Beer Bagasse as Filler for Starch-Based Biocomposite Films for Food Packaging Applications
Abstract
1. Introduction
2. Materials and Methods
2.1. Film Preparation
2.2. Characterizations of the Films
2.2.1. Tensile, Barrier and Optical Properties
2.2.2. Differential Scanning Calorimetry (DSC) and Thermogravimetric Analysis (TGA)
2.2.3. Infrared Spectroscopy (FTIR) and Microstructural Analysis
2.2.4. Antioxidant Activity
2.2.5. Statistical Analysis
3. Results and Discussion
3.1. Morphological Characteristics of Films
3.2. Mechanical and Barrier Properties
3.3. Optical Properties and Appearance of Starch Films
3.4. Thermal Stability of the Films
3.5. FTIR Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hussain, S.; Akhter, R.; Maktedar, S.S. Advancements in sustainable food packaging: From eco-friendly materials to innovative technologies. Sustain. Food Technol. 2024, 2, 1297–1364. [Google Scholar] [CrossRef]
- Sumrin, S.; Gupta, S.; Asaad, Y.; Wang, Y.; Bhattacharya, S.; Foroudi, P. Eco-innovation for environment and waste prevention. J. Bus. Res. 2021, 122, 627–639. [Google Scholar] [CrossRef]
- Branca, G.; Resciniti, R.; Babin, B.J. Sustainable packaging design and the consumer perspective: A systematic literature review. Ital. J. Mark. 2024, 2024, 77–111. [Google Scholar] [CrossRef]
- Wandosell, G.; Parra-Meroño, M.C.; Alcayde, A.; Baños, R. Green packaging from consumer and business perspectives. Sustainability 2021, 13, 1356. [Google Scholar] [CrossRef]
- Yang, J.; Ching, Y.C.; Chuah, C.H. Applications of Lignocellulosic Fibers and Lignin in Bioplastics: A Review. Polymers 2019, 11, 751. [Google Scholar] [CrossRef] [PubMed]
- Bonifácio-Lopes, T.; Vilas-Boas, A.; Machado, M.; Costa, E.M.; Silva, S.; Pereira, R.N.; Pintado, M. Exploring the bioactive potential of brewers spent grain ohmic extracts. Innov. Food Sci. Emerg. Technol. 2022, 76, 102943. [Google Scholar] [CrossRef]
- Bonifácio-Lopes, T.; Boas, A.A.V.; Coscueta, E.R.; Costa, E.M.; Silva, S.; Campos, D.; Pintado, M. Bioactive extracts from brewer’s spent grain. Food Funct. 2020, 11, 8963–8977. [Google Scholar] [CrossRef] [PubMed]
- Carnaval, L.D.S.; Jaiswal, A.K.; Jaiswal, S. Agro-food waste valorization for sustainable bio-based packaging. J. Compos. Sci. 2024, 8, 41. [Google Scholar] [CrossRef]
- Lin, L.; Mirkin, S.; Park, H.E. Biodegradable Composite Film of Brewers’ Spent Grain and Poly (Vinyl Alcohol). Processes 2023, 11, 2400. [Google Scholar] [CrossRef]
- Castanho, M.N.; de Souza do Prado, K.; de Paiva, J.M.F. Developing thermoplastic corn starch composites filled with brewer’s spent grain for applications in biodegradable films. Polym. Compos. 2022, 43, 811–826. [Google Scholar] [CrossRef]
- Revert, A.; Reig, M.; Seguí, V.J.; Boronat, T.; Fombuena, V.; Balart, R. Upgrading brewer’s spent grain as functional filler in polypropylene matrix. Polym. Compos. 2015, 38, 40–47. [Google Scholar] [CrossRef]
- Ferreira, A.M.; Martins, J.; Carvalho, L.H.; Magalhães, F.D. Biosourced disposable trays made of brewer’s spent grain and potato starch. Polymers 2019, 11, 923. [Google Scholar] [CrossRef]
- Gomez-Contreras, P.; Obando, C.; Freitas, P.; Martin-Perez, L.; Chiralt, A.; Gonzalez-Martinez, C. Phenolic and Cellulose-Rich Fractions from Subcritical Water Treated Beer Bagasse. Molecules 2024, 29, 4897. [Google Scholar] [CrossRef]
- Ilvis, P.; Acosta, J.; Arancibia, M.; Casado, S. Nanoscopic Characterization of Starch-Based Biofilms Extracted from Ecuadorian Potato (Solanum tuberosum) Varieties. Polymers 2024, 16, 1873. [Google Scholar] [CrossRef] [PubMed]
- ASTM D882-12; Standard Test Method for Tensile Properties of Thin Plastic Sheeting. American Society for Testing and Materials (ASTM): West Conshohocken, PA, USA, 2012.
