Activity and Silencing of Transposable Elements in C. elegans
Abstract
:1. Introduction
2. Transposable Elements in the C. elegans Genome
3. Mechanisms of Transposition in C. elegans
4. Silencing of Transposable Elements
5. Other Mechanisms of Transposon Regulation: Adaptation and Domestication
6. Conclusions and Future Directions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McClintock, B. The origin and behavior of mutable loci in maize. Proc. Natl. Acad. Sci. USA 1950, 36, 344–355. [Google Scholar] [CrossRef] [PubMed]
- Lander, E.S.; Linton, L.M.; Birren, B.; Nusbaum, C. Initial sequencing and analysis of the human genome. Nature 2001, 409, 860–921. [Google Scholar] [CrossRef] [PubMed]
- Laricchia, K.M.; Zdraljevic, S.; Cook, D.E.; Andersen, E.C. Natural Variation in the Distribution and Abundance of Transposable Elements Across the Caenorhabditis elegans Species. Mol. Biol. Evol. 2017, 34, 2187–2202. [Google Scholar] [CrossRef] [PubMed]
- Capy, P.; Gasperi, G.; Biémont, C.; Bazin, C. Stress and transposable elements: Co-evolution or useful parasites? Heredity 2000, 85, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Saksouk, N.; Simboeck, E.; Déjardin, J. Constitutive heterochromatin formation and transcription in mammals. Epigenetics Chromatin 2015, 8, 3. [Google Scholar] [CrossRef]
- Ho, J.W.K.; Jung, Y.L.; Liu, T.; Alver, B.H.; Lee, S.; Ikegami, K.; Sohn, K.-A.; Minoda, A.; Tolstorukov, M.Y.; Appert, A.; et al. Comparative analysis of metazoan chromatin organization. Nature 2015, 512, 449–452. [Google Scholar] [CrossRef] [PubMed]
- McMurchy, A.N.; Stempor, P.; Gaarenstroom, T.; Wysolmerski, B.; Dong, Y.; Aussianikava, D.; Appert, A.; Huang, N.; Kolasinska-Zwierz, P.; Sapetschnig, A.; et al. A team of heterochromatin factors collaborates with small RNA pathways to combat repetitive elements and germline stress. eLife 2017, 6, e21666. [Google Scholar] [CrossRef]
- Ahringer, J.; Gasser, S.M. Repressive Chromatin in Caenorhabditis elegans: Establishment, Composition, and Function. Genetics 2018, 208, 491–511. [Google Scholar] [CrossRef] [PubMed]
- Fedoroff, N.V. Transposable Elements, Epigenetics, and Genome Evolution. Science 2012, 338, 758–767. [Google Scholar] [CrossRef]
- Sánchez-Gracia, A.; Maside, X.; Charlesworth, B. High rate of horizontal transfer of transposable elements in Drosophila. Trends Genet. 2005, 21, 200–2003. [Google Scholar] [CrossRef]
- Zhang, H.-H.; Peccoud, J.; Xu, M.-R.; Zhang, X.-G.; Gilbert, C. Horizontal transfer and evolution of transposable elements in vertebrates. Nat. Commun. 2019, 11, 1362. [Google Scholar] [CrossRef] [PubMed]
- Brenner, S. The Genetics of Caenorhabditis elegans. Genetics 1974, 77, 71–94. [Google Scholar] [CrossRef] [PubMed]
- The, C. elegans Sequencing Consortium. Genome sequence of the nematode C. elegans: A platform for investigating biology. Science 1998, 282, 2012–2018. [Google Scholar]
- Eide, D.J.; Anderson, P. Novel Insertion Mutation in Caenorhabditis elegans. Mol. Cell. Biol. 1985, 5, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Eide, D.; Anderson, P. Transposition of Tc1 in the nematode Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1985, 82, 1756–1760. [Google Scholar] [CrossRef] [PubMed]
