Interactions between Teladorsagia circumcincta Infections and Microbial Composition of Sheep with or without Successful Monepantel Treatment—A Preliminary Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design
2.2. DNA Extraction
2.3. Amplification of Bacterial 16S rRNA Genes
2.4. Preparation of PCR Amplicons for Illumina Sequencing
2.5. Data Processing and Filtering
2.6. Multivariate Statistical Analysis
3. Results
3.1. Data Quality Assessment and Diversity Measures
3.2. Comparative Abundance Assessment between RF and TIMS Samples
3.3. Detailed Assessment of Sample Type and Treatment Group
3.4. Comparative Analysis between Treatment Groups
3.5. Compositional Comparisons between RF and TIMS Samples Using ANCOM
4. Discussion
5. Conclusions
6. Limitations
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, R.W.; Wu, S.; Li, W.; Huang, Y.; Gasbarre, L.C. Metagenome plasticity of the bovine abomasal microbiota in immune animals in response to Ostertagia ostertagi infection. PLoS ONE 2011, 6, e24417. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Nunez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Buffie, C.G.; Pamer, E.G. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 2013, 13, 790–801. [Google Scholar] [CrossRef] [Green Version]
- Hooper, L.V.; Macpherson, A.J. Immune adaptations that maintain homeostasis with the intestinal microbiota. Nat. Rev. Immunol. 2010, 10, 159–169. [Google Scholar] [CrossRef] [PubMed]
- Hooper, L.V.; Littman, D.R.; Macpherson, A.J. Interactions between the microbiota and the immune system. Science 2012, 336, 1268–1273. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crosa, J.H.; Walsh, C.T. Genetics and assembly line enzymology of siderophore bi-osynthesis in bacteria. Microbiol. Mol. Biol. Rev. MMBR 2002, 66, 223–249. [Google Scholar] [CrossRef] [Green Version]
- Giel, J.L.; Sorg, J.A.; Sonenshein, A.L.; Zhu, J. Metabolism of bile salts in mice influences spore germination in Clostridium difficile. PLoS ONE 2010, 5, e8740. [Google Scholar] [CrossRef] [Green Version]
- Le Bouguenec, C.; Schouler, C. Sugar metabolism, an additional virulence factor in enterobacteria. Int. J. Med Microbiol. 2011, 301, 1–6. [Google Scholar] [CrossRef]
- Kamada, N.; Kim, Y.G.; Sham, H.P.; Vallance, B.A.; Puente, J.L.; Martens, E.C.; Nunez, G. Regulated virulence controls the ability of a pathogen to compete with the gut microbiota. Science 2012, 336, 1325–1329. [Google Scholar] [CrossRef] [Green Version]
- Li, R.W.; Li, W.; Sun, J.; Yu, P.; Baldwin, R.L.; Urban, J.F. The effect of helminth infection on the microbial composition and structure of the caprine abomasal microbiome. Sci. Rep. 2016, 6, 20606. [Google Scholar] [CrossRef] [Green Version]
- Stephenson, L.S.; Latham, M.C.; Ottesen, E.A. Malnutrition and parasitic helminth infections. Parasitology 2000, 121, S23–S38. [Google Scholar] [CrossRef] [Green Version]
- Lwanga, F.; Kirunda, B.E.; Orach, C.G. Intestinal helminth infections and nutritional status of children attending primary schools in Wakiso District, Central Uganda. Int. J. Environ. Res. Public Health 2012, 9, 2910–2921. [Google Scholar] [CrossRef]
- Zaiss, M.M.; Harris, N.L. Interactions between the intestinal microbiome and helminth parasites. Parasite Immunol. 2016, 38, 5–11. [Google Scholar] [CrossRef] [Green Version]
