The Mid-Diaphysis Is a Poor Predictor of Humeral Fracture Risk Indicating That Predisposing Factors Are Recent
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.1.1. Control Group
2.1.2. Affected Group
2.2. Scanning
2.3. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rakestraw, P.C. Fractures of the humerus. J. Vet. Clin. Food Anim. Pract. 1996, 12, 153–168. [Google Scholar] [CrossRef]
- Dittmer, K.; Hitchcock, B.; McDougall, S.; Hunnam, J. Pathophysiology of humeral fractures in a sample of dairy heifers. N. Z. Vet. J. 2016, 64, 230–237. [Google Scholar] [CrossRef] [PubMed]
- Gibson, M.; Rogers, C.; Dittmer, K.; Hickson, R.; Pettigrew, E.; Back, P. Can bone measures of the bovine metacarpus predict humeral bone structure? N. Z. J. Anim. Sci. Prod. 2019, 79, 8–12. [Google Scholar]
- Bouza-Rodríguez, J.B.; Miramontes-Sequeiros, L.C. Three-dimensional biomechanical analysis of the bovine humerus. Appl. Bionics Biomech. 2014, 11, 13–24. [Google Scholar] [CrossRef] [Green Version]
- Grace, N.; Knowles, S.O.; Sykes, A. Managing Mineral Deficiencies in Grazing Livestock; New Zealand Society of Animal Production: Wellington, New Zealand, 2010. [Google Scholar]
- Gibson, M.; Hickson, R.; Back, P.; Dittmer, K.; Schreurs, N.; Rogers, C. The Effect of Sex and Age on Bone Morphology and Strength in the Metacarpus and Humerus in Beef-Cross-Dairy Cattle. Animals 2021, 11, 694. [Google Scholar] [CrossRef] [PubMed]
- Gibson, M.; Dittmer, K.; Hickson, R.; Back, P.; Rogers, C. Bone Morphology and Strength in the Mid-Diaphysis of the Humerus and Metacarpus in Dairy Calves Prior to Weaning. Animals 2020, 10, 1422. [Google Scholar] [CrossRef] [PubMed]
- Ferretti, J. Perspectives of pQCT technology associated to biomechanical studies in skeletal research employing rat models. Bone 1995, 17, S353–S364. [Google Scholar] [CrossRef]
- Handcock, R.C.; Lopez-Villalobos, N.; McNaughton, L.R.; Back, P.J.; Edwards, G.R.; Hickson, R.E. Live weight and growth of Holstein-Friesian, Jersey and crossbred dairy heifers in New Zealand. N. Z. J. Agric. Res. 2019, 62, 173–183. [Google Scholar] [CrossRef]
- Craig, L.; Dittmer, K.; Thompson, K. Bones and Joints. In Pathology of Domestic Animals; Elsevier Health Sciences: Amsterdam, The Netherlands, 2016; Volume 1. [Google Scholar]
- Turner, J.; Bulsara, M.; McDermott, B.; Byrne, G.; Prince, R.; Forbes, D. Predictors of low bone density in young adolescent females with anorexia nervosa and other dieting disorders. Int. J. Eat. Disord. 2001, 30, 245–251. [Google Scholar] [CrossRef]
- Miller, K.K.; Grinspoon, S.K.; Ciampa, J.; Hier, J.; Herzog, D.; Klibanski, A. Medical Findings in Outpatients With Anorexia Nervosa. Arch. Intern. Med. 2005, 165, 561–566. [Google Scholar] [CrossRef] [Green Version]