- Emmons, S.W.; Yesner, L.; Ruan, K.-S.; Katzenberg, D. Evidence for a transposon in Caenorhabditis elegans. Cell 1983, 32, 55–65. [Google Scholar] [CrossRef] [PubMed]
- Hunter, S.E.; Finnegan, E.F.; Zisoulis, D.G.; Lovci, M.T.; Melnik-Martinez, K.V.; Yeo, G.W.; Pasquinelli, A.E. Functional Genomic Analysis of the let-7 Regulatory Network in Caenorhabditis elegans. PLoS Genet. 2013, 9, e1003353. [Google Scholar] [CrossRef] [PubMed]
- Wicker, T.; Sabot, F.; Hua-Van, A.; Bennetzen, J.L.; Capy, P.; Chalhoub, B.; Flavell, A.; Leroy, P.; Morgante, M.; Panaud, O.; et al. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 2007, 8, 973–982. [Google Scholar] [CrossRef]
- Arata, Y.; Jurica, P.; Parrish, N.; Sako, Y. Comprehensive identification of potentially functional genes for transposon mobility in the C. elegans genome. bioRxiv, 2023; 2023.08.08.552548. [Google Scholar] [CrossRef]
- Oosumi, T.; Garlick, B.; Belknap, W.R. Identification of putative nonautonomous transposable elements associated with several transposon families in Caenorhabditis elegans. J. Mol. Evol. 1996, 43, 11–18. [Google Scholar] [CrossRef]
- Moerman, D.G.; Waterston, R.H. Spontaneous unstable unc-22 IV mutations in C. elegans var. Bergerac. Genetics 1984, 108, 859–877. [Google Scholar] [CrossRef]
- Collins, J.; Saari, B.; Anderson, P. Activation of a transposable element in the germ line but not the soma of Caenorhabditis elegans. Nature 1987, 328, 726–728. [Google Scholar] [CrossRef] [PubMed]
- Ketting, R.F.; Haverkamp, T.H.; van Luenen, H.G.; Plasterk, R.H. Mut-7 of C. elegans, required for transposon silencing and RNA interference, is a homolog of Werner syndrome helicase and RNaseD. Cell 1999, 99, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Tabara, H.; Sarkissian, M.; Kelly, W.G.; Fleenor, J.; Grishok, A.; Timmons, L.; Fire, A.; Mello, C.C. The rde-1 gene, RNA interference, and transposon silencing in C. elegans. Cell 1999, 99, 123–132. [Google Scholar] [CrossRef]
- Egilmez, N.K.; Reis, R.J.S. Age-dependent somatic excision of transposable element Tc1 in Caenorhabditis elegans. Mutat. Res. 1994, 316, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Daigle, A.T.; Deiss, T.C.; Melde, R.H.; Bergthorsson, U.; Katju, V. Bergerac strains of Caenorhabditis elegans revisited: Expansion of Tc1 elements imposes a significant genomic and fitness cost. G3 2022, 12, jkac214. [Google Scholar] [CrossRef]
- Collins, J.; Forbes, E.; Anderson, P. The Tc3 family of transposable genetic elements in Caenorhabditis elegans. Genetics 1989, 121, 47–55. [Google Scholar] [CrossRef]
- Mori, I.; Moerman, D.G.; Waterston, R.H. Analysis of a mutator activity necessary for germline transposition and excision of Tc1 transposable elements in Caenorhabditis elegans. Genetics 1988, 120, 397–407. [Google Scholar] [CrossRef]
- Rezsohazy, R.; van Luenen, H.G.A.M.; Durbin, R.M.; Plasterk, R.H.A. Tc7, a Tc1-hitch hiking transposon in Caenorhabditis elegans. Nucleic Acids Res. 1997, 25, 4048–4054. [Google Scholar] [CrossRef]
- Yuan, J.Y.; Finney, M.; Tsung, N.; Horvitz, H.R. Tc4, a Caenorhabditis elegans transposable element with an unusual fold-back structure. Proc. Natl. Acad. Sci. USA 1991, 88, 3334–3338. [Google Scholar] [CrossRef]