- ASTM E96/E96M-05; Standard Test Methods for Water Vapor Transmission of Materials. ASTM International: West Conshohocken, PA, USA, 2005.
- McHugh, T.H.; Avena-Bustillos, R.; Krochta, J.M. Hydrophilic edible films: Modified procedure for water vapor permeability and explanation of thickness effects. J. Food Sci. 1993, 58, 899–903. [Google Scholar] [CrossRef]
- ASTM D3985-17; Standard Test Method for Oxygen Gas Transmission Rate Through Plastic Film and Sheeting Using A Coulometric Sensor. ASTM International: West Conshohocken, PA, USA, 2010.
- Hutchings, J.B. Light and its interaction with food materials. In Food Colour and Appearance; Springer: Boston, MA, USA, 1999; pp. 61–84. [Google Scholar]
- Nunes, P.X.; Silva, S.F.; Guedes, R.J.; Almeida, S. Biological oxidations and antioxidant activity of natural products. In Phytochemicals as Nutraceuticals; InTech: London, UK, 2012; 278p. [Google Scholar]
- Gil-Guillén, I.; González-Martínez, C.; Chiralt, A. Influence of the Cellulose Purification Method on the Properties of PVA Composites with Almond Shell Fibres. Molecules 2025, 30, 372. [Google Scholar] [CrossRef]
- Ortega-Toro, R.; Muñoz, A.; Talens, P.; Chiralt, A. Improvement of properties of glycerol plasticized starch films by blending with a low ratio of polycaprolactone and/or polyethylene glycol. Food Hydrocoll. 2016, 56, 9–19. [Google Scholar] [CrossRef]
- Ortega-Toro, R.; Collazo-Bigliardi, S.; Talens, P.; Chiralt, A. Influence of citric acid on the properties and stability of starch-polycaprolactone based films. J. Appl. Polym. Sci. 2016, 133, 42220. [Google Scholar] [CrossRef]
- Montero, B.; Rico, M.; Rodríguez-Llamazares, S.; Barral, L.; Bouza, R. Effect of nanocellulose as a filler on biodegradable thermoplastic starch films from tuber, cereal and legume. Carbohydr. Polym. 2017, 157, 1094–1104. [Google Scholar] [CrossRef]
- Zainudin, E.S.; Yan, L.H.; Haniffah, W.H.; Jawaid, M.; Alothman, O.Y. Effect of coir fiber loading on mechanical and morphological properties of oil palm fibers reinforced polypropylene composites. Polym. Compos. 2014, 35, 1418–1425. [Google Scholar] [CrossRef]
- Müller, C.M.; Laurindo, J.B.; Yamashita, F. Effect of cellulose fibers on the crystallinity and mechanical properties of starch-based films at different relative humidity values. Carbohydr. Polym. 2009, 77, 293–299. [Google Scholar] [CrossRef]
- Shoja, M.; Mohammadi-Roshandeh, J.; Hemmati, F.; Zandi, A.A.; Farizeh, T. Plasticized starch-based biocomposites containing modified rice straw fillers with thermoplastic, thermoset-like and thermoset chemical structures. Int. J. Biol. Macromol. 2020, 157, 715–725. [Google Scholar] [CrossRef] [PubMed]
- Permatasari, A.S.; Rachmawati, R. Mechanical Properties of Films Based on Blends of Starch-Coumarin Complex and Other Polymers Reinforced with Microcrystalline Cellulose. Chim. Nat. Acta 2025, 13, 77–88. [Google Scholar] [CrossRef]
