Evaluation of a Low-Moisture, Molasses-Based Block Containing Organic Sources of Trace Minerals and a Saccharomyces cerevisiae Fermentation Culture during the Feedlot Receiving Phase on Growth Performance, Efficiency of Dietary Net Energy Utilization, and Liver Trace Mineral Status in Newly Weaned Steer Calves
Abstract
:1. Introduction
2. Materials and Methods
2.1. Institutional Animal Care and Use Approval
2.2. Treatments
2.3. Animals, Initial Processing, and Study Initiation
2.4. Diet and Intake Management
2.5. Liver Biopsy and Hepatic Mineral Determination
2.6. Growth Performance Calculations
2.7. Statistical Analysis
3. Results and Discussion
3.1. Micronutrient Intake
3.2. Liver Mineral Content
3.3. Growth Performance Responses
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Loerch, S.; Fluharty, F. Physiological changes and digestive capabilities of newly received feedlot cattle. J. Anim. Sci. 1999, 77, 1113–1119. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ott, G.C.; Freeman, S.R.; Poore, M.H.; Pickworth, C.L. 11 Impact of weaning strategy on calf performance, behavior, and activity. J. Anim. Sci. 2019, 97, 12–13. [Google Scholar] [CrossRef]
- Galyean, M.L.; Perino, L.J.; Duff, G.C. Interaction of cattle health/immunity and nutrition. J. Anim. Sci. 1999, 77, 1120–1134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ranches, J.; De Oliveira, R.A.; Vedovatto, M.; Palmer, E.A.; Moriel, P.; Silva, L.D.; Zylberlicht, G.; Drouillard, J.S.; Arthington, J.D. Low moisture, cooked molasses blocks: A limited intake method for supplementing trace minerals to pre-weaned calves. Anim. Feed Sci. Technol. 2021, 273, 114793. [Google Scholar] [CrossRef]
- Moriel, P.; Artioli, L.F.A.; Piccolo, M.B.; Miranda, M.; Ranches, J.; Ferreira, V.S.M.; Antunes, L.Q.; Bega, A.M.; Miranda, V.F.B.; Vieira, J.F.R.L.; et al. Effects of low-moisture, sugarcane molasses-based block supplementation on growth, physiological parameters, and liver trace mineral status of growing beef heifers fed low-quality, warm-season forage. In Translational Animal Science; Oxford University Press Inc.: Cary, NC, USA, 2019; Volume 3, pp. 523–531. [Google Scholar]
- Smith, Z.K.; Karges, K.; Aguilar, A. Evaluation of an active live yeast (Levucell Saccharomyces cerevisiae, CNCM l-1077) on receiving and backgrounding period growth performance and efficiency of dietary net energy utilization in low health risk beef steers. Transl. Anim. Sci. 2020, 4, txaa127. [Google Scholar] [CrossRef] [PubMed]
- Theurer, M.; Fox, J.; Aguilar, A.; Nielsen, H.; Simpson, J.; Lawrence, T. Effect of live yeast (Saccharomyces cerevisiae boulardii CNCM I-1079) feed additive on health and growth parameters of high-risk heifers in a commercial feedlot. Bov. Pract. 2019, 53, 117–127. [Google Scholar] [CrossRef]
- Zinn, R.A.; Alvarez, E.G.; Rodriguez, S.; Salinas, J. Influence of yeast culture on health, performance and digestive function of feedlot steers. Proc. West. Sec. Amer. Soc. Anim. Sci. 1999, 50, 335–338. [Google Scholar]
- Poppy, G.D.; Rabiee, A.R.; Lean, I.J.; Sanchez, W.K.; Dorton, K.L.; Morley, P.S. A meta-analysis of the effects of feeding yeast culture produced by anaerobic fermentation of Saccharomyces cerevisiae on milk production of lactating dairy cows. J. Dairy Sci. 2012, 95, 6027–6041. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Preston, R.L. 2016 Feed Composition Table. BEEF Magazine. Available online: https://www.beefmagazine.com/sites/beefmagazine.com/files/2016-feedcomposition-tables-beef-magazine.pdf (accessed on 1 February 2019).