- Li, W.; Shaw, J.E. A variant Tc4 transposable element in the nematode C. elegans could encode a novel protein. Nucleic Acids Res. 1993, 21, 59–67. [Google Scholar] [CrossRef]
- Collins, J.J.; Anderson, P. The Tc5 family of transposable elements in Caenorhabditis elegans. Genetics 1994, 137, 771–781. [Google Scholar] [CrossRef] [PubMed]
- Levitt, A.; Emmons, S.W. The Tc2 transposon in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1989, 86, 3232–3236. [Google Scholar] [CrossRef]
- Dupeyron, M.; Baril, T.; Bass, C.; Hayward, A. Phylogenetic analysis of the Tc1/mariner superfamily reveals the unexplored diversity of pogo-like elements. Mob. DNA 2019, 11, 21. [Google Scholar] [CrossRef] [PubMed]
- Plasterk, R.H.A.; Izsvák, Z.; Ivics, Z. Resident aliens: The Tc1/mariner superfamily of transposable elements. Trends Genet. 1999, 15, 326–332. [Google Scholar] [CrossRef] [PubMed]
- Bannert, N.; Kurth, R. Retroelements and the human genome: New perspectives on an old relation. Proc. Natl. Acad. Sci. USA 2004, 101 (Suppl. S2), 14572–14579. [Google Scholar] [CrossRef] [PubMed]
- Britten, R.J. Active gypsy/Ty3 retrotransposons or retroviruses in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 1995, 92, 599–601. [Google Scholar] [CrossRef] [PubMed]
- Frame, I.G.; Cutfield, J.F.; Poulter, R.T. New BEL-like LTR-retrotransposons in Fugu rubripes, Caenorhabditis elegans, and Drosophila melanogaster. Gene 2001, 263, 219–230. [Google Scholar] [CrossRef]
- Ganko, E.W.; Bhattacharjee, V.; Schliekelman, P.; McDonald, J.F. Evidence for the contribution of LTR retrotransposons to C. elegans gene evolution. Mol. Biol. Evol. 2003, 20, 1925–1931. [Google Scholar] [CrossRef]
- Ganko, E.W.; Fielman, K.T.; McDonald, J.F. Evolutionary history of Cer elements and their impact on the C. elegans genome. Genome Res. 2001, 11, 2066–2074. [Google Scholar] [CrossRef]
- Youngman, S.; van Luenen, H.G.; Plasterk, R.H. Rte-1, a retrotransposon-like element in Caenorhabditis elegans. FEBS Lett. 1996, 380, 1–7. [Google Scholar] [CrossRef]
- Malik, H.S.; Eickbush, T.H. NeSL-1, an Ancient Lineage of Site-Specific Non-LTR Retrotransposons From Caenorhabditis elegans. Genetics 2000, 154, 193–203. [Google Scholar] [CrossRef]
- Fischer, S.E.J.; Ruvkun, G. Caenorhabditis elegans ADAR editing and the ERI-6/7/MOV10 RNAi pathway silence endogenous viral elements and LTR retrotransposons. Proc. Natl. Acad. Sci. USA 2020, 117, 5987–5996. [Google Scholar] [CrossRef]
- Sun, B.; Kim, H.; Mello, C.C.; Priess, J.R. The CERV protein of Cer1, a C. elegans LTR retrotransposon, is required for nuclear export of viral genomic RNA and can form giant nuclear rods. PLoS Genet. 2023, 19, e1010804. [Google Scholar] [CrossRef]
- Palopoli, M.F.; Rockman, M.V.; TinMaung, A.; Ramsay, C.; Curwen, S.; Aduna, A.; Laurita, J.; Kruglyak, L. Molecular basis of the copulatory plug polymorphism in Caenorhabditis elegans. Nature 2008, 454, 1019–1022. [Google Scholar] [CrossRef]
- Dennis, S.; Sheth, U.; Feldman, J.L.; English, K.A.; Priess, J.R. C. elegans Germ Cells Show Temperature and Age-Dependent Expression of Cer1, a Gypsy/Ty3-Related Retrotransposon. PLoS Pathog. 2012, 8, e1002591. [Google Scholar] [CrossRef]