- Menzel, C. Improvement of starch films for food packaging through a three-principle approach: Antioxidants, cross-linking and reinforcement. Carbohydr. Polym. 2020, 250, 116828. [Google Scholar] [CrossRef]
- Kibet, T.; Githinji, D.N.; Nziu, P. Natural Fibre–Reinforced Starch Biocomposites and Their Effects on the Material Mechanical Properties: A Review. Adv. Mater. Sci. Eng. 2025, 2025, 9905014. [Google Scholar] [CrossRef]
- de Azeredo, H.M.C. Review Nanocomposites for food packaging applications. Food Res. Int. 2009, 42, 1240–1253. [Google Scholar] [CrossRef]
- Chen, J.; Long, Z.; Wang, J.; Wu, M.; Wang, F.; Wang, B.; Lv, W. Preparation and properties of microcrystalline cellulose/hydroxypropyl starch composite films. Cellulose 2017, 24, 4449–4459. [Google Scholar] [CrossRef]
- Saura-Calixto, F. Dietary fibre as a carrier of dietary antioxidants: An essential physiological function. J. Agric. Food Chem. 2011, 59, 43–49. [Google Scholar] [CrossRef]
- Teixeira Macagnan, F.; Picolli da Silva, L.; Hecktheuer, L.H. Dietary fibre: The scientific search for an ideal definition and methodology of analysis, and its physiological importance as a carrier of bioactive compounds. Food Res. Int. 2016, 85, 144–154. [Google Scholar] [CrossRef]
- González-Aguilar, G.A.; Blancas-Benítez, F.J.; Sáyago-Ayerdi, S. Polyphenols associated with dietary fibers in plant foods: Molecular interactions and bioaccessibility. Curr. Opin. Food Sci. 2017, 13, 84–88. [Google Scholar] [CrossRef]
- Pérez-Jiménez, J. Dietary fiber: Still alive. Food Chem. 2024, 439, 138076. [Google Scholar] [CrossRef] [PubMed]
- Saura-Calixto, F.; Díaz-Rubio, M.E. Polyphenols associated with dietary fibre in wine: A wine Polyphenols gap. Food Res. Int. 2007, 40, 613–619. [Google Scholar] [CrossRef]
- Alonso-Riaño, P.; Illera, A.E.; Benito-Román, O.; Melgosa, R.; Bermejo-López, A.; Beltrán, S.; Sanz, M.T. Degradation kinetics of sugars (glucose and xylose), amino acids (proline and aspartic acid) and their binary mixtures in subcritical water: Effect of Maillard reaction. Food Chem. 2024, 442, 138421. [Google Scholar] [CrossRef]
- Liu, X.; Wang, Y.; Yu, L.; Tong, Z.; Chen, L.; Liu, H.; Li, X. Thermal Degradation and Stability of Starch under Different Processing Conditions. Starch Stärke 2013, 65, 48–60. [Google Scholar] [CrossRef]
- Moll, E.; Chiralt, A. Improving Thermo-Sealing of Poly (3-hydroxybutyrate-co-3-hydroxyvalerate) by Blending with Polycaprolactone. Polymers 2024, 16, 3255. [Google Scholar] [CrossRef]
- Bartnikowski, M.; Dargaville, T.R.; Ivanovski, S.; Hutmacher, D.W. Degradation mechanisms of polycaprolactone in the context of chemistry, geometry and environment. Prog. Polym. Sci. 2019, 96, 1–20. [Google Scholar] [CrossRef]
- Khandanlou, R.; Ahmad, M.B.; Shameli, K.; Hussein, M.Z.; Zainuddin, N.; Kalantari, K. Effect of unmodified rice straw on the properties of rice straw/polycaprolactone composites. Res. Chem. Intermed. 2015, 41, 6371–6384. [Google Scholar] [CrossRef]