- Jolles, A.E.; Ezenwa, V.O. Ungulates as model systems for the study of disease processes in natural populations. J. Mammal. 2015, 96, 4–15. [Google Scholar] [CrossRef] [Green Version]
- Kaevska, M.; Videnska, P.; Sedlar, K.; Bartejsova, I.; Kralova, A.; Slana, I. Faecal bacterial composition in dairy cows shedding Mycobacterium avium subsp. paratuberculosis in faeces in comparison with nonshedding cows. Can. J. Microbiol. 2016, 62, 538–541. [Google Scholar] [CrossRef]
- Burgess, C.G.; Bartley, Y.; Redman, E.; Skuce, P.J.; Nath, M.; Whitelaw, F.; Tait, A.; Gilleard, J.S.; Jackson, F. A survey of the trichostrongylid nematode species present on UK sheep farms and associated anthelmintic control practices. Vet. Parasitol. 2012, 189, 299–307. [Google Scholar] [CrossRef]
- McKellar, Q.A. Interactions of Ostertagia species with their bovine and ovine hosts. Int. J. Parasitol. 1993, 23, 451–462. [Google Scholar] [CrossRef]
- Simpson, H.V. Pathophysiology of abomasal parasitism: Is the host or parasite responsible? Vet. J. 2000, 160, 177–191. [Google Scholar] [CrossRef]
- McNeilly, T.N.; Rocchi, M.; Bartley, Y.; Brown, J.K.; Frew, D.; Longhi, C.; McLean, L.; McIntyre, J.; Nisbet, A.J.; Wattegedera, S.; et al. Suppression of ovine lymphocyte activation by Teladorsagia circumcincta larval excretory-secretory products. Vet. Res. 2013, 44, 70. [Google Scholar] [CrossRef] [Green Version]
- Bartley, D.J.; Donnan, A.A.; Jackson, E.; Sargison, N.; Mitchell, G.B.; Jackson, F. A small scale survey of ivermectin resistance in sheep nematodes using the faecal egg count reduction test on samples collected from Scottish sheep. Vet. Parasitol. 2006, 137, 112–118. [Google Scholar] [CrossRef]
- Kaplan, R.M.; Vidyashankar, A.N. An inconvenient truth: Global worming and anthelmintic resistance. Vet. Parasitol. 2012, 186, 70–78. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Lozupone, C.A.; Turnbaugh, P.J.; Fierer, N.; Knight, R. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc. Natl. Acad. Sci. USA 2011, 108, 4516–4522. [Google Scholar] [CrossRef] [Green Version]
- Bartley, D.J.; Devin, L.; Nath, M.; Morrison, A.A. Selection and characterisation of monepantel resistance in Teladorsagia circumcincta isolates. Int. J. Parasitol. Drugs Drug Resist. 2015, 5, 69–76. [Google Scholar] [CrossRef] [Green Version]
- Patterson, D.M.; Jackson, F.; Huntley, J.F.; Stevenson, L.M.; Jones, D.G.; Jackson, E.; Russel, A.J. The response of breeding doses to nematodiasis: Segregation into “responders” and “non-responders”. Int. J. Parasitol. 1996, 26, 1295–1303. [Google Scholar] [CrossRef]
- Caporaso, J.G.; Lauber, C.L.; Walters, W.A.; Berg-Lyons, D.; Huntley, J.; Fierer, N.; Owens, S.M.; Betley, J.; Fraser, L.; Bauer, M.; et al. Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J. 2012, 6, 1621–1624. [Google Scholar] [CrossRef] [Green Version]
- Padua, R.A.; Parrado, A.; Larghero, J.; Chomienne, C. UV and clean air result in contamination-free PCR. Leukemia 1999, 13, 1898–1899. [Google Scholar] [CrossRef] [Green Version]
- Bolyen, E.; Rideout, J.R.; Dillon, M.R.; Bokulich, N.A.; Abnet, C.; Al-Ghalith, G.A.; Alexander, H.; Alm, E.J.; Arumugam, M.; Asnicar, F.; et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Prepr. 2018, 6, e27295v27292. [Google Scholar] [CrossRef] [PubMed]