- van Luenen, H.; Colloms, S.; Plasterk, R. The mechanism of transposition of Tc3 in C. elegans. Cell 1994, 79, 293–301. [Google Scholar] [CrossRef]
- Vos, J.C.; De Baere, I.; Plasterk, R.H. Transposase is the only nematode protein required for in vitro transposition of Tc1. Genes Dev. 1996, 10, 755–761. [Google Scholar] [CrossRef]
- Schukkink, R.F.; Plasterk, R.H. TcA, the putative transposase of the C. elegans Tc1 transposon, has an N-terminal DNA binding domain. Nucleic Acids Res. 1990, 18, 895–900. [Google Scholar] [CrossRef]
- Vos, J.C.; Plasterk, R.H. Tc1 transposase of Caenorhabditis elegans is an endonuclease with a bipartite DNA binding domain. EMBO J. 1994, 13, 6125–6132. [Google Scholar] [CrossRef]
- Vos, J.C.; van Luenen, H.G.; Plasterk, R.H. Characterization of the Caenorhabditis elegans Tc1 transposase in vivo and in vitro. Genes Dev. 1993, 7, 1244–1253. [Google Scholar] [CrossRef]
- Fischer, S.E.J.; Wienholds, E.; Plasterk, R.H.A. Continuous Exchange of Sequence Information Between Dispersed Tc1 Transposons in the Caenorhabditis elegans Genome. Genetics 2003, 164, 127–134. [Google Scholar] [CrossRef]
- Plasterk, R.H. The origin of footprints of the Tc1 transposon of Caenorhabditis elegans. EMBO J. 1991, 10, 1919–1925. [Google Scholar] [CrossRef] [PubMed]
- Zwaal, R.R.; Broeks, A.; van Meurs, J.; Groenen, J.T.; Plasterk, R.H. Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. Proc. Natl. Acad. Sci. USA 1993, 90, 7431–7435. [Google Scholar] [CrossRef]
- Ketting, R.F.; Fischer, S.E.; Plasterk, R.H. Target choice determinants of the Tc1 transposon of Caenorhabditis elegans. Nucleic Acids Res. 1997, 25, 4041–4047. [Google Scholar] [CrossRef] [PubMed]
- van Luenen, H.G.; Plasterk, R.H. Target site choice of the related transposable elements Tc1 and Tc3 of Caenorhabditis elegans. Nucleic Acids Res. 1994, 22, 262–269. [Google Scholar] [CrossRef] [PubMed]
- Duret, L.; Marais, G.; Biémont, C. Transposons but Not Retrotransposons Are Located Preferentially in Regions of High Recombination Rate in Caenorhabditis elegans. Genetics 2000, 156, 1661–1669. [Google Scholar] [CrossRef]
- Das, P.P.; Bagijn, M.P.; Goldstein, L.D.; Woolford, J.R.; Lehrbach, N.J.; Sapetschnig, A.; Buhecha, H.R.; Gilchrist, M.J.; Howe, K.L.; Stark, R.; et al. Piwi and piRNAs act upstream of an endogenous siRNA pathway to suppress Tc3 transposon mobility in the Caenorhabditis elegans germline. Mol. Cell 2008, 31, 79–90. [Google Scholar] [CrossRef]
- Ketting, F.R.; Cochella, L. Concepts and functions of small RNA pathways in C. elegans. Curr. Top. Dev. Biol. 2020, 144, 45–89. [Google Scholar] [CrossRef]
- Shen, E.-Z.; Chen, H.; Ozturk, A.R.; Tu, S.; Shirayama, M.; Tang, W.; Ding, Y.-H.; Dai, S.-Y.; Weng, Z.; Mello, C.C. Identification of piRNA Binding Sites Reveals the Argonaute Regulatory Landscape of the C. elegans Germline. Cell 2018, 172, 937–951.e18. [Google Scholar] [CrossRef]
- McEnany, J.; Meir, Y.; Wingreen, N.S. piRNAs of Caenorhabditis elegans broadly silence nonself sequences through functionally random targeting. Nucleic Acids Res. 2022, 50, 1416–1429. [Google Scholar] [CrossRef]