- Tjong, W.; Kazakia, G.J.; Burghardt, A.J.; Majumdar, S. The effect of voxel size on high-resolution peripheral computed tomography measurements of trabecular and cortical bone microstructure. Med. Phys. 2012, 39, 1893–1903. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schmidt, C.; Priemel, M.; Kohler, T.; Weusten, A.; Müller, R.; Amling, M.; Eckstein, F. Precision and accuracy of peripheral quantitative computed tomography (pQCT) in the mouse skeleton compared with histology and microcomputed tomography (μCT). J. Bone Miner. Res. 2003, 18, 1486–1496. [Google Scholar] [CrossRef] [PubMed]
- Suttle, N.; Angus, K.; Nisbet, D.; Field, A. Osteoporosis in copper-depleted lambs. J. Comp. Pathol. 1972, 82, 93–97. [Google Scholar] [CrossRef]
- Nojiri, H.; Saita, Y.; Morikawa, D.; Kobayashi, K.; Tsuda, C.; Miyazaki, T.; Saito, M.; Marumo, K.; Yonezawa, I.; Kaneko, K. Cytoplasmic superoxide causes bone fragility owing to low-turnover osteoporosis and impaired collagen cross-linking. J. Bone Miner. Res. 2011, 26, 2682–2694. [Google Scholar] [CrossRef] [PubMed]
Bone Parameter | Control | Affected | p-Value |
---|---|---|---|
Metacarpus | |||
n | 29 | 86 | |
Bone length (mm) | 206.9 ± 1.3 | 209.3 ± 0.8 | 0.114 |
Periosteal circumference (mm) | 92.4 ± 1.0 | 93.9 ± 0.6 | 0.180 |
Endosteal circumference (mm) | 46.3 ± 1.0 | 48.7 ± 0.6 | 0.041 |
Total bone area (mm2) | 681.4 ± 14.7 | 704.5 ± 8.5 | 0.178 |
Total bone content (mg/mm) | 677.9 ± 11.7 | 677.8 ± 6.8 | 0.993 |
Cortical bone thickness (mm) | 7.3 ± 0.1 | 7.2 ± 0.1 | 0.184 |
Cortical bone area (mm2) | 508.8 ± 9.0 | 513.1 ± 5.3 | 0.681 |
Cortical bone density (mg/cm3) | 1279.4 ± 2.5 | 1267.6 ± 1.5 | <0.001 |
Cortical bone content (mg/mm) | 651.0 ± 11.4 | 650.3 ± 6.6 | 0.955 |
Stress–strain index (mm3) | 4031.1 ± 126.4 | 4207.3 ± 73.4 | 0.231 |
Humerus | |||
n | 30 | 93 | |
Bone length (mm) | 258.3 ± 1.9 | 257.1 ± 1.1 | 0.575 |
Periosteal circumference (mm) | 143.5 ± 1.6 | 144.1 ± 0.9 | 0.753 |
Endosteal circumference (mm) | 93.6 ± 1.5 | 94.8 ± 0.9 | 0.501 |
Total bone area (mm2) | 1644.6 ± 37.5 | 1657.4 ± 21.3 | 0.767 |
Total bone content (mg/mm) | 1285.6 ± 26.2 | 1265.6 ± 14.9 | 0.508 |
Cortical bone thickness (mm) | 7.9 ± 0.1 | 7.8 ± 0.1 | 0.507 |
Cortical bone area (mm2) | 939.8 ± 20.2 | 936.4 ± 11.5 | 0.883 |
Cortical bone density (mg/cm3) | 1292.6 ± 3.7 | 1280.4 ± 2.1 | 0.005 |
Cortical bone content (mg/mm) | 1214.6 ± 25.3 | 1198.3 ± 14.4 | 0.578 |
Stress–strain index (mm3) | 13,335.9 ± 416.1 | 13,261.3 ± 236.3 | 0.876 |
p-Value | ||||||
---|---|---|---|---|---|---|
Bone Parameter | Control | Affected | Coefficient | MC3 Periosteal Circumference | Group | R2 |
n | 29 | 83 | ||||
Bone length (mm) | 259.7 ± 1.6 | 256.5 ± 1 | 1.2 ± 0.2 | <0.001 | 0.094 | 0.35 |
Periosteal circumference (mm) | 144.7 ± 0.9 | 143.5 ± 0.5 | 1.3 ± 0.1 | <0.001 | 0.258 | 0.67 |
Endosteal circumference (mm) | 94.9 ± 1.2 | 94.3 ± 0.7 | 1.0 ± 0.1 | <0.001 | 0.660 | 0.44 |
