat Quality of Jonica Kids. Ruminants 2021, 1, 127-136. https://doi.org/10.3390/ruminants1020010
Vizzielli F, Tarricone S, Claps S, De Mastro G, Ragni M. Extruded Linseed and Oregano Dietary Supplementation: Effects on Growth Performance, Carcass Composition, and Meat Quality of Jonica Kids. Ruminants. 2021; 1(2):127-136. https://doi.org/10.3390/ruminants1020010
Chicago/Turabian StyleVizzielli, Felice, Simona Tarricone, Salvatore Claps, Giuseppe De Mastro, and Marco Ragni. 2021. "Extruded Linseed and Oregano Dietary Supplementation: Effects on Growth Performance, Carcass Composition, and Meat Quality of Jonica Kids" Ruminants 1, no. 2: 127-136. https://doi.org/10.3390/ruminants1020010
APA StyleVizzielli, F., Tarricone, S., Claps, S., De Mastro, G., & Ragni, M. (2021). Extruded Linseed and Oregano Dietary Supplementation: Effects on Growth Performance, Carcass Composition, and Meat Quality of Jonica Kids. Ruminants, 1(2), 127-136. https://doi.org/10.3390/ruminants1020010