- Phillips, C.M.; Montgomery, T.A.; Breen, P.C.; Ruvkun, G. MUT-16 promotes formation of perinuclear Mutator foci required for RNA silencing in the C. elegans germline. Gene Dev. 2012, 26, 1433–1444. [Google Scholar] [CrossRef] [PubMed]
- Vastenhouw, N.L.; Fischer, S.E.; Robert, V.J.; Thijssen, K.L.; Fraser, A.G.; Kamath, R.S.; Ahringer, J.; Plasterk, R.H. A Genome-Wide Screen Identifies 27 Genes Involved in Transposon Silencing in C. elegans. Curr. Biol. 2003, 13, 1311–1316. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Yan, J.; Pagano, D.J.; Dodson, A.E.; Fei, Y.; Gorham, J.; Seidman, J.G.; Wickens, M.; Kennedy, S. poly(UG)-tailed RNAs in genome protection and epigenetic inheritance. Nature 2020, 582, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Pak, J.; Fire, A. Distinct populations of primary and secondary effectors during RNAi in C. elegans. Science 2007, 315, 241–244. [Google Scholar] [CrossRef] [PubMed]
- Seroussi, U.; Lugowski, A.; Wadi, L.; Lao, R.X.; Willis, A.R.; Zhao, W.; Sundby, A.E.; Charlesworth, A.G.; Reinke, A.W.; Claycomb, J.M. A comprehensive survey of C. elegans argonaute proteins reveals organism-wide gene regulatory networks and functions. eLife 2023, 12, e83853. [Google Scholar] [CrossRef] [PubMed]
- Buckley, B.A.; Burkhart, K.B.; Gu, S.G.; Spracklin, G.; Kershner, A.; Fritz, H.; Kimble, J.; Fire, A.; Kennedy, S. A nuclear Argonaute promotes multigenerational epigenetic inheritance and germline immortality. Nature 2012, 489, 447–451. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.E.; Pan, Q.; Breen, P.C.; Qi, Y.; Shi, Z.; Zhang, C.; Ruvkun, G. Multiple small RNA pathways regulate the silencing of repeated and foreign genes in C. elegans. Gene Dev. 2013, 27, 2678–2695. [Google Scholar] [CrossRef]
- Burton, N.O.; Burkhart, K.B.; Kennedy, S. Nuclear RNAi maintains heritable gene silencing in Caenorhabditis elegans. Proc. Natl. Acad. Sci. USA 2011, 108, 19683–19688. [Google Scholar] [CrossRef]
- Mao, H.; Zhu, C.; Zong, D.; Weng, C.; Yang, X.; Huang, H.; Liu, D.; Feng, X.; Guang, S. The Nrde Pathway Mediates Small-RNA-Directed Histone H3 Lysine 27 Trimethylation in Caenorhabditis elegans. Curr. Biol. 2015, 25, 2398–2403. [Google Scholar] [CrossRef]
- Schwartz-Orbach, L.; Zhang, C.; Sidoli, S.; Amin, R.; Kaur, D.; Zhebrun, A.; Ni, J.; Gu, S.G. Caenorhabditis elegans nuclear RNAi factor SET-32 deposits the transgenerational histone modification, H3K23me3. eLife 2020, 9, e54309. [Google Scholar] [CrossRef]
- Ding, Y.-H.; Ochoa, H.J.; Ishidate, T.; Shirayama, M.; Mello, C.C. The nuclear Argonaute HRDE-1 directs target gene re-localization and shuttles to nuage to promote small RNA-mediated inherited silencing. Cell Rep. 2023, 42, 112408. [Google Scholar] [CrossRef] [PubMed]
- Fields, B.D.; Kennedy, S. Chromatin Compaction by Small RNAs and the Nuclear RNAi Machinery in C. elegans. Sci. Rep. 2019, 9, 9030. [Google Scholar] [CrossRef] [PubMed]
- Garrigues, J.M.; Sidoli, S.; Garcia, B.A.; Strome, S. Defining heterochromatin in C. elegans through genome-wide analysis of the heterochromatin protein 1 homolog HPL-2. Genome Res. 2015, 25, 76–88. [Google Scholar] [CrossRef] [PubMed]