- Engle, T.E.; Spears, J.W. Effects of dietary copper concentration and source on performance and copper status of growing and finishing steers. J. Anim. Sci. 2000, 78, 2446–2451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wahlen, R.; Evans, L.; Turner, J.; Hearn, R. The use of collision/reaction cell ICP-MS for the determination of elements in blood and serum samples. Spectroscopy 2005, 20, 84–89. [Google Scholar]
- Smith, Z.K. Nose Color of Charolais British Crossbred Beef Steers Alters Body Weight at a Common Degree of Fatness and Marbling Score in Steers Reared Under Similar Management from Birth through Finishing. Am. J. Anim. Vet. Sci. 2020, 15. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Beef Cattle, 6th ed.; National Academy Press: Washington, DC, USA, 1996. [Google Scholar]
- Lofgreen, G.P.; Garrett, W.N. A System for Expressing Net Energy Requirements and Feed Values for Growing and Finishing Beef Cattle. J. Anim. Sci. 1968, 27, 793–806. [Google Scholar] [CrossRef]
- Owens, F.N.; Hicks, R.B. Can net energy values be determined from animal performance measurements? A review of factors affecting application of the California Net Energy System. Transl. Anim. Sci. 2019, 3, 929–944. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R.A.; Barreras, A.; Owens, F.N.; Plascencia, A. Performance by feedlot steers and heifers: Daily gain, mature body weight, dry matter intake, and dietary energetics. J. Anim. Sci. 2008, 86, 2680–2689. [Google Scholar] [CrossRef] [PubMed]
- Zinn, R.A.; Shen, Y. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. J. Anim. Sci. 1998, 76, 1280–1289. [Google Scholar] [CrossRef] [PubMed]
- Littell, R.C.; Henry, P.R.; Ammerman, C.B. Statistical analysis of repeated measures data using SAS procedures. J. Anim. Sci. 1998, 76, 1216–1231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arthington, J.D.; Pate, F.M.; Spears, J.W. Effect of copper source and level on performance and copper status of cattle consuming molasses-based supplements. J. Anim. Sci. 2003, 81, 1357–1362. [Google Scholar] [CrossRef] [PubMed]
- Jackson, T.D.; Carmichael, R.N.; Deters, E.L.; Messersmith, E.M.; VanValin, K.R.; Loy, D.D.; Hansen, S.L. Comparison of multiple single-use, pulse-dose trace mineral products provided as injectable, oral drench, oral paste, or bolus on circulating and liver trace mineral concentrations of beef steers. Appl. Anim. Sci. 2020, 36, 26–35. [Google Scholar] [CrossRef]
- NASEM. Nutrient Requirements of Beef Cattle, 8th ed.; The National Academies Press: Washington, DC, USA, 2016. [Google Scholar] [CrossRef]
Item | Value |
---|---|
Crude protein, % | 12.00 |
Crude fat, % | 4.00 |
Crude fiber, % | 4.00 |
Calcium, % | 2.00 |
Phosphorus, % | 1.00 |
Salt, % | 1.50 |
Magnesium, % | 1.00 |
Potassium, % | 2.00 |
Manganese, ppm | 1300.00 |
Cobalt, ppm | 60.00 |
Copper, ppm | 785.00 |
Iodine, ppm | 40.00 |
Selenium, ppm | 13.00 |
Zinc, ppm | 2500.00 |
Vitamin A, IU/kg | 440,920.00 |
Vitamin D3, IU/kg | 49,603.50 |
Vitamin E, IU/kg | 1763.68 |
Item | D 1 to 21 | D 22 to 42 |
---|---|---|
Corn silage, % | 65.20 | 64.13 |
DDGS 2, % | 19.42 | 19.98 |
Oat hay, % | 9.53 | 9.90 |
Pelleted supplement 3, % | 5.85 | 5.99 |
Diet DM, % | 43.49 | 42.49 |
CP 4, % | 12.70 | 13.60 |
NDF 5, % | 37.50 | 40.80 |
ADF 6, % | 20.90 | 23.20 |
Ash, % | 5.90 | 6.50 |
Ca, % | 0.57 | 0.66 |
P, % | 0.30 | 0.33 |
Mg, % | 0.18 | 0.19 |
K, % | 0.93 | 1.02 |
S, % | 0.18 | 0.21 |
Co, mg/kg | 0.70 | 0.50 |
Cu, mg/kg | 40.00 | 53.00 |
Mo, mg/kg | 0.70 | 0.70 |
Mn, mg/kg | 59.00 | 66.00 |
Zn, mg/kg | 98.00 | 137.00 |
NEm 7, Mcal/kg | 1.74 | 1.74 |
NEg 8, Mcal/kg | 1.11 | 1.10 |
Treatment 1 | ||||
---|---|---|---|---|
Item | Control | Stress Tub | SEM | p-Value |
d 1 to 21 | ||||
Co, mg/steer·d −1 | 3.4 | 12.2 | 1.61 | 0.01 |
Cu, mg/steer·d −1 | 194.0 | 313.4 | 25.87 | 0.01 |
Mn, mg/steer·d −1 | 286.1 | 483.6 | 28.17 | 0.01 |