Total bone area (mm2) | 1673.2 ± 21 | 1643.5 ± 12.4 | 31.0 ± 2.1 | <0.001 | 0.228 | 0.67 |
Total bone content (mg/mm) | 1297.1 ± 17.6 | 1257.7 ± 10.3 | 19.7 ± 1.7 | <0.001 | 0.057 | 0.54 |
Cortical bone thickness (mm) | 7.9 ± 0.1 | 7.8 ± 0.1 | 0.05 ± 0.01 | <0.001 | 0.495 | 0.12 |
Cortical bone area (mm2) | 948.7 ± 13.8 | 930.8 ± 8.1 | 14.9 ± 1.4 | <0.001 | 0.267 | 0.53 |
Cortical bone density (mg/cm3) | 1291.2 ± 3.7 | 1280.0 ± 2.2 | −1.0 ± 0.4 | 0.008 | 0.010 | 0.13 |
Cortical bone content (mg/mm) | 1224.4 ± 17.8 | 1191 ± 10.5 | 18.2 ± 1.7 | <0.001 | 0.110 | 0.50 |
Stress–strain index (mm3) | 13,605.4 ± 240.4 | 13,090 ± 141.6 | 342.5 ± 23.6 | <0.001 | 0.068 | 0.66 |
p-Value | |||||||
---|---|---|---|---|---|---|---|
Bone Parameter | Normal | Low | Very Low | Coefficient | Metacarpus Periosteal Circumference | Copper | R2 |
n | 33 | 31 | 21 | ||||
Bone length (mm) | 260.2 ± 1.6 b | 256.9 ± 1.6 ab | 251.8 ± 2.2 a | 1.3 ± 0.2 | <0.001 | 0.013 | 0.44 |
Periosteal circumference (mm) | 144.3 ± 1.0 | 142.8 ± 1.0 | 145.6 ± 1.4 | 1.3 ± 0.1 | <0.001 | 0.218 | 0.65 |
Endosteal circumference (mm) | 95.6 ± 1.1 | 94.5 ± 1.1 | 97.6 ± 1.6 | 0.9 ± 0.1 | <0.001 | 0.286 | 0.42 |
Total bone area (mm2) | 1663.2 ± 22.7 | 1627.3 ± 22.3 | 1694.8 ± 31.7 | 29.0 ± 2.7 | <0.001 | 0.205 | 0.65 |
Total bone content (mg/mm) | 1267.2 ± 18.0 | 1242.1 ± 17.7 | 1257.8 ± 25.1 | 20.4 ± 2.1 | <0.001 | 0.607 | 0.58 |
Cortical bone thickness (mm) | 7.8 ± 0.1 | 7.7 ± 0.1 | 7.6 ± 0.2 | 0.06 ± 0.01 | <0.001 | 0.815 | 0.19 |
Cortical bone area (mm2) | 930.6 ± 14.1 | 913.8 ± 13.8 | 932.4 ± 19.7 | 15.1 ± 1.6 | <0.001 | 0.625 | 0.55 |
Cortical bone density (mg/cm3) | 1284.7 ± 3.7 b | 1285.7 ± 3.6 b | 1270.5 ± 5.2 a | −0.4 ± 0.4 | 0.307 | 0.045 | 0.11 |
Cortical bone content (mg/mm) | 1195.4 ± 18.0 | 1174.1 ± 17.7 | 1184.4 ± 25.1 | 19.0 ± 2.1 | <0.001 | 0.702 | 0.54 |
Stress–strain index (mm3) | 13,178.5 ± 253.2 | 12,946.1 ± 248.7 | 13,463.6 ± 353.7 | 333.2 ± 29.6 | <0.001 | 0.484 | 0.65 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gibson, M.; Dittmer, K.; Hickson, R.; Back, P.; Wehrle-Martinez, A.; Rogers, C. The Mid-Diaphysis Is a Poor Predictor of Humeral Fracture Risk Indicating That Predisposing Factors Are Recent. Ruminants 2021, 1, 23-30. https://doi.org/10.3390/ruminants1010002
Gibson M, Dittmer K, Hickson R, Back P, Wehrle-Martinez A, Rogers C. The Mid-Diaphysis Is a Poor Predictor of Humeral Fracture Risk Indicating That Predisposing Factors Are Recent. Ruminants. 2021; 1(1):23-30. https://doi.org/10.3390/ruminants1010002
Chicago/Turabian StyleGibson, Michaela, Keren Dittmer, Rebecca Hickson, Penny Back, Alvaro Wehrle-Martinez, and Chris Rogers. 2021. "The Mid-Diaphysis Is a Poor Predictor of Humeral Fracture Risk Indicating That Predisposing Factors Are Recent" Ruminants 1, no. 1: 23-30. https://doi.org/10.3390/ruminants1010002