- Hisanaga, T.; Romani, F.; Wu, S.; Kowar, T.; Wu, Y.; Lintermann, R.; Fridrich, A.; Cho, C.H.; Chaumier, T.; Jamge, B.; et al. The Polycomb repressive complex 2 deposits H3K27me3 and represses transposable elements in a broad range of eukaryotes. Curr. Biol. 2023, 33, 4367–4380.e9. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Solberg, T.; Maurer-Alcalá, X.X.; Swart, E.C.; Gao, F.; Nowacki, M. A small RNA-guided PRC2 complex eliminates DNA as an extreme form of transposon silencing. Cell Rep. 2022, 40, 111263. [Google Scholar] [CrossRef] [PubMed]
- Snel, B.; Heuvel, S.v.D.; Seidl, M.F. Caenorhabditis elegans MES-3 is a highly divergent ortholog of the canonical PRC2 component SUZ12. iScience 2022, 25, 104633. [Google Scholar] [CrossRef]
- Mazzetto, M.; Gonzalez, L.E.; Sanchez, N.; Reinke, V. Characterization of the distribution and dynamics of chromatin states in the C. elegans germ line reveals substantial H3K4me3 remodeling during oogenesis. Genome Res. 2023, 34, 57–69. [Google Scholar] [CrossRef] [PubMed]
- Almeida, M.V.; Vernaz, G.; Putman, A.L.; Miska, E.A. Taming transposable elements in vertebrates: From epigenetic silencing to domestication. Trends Genet. 2022, 38, 529–553. [Google Scholar] [CrossRef] [PubMed]
- Ponger, L.; Li, W.-H. Evolutionary Diversification of DNA Methyltransferases in Eukaryotic Genomes. Mol. Biol. Evol. 2005, 22, 1119–1128. [Google Scholar] [CrossRef]
- Ashe, A.; Sapetschnig, A.; Weick, E.-M.; Mitchell, J.; Bagijn, M.P.; Cording, A.C.; Doebley, A.-L.; Goldstein, L.D.; Lehrbach, N.J.; Le Pen, J.; et al. piRNAs Can Trigger a Multigenerational Epigenetic Memory in the Germline of C. elegans. Cell 2012, 150, 88–99. [Google Scholar] [CrossRef]
- Quarato, P.; Singh, M.; Bourdon, L.; Cecere, G. Inheritance and maintenance of small RNA-mediated epigenetic effects. Bioessays 2022, 44, e2100284. [Google Scholar] [CrossRef]
- Cecere, G. Small RNAs in epigenetic inheritance: From mechanisms to trait transmission. FEBS Lett. 2021, 595, 2953–2977. [Google Scholar] [CrossRef]
- Özdemir, I.; Steiner, F.A. Transmission of chromatin states across generations in C. elegans. Semin. Cell Dev. Biol. 2022, 127, 133–141. [Google Scholar] [CrossRef] [PubMed]
- Fischer, S.E.J.; Montgomery, T.A.; Zhang, C.; Fahlgren, N.; Breen, P.C.; Hwang, A.; Sullivan, C.M.; Carrington, J.C.; Ruvkun, G. The ERI-6/7 Helicase Acts at the First Stage of an siRNA Amplification Pathway That Targets Recent Gene Duplications. PLoS Genet. 2011, 7, e1002369. [Google Scholar] [CrossRef]
- Newman, M.A.; Ji, F.; Fischer, S.E.; Anselmo, A.; Sadreyev, R.I.; Ruvkun, G. The surveillance of pre-mRNA splicing is an early step in C. elegans RNAi of endogenous genes. Gene Dev. 2018, 32, 670–681. [Google Scholar] [CrossRef]
- Sijen, T.; Plasterk, R.H.A. Transposon silencing in the Caenorhabditis elegans germ line by natural RNAi. Nature 2003, 426, 310–314. [Google Scholar] [CrossRef] [PubMed]
- Makeyeva, Y.V.; Shirayama, M.; Mello, C.C. Cues from mRNA splicing prevent default Argonaute silencing in C. elegans. Dev. Cell 2021, 56, 2636–2648.e4. [Google Scholar] [CrossRef]