Zn, mg/steer·d −1 | 475.2 | 812.0 | 71.24 | 0.01 |
d 22 to 42 | ||||
Co, mg/steer·d −1 | 3.2 | 3.2 | 0.08 | 0.88 |
Cu, mg/steer·d −1 | 336.3 | 337.7 | 8.92 | 0.88 |
Mn, mg/steer·d −1 | 418.8 | 420.6 | 11.11 | 0.88 |
Zn, mg/steer·d −1 | 869.3 | 873.0 | 23.07 | 0.88 |
d 1 to 42 | ||||
Co, mg/steer·d −1 | 3.3 | 7.7 | 0.80 | 0.01 |
Cu, mg/steer·d −1 | 265.1 | 325.6 | 13.61 | 0.01 |
Mn, mg/steer·d −1 | 352.5 | 452.1 | 15.27 | 0.01 |
Zn, mg/steer·d −1 | 672.3 | 842.5 | 39.80 | 0.01 |
Treatment 1,2 | ||||
---|---|---|---|---|
Item | Control | Stress Tub | SEM | p-Value 3 |
d 7 | ||||
Co, μg/g | 0.18 | 0.43 | 0.023 | 0.01 |
Cu, μg/g | 6.09 | 25.35 | 3.723 | 0.01 |
Mn, μg/g | 9.05 | 9.56 | 0.785 | 0.55 |
Zn, μg/g | 156.14 | 198.86 | 12.774 | 0.01 |
d 21 | ||||
Co, μg/g | 0.13 | 0.45 | 0.037 | 0.01 |
Cu, μg/g | 10.95 | 71.82 | 11.462 | 0.01 |
Mn, μg/g | 7.17 | 7.80 | 0.285 | 0.09 |
Zn, μg/g | 116.43 | 112.78 | 16.139 | 0.83 |
d 42 | ||||
Co, μg/g | 0.59 | 0.21 | 0.365 | 0.36 |
Cu, μg/g | 39.67 | 99.80 | 9.343 | 0.01 |
Mn, μg/g | 9.21 | 8.06 | 1.145 | 0.34 |
Zn, μg/g | 98.52 | 95.72 | 9.797 | 0.78 |
Treatment 1 | ||||
---|---|---|---|---|
Item | Control | Stress Tub | SEM | p-Value |
Initial BW 2, kg | 238 | 241 | 1.0 | 0.04 |
Initial to d 21 | ||||
d 21 BW 3, kg | 253 | 256 | 1.1 | 0.08 |
ADG, kg | 0.62 | 0.76 | 0.054 | 0.08 |
DMI, kg | 4.85 | 4.76 | 0.134 | 0.51 |
G:F 4 | 0.128 | 0.160 | 0.0080 | 0.03 |
d 22 to 42 | ||||
d 42 BW 3, kg | 284 | 286 | 1.8 | 0.30 |
ADG, kg | 1.50 | 1.47 | 0.089 | 0.74 |
DMI, kg | 6.35 | 6.37 | 0.175 | 0.90 |
G:F | 0.237 | 0.231 | 0.0132 | 0.70 |
Initial to d 42 2,3 | ||||
ADG, kg | 1.06 | 1.11 | 0.043 | 0.30 |
DMI, kg | 5.62 | 5.56 | 0.127 | 0.68 |
G:F | 0.190 | 0.201 | 0.0064 | 0.18 |
Dietary NE 5, Mcal/kg | ||||
Maintenance | 1.76 | 1.82 | 0.037 | 0.14 |
Gain | 1.13 | 1.19 | 0.032 | 0.14 |
Observed-to-expected NE 6 | ||||
Maintenance | 1.01 | 1.05 | 0.021 | 0.14 |
Gain | 1.02 | 1.07 | 0.029 | 0.14 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hamilton, T.G.; Rusche, W.C.; Wright, C.L.; Walker, J.A.; Smith, Z.K. Evaluation of a Low-Moisture, Molasses-Based Block Containing Organic Sources of Trace Minerals and a Saccharomyces cerevisiae Fermentation Culture during the Feedlot Receiving Phase on Growth Performance, Efficiency of Dietary Net Energy Utilization, and Liver Trace Mineral Status in Newly Weaned Steer Calves. Ruminants 2021, 1, 137-146. https://doi.org/10.3390/ruminants1020011
Hamilton TG, Rusche WC, Wright CL, Walker JA, Smith ZK. Evaluation of a Low-Moisture, Molasses-Based Block Containing Organic Sources of Trace Minerals and a Saccharomyces cerevisiae Fermentation Culture during the Feedlot Receiving Phase on Growth Performance, Efficiency of Dietary Net Energy Utilization, and Liver Trace Mineral Status in Newly Weaned Steer Calves. Ruminants. 2021; 1(2):137-146. https://doi.org/10.3390/ruminants1020011
Chicago/Turabian StyleHamilton, Thomas G., Warren C. Rusche, Cody L. Wright, Julie A. Walker, and Zachary K. Smith. 2021. "Evaluation of a Low-Moisture, Molasses-Based Block Containing Organic Sources of Trace Minerals and a Saccharomyces cerevisiae Fermentation Culture during the Feedlot Receiving Phase on Growth Performance, Efficiency of Dietary Net Energy Utilization, and Liver Trace Mineral Status in Newly Weaned Steer Calves" Ruminants 1, no. 2: 137-146. https://doi.org/10.3390/ruminants1020011
APA StyleHamilton, T. G., Rusche, W. C., Wright, C. L., Walker, J. A., & Smith, Z. K. (2021). Evaluation of a Low-Moisture, Molasses-Based Block Containing Organic Sources of Trace Minerals and a Saccharomyces cerevisiae Fermentation Culture during the Feedlot Receiving Phase on Growth Performance, Efficiency of Dietary Net Energy Utilization, and Liver Trace Mineral Status in Newly Weaned Steer Calves. Ruminants, 1(2), 137-146. https://doi.org/10.3390/ruminants1020011