- Rognes, T.; Flouri, T.; Nichols, B.; Quince, C.; Mahé, F. VSEARCH: A versatile open source tool for metagenomics. PeerJ 2016, 4, e2584. [Google Scholar] [CrossRef]
- Kozich, J.J.; Westcott, S.L.; Baxter, N.T.; Highlander, S.K.; Schloss, P.D. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl. Environ. Microbiol. 2013, 79, 5112–5120. [Google Scholar] [CrossRef] [Green Version]
- Amir, A.; McDonald, D.; Navas-Molina, J.A.; Kopylova, E.; Morton, J.T.; Zech Xu, Z.; Kightley, E.P.; Thompson, L.R.; Hyde, E.R.; Gonzalez, A.; et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence Patterns. mSystems 2017, 2, e00191-16. [Google Scholar] [CrossRef] [Green Version]
- Quast, C.; Pruesse, E.; Yilmaz, P.; Gerken, J.; Schweer, T.; Yarza, P.; Peplies, J.; Glockner, F.O. The SILVA ribosomal RNA gene database project: Improved data processing and web-based tools. Nucleic Acids Res. 2013, 41, D590–D596. [Google Scholar] [CrossRef]
- Bokulich, N.A.; Kaehler, B.D.; Rideout, J.R.; Dillon, M.; Bolyen, E.; Knight, R.; Huttley, G.A.; Gregory Caporaso, J. Optimizing taxonomic classification of marker-gene amplicon sequences with QIIME 2’s q2-feature-classifier plugin. Microbiome 2018, 6, 90. [Google Scholar] [CrossRef]
- Lozupone, C.; Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 2005, 71, 8228–8235. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Anderson, M.J.; Gorely, R.N.; Clarke, K.R. PERMANOVA+ PRIMER: Guide to Software and Statistical Methods; Primer-E: Plymouth, UK, 2008. [Google Scholar]
- Mandal, S.; Van Treuren, W.; White, R.A.; Eggesbø, M.; Knight, R.; Peddada, S.D. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 2015, 26, 27663. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Weiss, S.; Xu, Z.Z.; Peddada, S.; Amir, A.; Bittinger, K.; Gonzalez, A.; Lozupone, C.; Zaneveld, J.R.; Vazquez-Baeza, Y.; Birmingham, A.; et al. Normalization and microbial differential abundance strategies depend upon data characteristics. Microbiome 2017, 5, 27. [Google Scholar] [CrossRef] [Green Version]
- Douglas, J.L.; Worgan, H.J.; Easton, G.L.; Poret, L.; Wolf, B.T.; Edwards, A.; Davies, E.; Ross, D.; McEwan, N.R. Microbial diversity in the digestive tract of two different breeds of sheep. J. Appl. Microbiol. 2016, 120, 1382–1389. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moore, R.J.; Stanley, D. Experimental design considerations in microbiota/inflammation studies. Clin. Transl. Immunol. 2016, 5, e92. [Google Scholar] [CrossRef] [Green Version]
- Andrews, A. Some aspects of coccidiosis in sheep and goats. Small Rumin. Res. 2013, 110, 93–95. [Google Scholar] [CrossRef]
- Stiverson, J.; Morrison, M.; Yu, Z. Populations of select cultured and uncultured bacteria in the rumen of sheep and the effect of diets and ruminal fractions. Int. J. Microbiol. 2011, 2011, 750613. [Google Scholar] [CrossRef] [Green Version]
- Turroni, F.; van Sinderen, D.; Ventura, M. Genomics and ecological overview of the genus Bifidobacterium. Int. J. Food Microbiol. 2011, 149, 37–44. [Google Scholar] [CrossRef]
- Milani, C.; Mangifesta, M.; Mancabelli, L.; Lugli, G.A.; James, K.; Duranti, S.; Turroni, F.; Ferrario, C.; Ossiprandi, M.C.; van Sinderen, D.; et al. Unveiling bifidobacterial biogeography across the mammalian branch of the tree of life. ISME J. 2017, 11, 2834–2847. [Google Scholar] [CrossRef] [Green Version]