- Akay, A.; Di Domenico, T.; Suen, K.M.; Nabih, A.; Parada, G.E.; Larance, M.; Medhi, R.; Berkyurek, A.C.; Zhang, X.; Wedeles, C.J.; et al. The Helicase Aquarius/EMB-4 Is Required to Overcome Intronic Barriers to Allow Nuclear RNAi Pathways to Heritably Silence Transcription. Dev. Cell 2017, 42, 241–255.e6. [Google Scholar] [CrossRef]
- Carr, B.; Anderson, P. Imprecise Excision of the Caenorhabditis elegans Transposon Tel Creates Functional 5′ Splice Sites. Mol. Cell. Biol. 1994, 14, 3426–3433. [Google Scholar] [CrossRef] [PubMed]
- Rushforth, A.M.; Anderson, P. Splicing removes the Caenorhabditis elegans transposon Tc1 from most mutant pre-mRNAs. Mol. Cell. Biol. 1996, 16, 422–429. [Google Scholar] [CrossRef]
- Kurhanewicz, N.A.; Dinwiddie, D.; Bush, Z.D.; Libuda, D.E. Elevated Temperatures Cause Transposon-Associated DNA Damage in C. elegans Spermatocytes. Curr. Biol. 2020, 30, 5007–5017.e4. [Google Scholar] [CrossRef] [PubMed]
- Rogers, A.K.; Phillips, C.M. RNAi pathways repress reprogramming of C. elegans germ cells during heat stress. Nucleic Acids Res. 2020, 48, 4256–4273. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.S.; Kaletsky, R.; Lesnik, C.; Cota, V.; Blackman, E.; Parsons, L.R.; Gitai, Z.; Murphy, C.T. The role of the Cer1 transposon in horizontal transfer of transgenerational memory. Cell 2021, 184, 4697–4712.e18. [Google Scholar] [CrossRef] [PubMed]
- Carelli, F.N.; Cerrato, C.; Dong, Y.; Appert, A.; Dernburg, A.; Ahringer, J. Widespread transposon co-option in the Caenorhabditis germline regulatory network. Sci. Adv. 2022, 8, eabo4082. [Google Scholar] [CrossRef]
- Garrigues, J.M.; Tsu, B.V.; Daugherty, M.D.; Pasquinelli, A.E. Diversification of the Caenorhabditis heat shock response by Helitron transposable elements. eLife 2019, 8, e51139. [Google Scholar] [CrossRef]
Element | Class | Order | Superfamily | Family | Copy Number | Length (bp) | Catalytic Motif | IR/TIR Length (bp) | Target Site (Duplicaton) |
---|---|---|---|---|---|---|---|---|---|
Cer1 | Class I | LTR | Gypsy | Gypsy | 1 | 8865 | DDE | 492 | |
Tc1 | Class II | TIR | Tc1/mariner | Tc1 | 32 | 1611 | DD34E | 54 | TA (TA-TA) |
Tc2 | Class II | TIR | Tc1/mariner-Tc2/pogo group | Pogo | 4 | 2074 | DD35D | 24 | TA (TA-TA) |
Tc3 | Class II | TIR | Tc1/mariner | Tc1 | 22 | 2335 | DD34E | 462 | TA (TA-TA) |
Tc4/Tc4v | Class II | TIR | Tc1/mariner- Tc4 group | Tc4 | 10 | 1605/3483 | DD37D | 774 | CTNAG (TNA-TNA) |
Tc5 | Class II | TIR | Tc1/mariner- Tc4 group | Tc4 | 4 | 3171 | DD37D | 491 | CTNAG (TNA-TNA) |
Tc7 (Tc1 MITE) | Class II | TIR | Tc1/mariner | Tc1 | 11 | 921 | n/a | 345 | TA (TA-TA) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fischer, S.E.J. Activity and Silencing of Transposable Elements in C. elegans. DNA 2024, 4, 129-140. https://doi.org/10.3390/dna4020007
Fischer SEJ. Activity and Silencing of Transposable Elements in C. elegans. DNA. 2024; 4(2):129-140. https://doi.org/10.3390/dna4020007
Chicago/Turabian StyleFischer, Sylvia E. J. 2024. "Activity and Silencing of Transposable Elements in C. elegans" DNA 4, no. 2: 129-140. https://doi.org/10.3390/dna4020007
APA StyleFischer, S. E. J. (2024). Activity and Silencing of Transposable Elements in C. elegans. DNA, 4(2), 129-140. https://doi.org/10.3390/dna4020007