- Chanthavong, V.; Cabo, M., Jr.; Prabhakar, M.N.; Woo, L.D.; Song, J. Fabrication of polycaprolactone/polyvinyl alcohol green composite film by reinforcing extracted micro cellulose fibers for food packaging applications. Polym. Eng. Sci. 2025, 65, 3673–3686. [Google Scholar] [CrossRef]
- Ilyas, R.A.; Zuhri, M.Y.M.; Norrrahim, M.N.F.; Misenan, M.S.M.; Jenol, M.A.; Samsudin, S.A.; Nurazzi, N.M.; Asyraf, M.R.M.; Supian, A.B.M.; Bangar, S.P.; et al. Natural Fiber-Reinforced Polycaprolactone Green and Hybrid Biocomposites for Various Advanced Applications. Polymers 2022, 14, 182. [Google Scholar] [CrossRef]
- Hegde, M.; Chandrashekar, A.; Nataraja, M.; Gopi, J.A.; Prabhu, N.; Parameswaranpillai, J. Crystallization in PCL—Based Blends and Composites. In Polymer Crystallization; Parameswaranpillai, J., Jacob, J., Krishnasamy, S., Jayakumar, A., Hameed, N., Eds.; Wiley: Hoboken, NJ, USA, 2023; Chapter 7. [Google Scholar] [CrossRef]
- Bhagabati, P.; Das, D.; Katiyar, V. Bamboo-flour-filled cost-effective poly(ε-caprolactone) biocomposites: A potential contender for flexible cryo-packaging applications. Mater. Adv. 2021, 2, 280–291. [Google Scholar] [CrossRef]
- Li, M.; Zhang, Y.; Zhu, F. Influence of PA6 particle filler on morphology, crystallization behavior and dynamic mechanical properties of poly(ε-caprolactone) as an efficient nucleating agent. J. Polym. Res. 2021, 28, 461. [Google Scholar] [CrossRef]
- Li, Y.; Yao, S.; Shi, H. Enhancing the crystallization of biodegradable poly(ε-caprolactone) using a polyvinyl alcohol fiber favoring nucleation. Thermochim. Acta 2021, 706, 179065. [Google Scholar] [CrossRef]
- Mi, H.Y.; Jing, X.; Peng, J.; Salick, M.R.; Peng, X.F.; Turng, L.S. Poly(ε-caprolactone) (PCL)/cellulose nano-crystal (CNC) nanocomposites and foams. Cellulose 2014, 21, 2727–2741. [Google Scholar] [CrossRef]
- Chen, J.; Wang, X.; Long, Z.; Wang, S.; Zhang, J.; Wang, L. Preparation and performance of thermoplastic starch and microcrystalline cellulose for packaging composites: Extrusion and hot pressing. Int. J. Biol. Macromol. 2020, 165, 2295–2302. [Google Scholar] [CrossRef] [PubMed]
- Mahieu, A.; Terrié, C.; Agoulon, A.; Leblanc, N.; Youssef, B. Thermoplastic starch and poly(ε-caprolactone) blends: Morphology and mechanical properties as a function of relative humidity. J. Polym. Res. 2013, 20, 229. [Google Scholar] [CrossRef]
- Boudjema, H.L.; Bendaikha, H. Composite materials derived from biodegradable starch polymer and Atriplex halimus fibers. E-Polymers 2015, 15, 419–426. [Google Scholar] [CrossRef]
- Warren, F.J.; Gidley, M.J.; Flanagan, B.M. Infrared spectroscopy as a tool to characterise starch ordered structure—A joint FTIR–ATR, NMR, XRD and DSC study. Carbohydr. Polym. 2016, 139, 35–42. [Google Scholar] [CrossRef]
- Castillo, L.A.; López, O.V.; García, M.A.; Barbosa, S.E.; Villar, M.A. Crystalline morphology of thermoplastic starch/talc nanocomposites induced by thermal processing. Heliyon 2019, 5, e01877. [Google Scholar] [CrossRef]
Formulations | XS | XGly | XPCL (%) | XBB or LF |
---|---|---|---|---|
SP | 0.69 | 0.24 | 0.07 | - |
SP-5BB | 0.66 | 0.23 | 0.07 | 0.05 |