- Bunesova, V.; Vlková, E.; Killer, J.; Rada, V.; Ročková, S. Identification of Bifidobacterium strains from faeces of lambs. Small Rumin. Res. 2012, 105, 355–360. [Google Scholar] [CrossRef]
- Vlková, E.; Grmanová, M.; Rada, V.; Homutová, I.; Dubná, S. Selection of probiotic Bifidobacteria for lambs. Czech J. Anim. Sci. 2009, 54, 552–565. [Google Scholar] [CrossRef] [Green Version]
- Cortés, A.; Wills, J.; Su, X.; Hewitt, R.E.; Robertson, J.; Scotti, R.; Price, D.R.G.; Bartley, Y.; McNeilly, T.M.; Krause, L.; et al. Infection with the sheep gastrointestinal nematode Teladorsagia circumcincta increases luminal pathobionts. Microbiome 2020, 8, 60. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.C.; Tang, M.S.; Lim, Y.A.; Choy, S.H.; Kurtz, Z.D.; Cox, L.M.; Gundra, U.M.; Cho, I.; Bonneau, R.; Blaser, M.J.; et al. Helminth colonization is associated with increased diversity of the gut microbiota. PLoS Negl. Trop. Dis. 2014, 8, e2880. [Google Scholar] [CrossRef] [PubMed]
- Holm, J.B.; Sorobetea, D.; Kiilerich, P.; Ramayo-Caldas, Y.; Estelle, J.; Ma, T.; Madsen, L.; Kristiansen, K.; Svensson-Frej, M. Chronic Trichuris muris Infection Decreases Diversity of the Intestinal Microbiota and Concomitantly Increases the Abundance of Lactobacilli. PLoS ONE 2015, 10, e0125495. [Google Scholar] [CrossRef] [PubMed]
- Houlden, A.; Hayes, K.S.; Bancroft, A.J.; Worthington, J.J.; Wang, P.; Grencis, R.K.; Roberts, I.S. Chronic Trichuris muris Infection in C57BL/6 Mice Causes Significant Changes in Host Microbiota and Metabolome: Effects Reversed by Pathogen Clearance. PLoS ONE 2015, 10, e0125945. [Google Scholar] [CrossRef] [PubMed]
- Preidis, G.A.; Hotez, P.J. The newest “omics”—metagenomics and metabolomics--enter the battle against the neglected tropical diseases. PLoS Negl. Trop. Dis. 2015, 9, e0003382. [Google Scholar] [CrossRef] [Green Version]
- Brestoff, J.R.; Artis, D. Commensal bacteria at the interface of host metabolism and the immune system. Nat. Immunol. 2013, 14, 676–684. [Google Scholar] [CrossRef] [Green Version]
- Broadhurst, M.J.; Ardeshir, A.; Kanwar, B.; Mirpuri, J.; Gundra, U.M.; Leung, J.M.; Wiens, K.E.; Vujkovic-Cvijin, I.; Kim, C.C.; Yarovinsky, F.; et al. Therapeutic helminth infection of macaques with idiopathic chronic diarrhea alters the inflammatory signature and mucosal microbiota of the colon. PLoS Pathog. 2012, 8, e1003000. [Google Scholar] [CrossRef]
- Ubeda, C.; Djukovic, A.; Isaac, S. Roles of the intestinal microbiota in pathogen protection. Clin. Transl. Immunol. 2017, 6, e128. [Google Scholar] [CrossRef] [PubMed]
Original Isolate Designation * | Anthelmintic Sensitivity a | Anthelmintic Administration (Dose Rate; mg kg−1 Body Weight) | Designation during Microbiota Characterisation | |||
---|---|---|---|---|---|---|
BZ | LV | ML | MP | |||
MTci7 | R | R | R | S | None | SUT |
Monepantel-Zolvix® (2.5) | ST | |||||
MTci7-12 | R | R | R | R | None | RUT |
Monepantel-Zolvix® (2.5) | RT |
Sheep ID | Group ID | Nematode Isolate | Treatment | Total Worm Burden Estimation |
---|---|---|---|---|
OV1 | ST | Sensitive | Monepantel | 0 |
OV2 | ST | Sensitive | Monepantel | 0 |
OV3 | ST | Sensitive | Monepantel | 0 |
OV4 | ST | Sensitive | Monepantel | 0 |
OV5 | ST | Sensitive | Monepantel | 0 |
OV6 | SUT | Sensitive | Untreated | 3500 |
OV7 | SUT | Sensitive | Untreated | 350 |
OV8 | SUT | Sensitive | Untreated | 600 |
OV9 | SUT | Sensitive | Untreated | 3200 |
OV10 | SUT | Sensitive | Untreated | 2250 |
OV16 | RT | Resistant | Monepantel | 5000 |
OV17 | RT | Resistant | Monepantel | 1900 |
OV18 | RT | Resistant | Monepantel | 1800 |
OV19 | RT | Resistant | Monepantel | 1150 |
OV20 | RT | Resistant | Monepantel | 5850 |
OV11 | RUT | Resistant | Untreated | 3700 |
OV12 | RUT | Resistant | Untreated | 4200 |
OV13 | RUT | Resistant | Untreated | 5900 |
OV14 | RUT | Resistant | Untreated | 1900 |
OV15 | RUT | Resistant | Untreated | 3900 |
RF H | RF p | TIMS H | TIMS p | |
---|---|---|---|---|
Species Richness | ||||
Worms | 0.689 | 0.407 | 1.680 | 0.195 |
Treatment | 0.631 | 0.427 | 3.227 | 0.072 |
Strain | 0.091 | 0.762 | 0.027 | 0.870 |
Shannon Diversity | ||||
Worms | 0.429 | 0.513 | 2.194 | 0.139 |
Treatment | 0.006 | 0.940 | 6.000 | 0.014 * |
Strain | 0.023 | 0.880 | 0.060 | 0.806 |
Dataset | Taxonomic Level | Factor | No. of Biomarkers | Identity † | W-Score |
---|---|---|---|---|---|
RF-TIMS | Feature | Source | 104 | Uncultured Bacteroides (RF) | 6001–5403 |
Genus | 21 | Eimeria praecox (TIMS) | 481–362 | ||
Family | 11 | Pseudomonadaceae (TIMS) | 210–157 | ||
Order | 7 | Chloroplast (TIMS) | 101–76 | ||
Class | 5 | Oxyphotobacteria (TIMS) | 45–34 | ||
Phylum | 3 | Chlamydiae (TIMS) | 25–19 | ||
RF-TIMS | Feature | Worms | 1 | Bifidobacterium (ST) | 4269 |
Genus | 1 | Bifidobacterium ST) | 418 | ||
RF | Genus | Worms | 1 | Bifidobacterium (ST) | 219 |
TIMS | Genus | Worms | 1 | Prevotella-1 (RT, RUT, SUT) | 210 * |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Watkins, C.A.; Bartley, D.J.; Ergün, B.G.; Yıldızhan, B.; Ross-Watt, T.; Morrison, A.A.; Rosales Sanmartín, M.J.; Strathdee, F.; Andrews, L.; Free, A. Interactions between Teladorsagia circumcincta Infections and Microbial Composition of Sheep with or without Successful Monepantel Treatment—A Preliminary Study. Ruminants 2021, 1, 31-45. https://doi.org/10.3390/ruminants1010003
Watkins CA, Bartley DJ, Ergün BG, Yıldızhan B, Ross-Watt T, Morrison AA, Rosales Sanmartín MJ, Strathdee F, Andrews L, Free A. Interactions between Teladorsagia circumcincta Infections and Microbial Composition of Sheep with or without Successful Monepantel Treatment—A Preliminary Study. Ruminants. 2021; 1(1):31-45. https://doi.org/10.3390/ruminants1010003
Chicago/Turabian StyleWatkins, Craig A., Dave J. Bartley, Burcu Gündüz Ergün, Büşra Yıldızhan, Tracy Ross-Watt, Alison A. Morrison, Maria J. Rosales Sanmartín, Fiona Strathdee, Leigh Andrews, and Andrew Free. 2021. "Interactions between Teladorsagia circumcincta Infections and Microbial Composition of Sheep with or without Successful Monepantel Treatment—A Preliminary Study" Ruminants 1, no. 1: 31-45. https://doi.org/10.3390/ruminants1010003
APA StyleWatkins, C. A., Bartley, D. J., Ergün, B. G., Yıldızhan, B., Ross-Watt, T., Morrison, A. A., Rosales Sanmartín, M. J., Strathdee, F., Andrews, L., & Free, A. (2021). Interactions between Teladorsagia circumcincta Infections and Microbial Composition of Sheep with or without Successful Monepantel Treatment—A Preliminary Study. Ruminants, 1(1), 31-45. https://doi.org/10.3390/ruminants1010003