SP-10BB | 0.62 | 0.22 | 0.06 | 0.10 |
SP-5 LF110 | 0.66 | 0.23 | 0.07 | 0.05 |
SP-10LF110 | 0.62 | 0.22 | 0.06 | 0.10 |
SP-5LF130 | 0.66 | 0.23 | 0.07 | 0.05 |
SP-10LF130 | 0.62 | 0.22 | 0.06 | 0.10 |
SP-5LF150 | 0.66 | 0.23 | 0.07 | 0.05 |
SP-10LF150 | 0.62 | 0.22 | 0.06 | 0.10 |
SP-5LF170 | 0.66 | 0.23 | 0.07 | 0.05 |
SP-10LF170 | 0.62 | 0.22 | 0.06 | 0.10 |
Sample | Protein (%) | Ash (%) | Lignin (%) | Cellulose (%) | Hemicellulose (%) | WI (%) |
---|---|---|---|---|---|---|
BB | 22 ± 2 a | 3.71 ± 0.01 c | 9.5 ± 1.6 ab | 17 ± 2 a | 17.9 ± 0.6 d | 43 |
LF110 | 28 ± 2 b | 3.12 ± 0.11 b | 9.1 ± 0.4 a | 16 ± 2 a | 15 ± 2 c | 45 |
LF130 | 26.2 ± 0.2 ab | 2.79 ± 0.04 b | 11.6 ± 0.1 b | 20 ± 2 a | 14.9± 1.2 c | 42 |
LF150 | 26 ± 2 b | 2.27 ± 0.11 a | 14.6 ± 0.5 c | 21 ± 2 a | 7.8 ± 1.2 b | 35 |
LF170 | 35.7 ± 0.2 c | 3.10 ± 0.20 b | 19.6 ± 0.3 ᵈ | 30 ± 3 b | 2.01 ± 0.08 a | 27 |
Film | EM (MPa) | TS (MPa) | E (%) |
---|---|---|---|
SP | 80 ± 14 a | 5.96 ± 1.13 a | 69 ± 2 e |
SP-5BB | 500 ± 71 e,f | 13 ± 2 d,e,f | 12± 2 b |
SP-10BB | 544 ± 63 f | 8.43± 1.15 b | 2.2 ± 0.7 a |
SP-5LF110 | 380 ± 60 c,d | 14.71 ± 1.11 f | 33 ± 6 c |
SP-10LF110 | 643 ± 88 g | 13.4 ± 1.3 d,e,f | 4.83 ± 1.08 a |
SP-5LF130 | 443 ± 86 d,e | 14.4 ± 1.3 e,f | 29 ± 6 c |
SP-10LF130 | 697 ± 84 g | 15 ± 3 f | 5 ± 1.12 a |
SP-5LF150 | 322 ± 52 c | 12.6± 1.6 d,e | 29 ± 7 c |
SP-10LF150 | 500 ± 145 e,f | 11.3 ± 0.5 c,d | 6 ± 2 a |
SP-5LF170 | 226 ± 62 b | 13 ± 3 d,e | 44 ± 8 d |
SP-10LF170 | 342 ± 59 c | 10.5 ± 1.7 c | 14 ± 6 b |
Film | Thickness (µm) | Xw (%) | WVP·1011 (g/Pa s m) | OP·1014 (cm3/m s Pa) |
---|---|---|---|---|
SP | 312.05 ± 0.03 c | 9.7 ± 0.2 a,b | 350 ± 11 a | 12 ± 2 b,c |
SP-5BB | 293.73 ± 0.02 a,b,c | 9.9 ± 0.3 a,b | 436 ± 66 b,c | 19.4 ± 1.7 d |
SP-10BB | 277.43 ± 0.02 a | 9.5 ± 0.1 a | 572 ± 41 c | 27.1 ± 1.2 f |
SP-5LF110 | 285.13 ± 0.02 b,c | 9.9 ± 0.1 a,b | 492 ± 35 b,c | 10.1 ± 0.6 a,b |
SP-10LF110 | 284.8 ± 0.01 a,b,c | 9.7 ± 0.3 a,b | 497 ± 81 b,c | 10.4 ± 0.8 a,b |
SP-5LF130 | 272.9 ±0.02 a,b | 10.0 ± 0.2 a,b | 417 ± 74 a,b | 9 ± 1 a |
SP-10LF130 | 312.05 ±0.03 a,b,c | 9.5 ± 0.4 a | 499 ± 40 b,c | 23.1 ± 0.1 e |
SP-5LF150 | 285.08 ± 0.02 a,b,c | 9.8 ± 0.1 a,b | 492 ± 25 b,c | 11.1 ± 0.2 a,b |
SP-10LF150 | 280.3 ± 0.02 a,b | 10.1 ± 0.5 a,b | 418 ± 34 a,b | 17.2 ± 0.8 d |
SP-5LF170 | 288.75 ± 0.01 a,b,c | 11 ± 2 b | 433 ± 59 a,b | 11.6 ± 0.8 b,c |
SP-10LF170 | 275.53 ± 0.01 a,b,c | 9.6 ± 0.3 a,b | 419 ± 63 a,b | 13.7 ± 0.9 c |
Film | L* | Hab* | C*ab | Ti (550 nm) |
---|---|---|---|---|
SP | 76 ± 9 c | 72.4 ± 0.2 g | 14.4 ± 0.1 d | 0.82 ± 0.01 g |
SP-5BB | 52 ± 9 b | 64.2 ± 0.2 f | 19.3 ± 0.1 h | 0.63 ± 0.01 f |
SP-10BB | 47 ± 9 a,b | 60.3 ± 0.5 e | 17.4 ± 0.2 f | 0.53 ± 0.01 e |
SP-5LF110 | 52 ± 9 b | 63.3 ± 0.4 f | 18.9 ± 0.2 g,h | 0.62 ± 0.01 f |
SP-10LF110 | 46 ± 9 a,b | 59.5 ± 0.8 e | 17.3 ± 0.5 f | 0.52 ± 0.02 e |
SP-5LF130 | 51 ± 8 b | 63.2 ± 0.4 f | 18.6 ± 0.2 g | 0.61 ± 0.02 f |
SP-10LF130 | 43 ± 9 a,b | 56.9 ± 0.3 d | 15.8 ± 0.3 e | 0.46 ± 0.01 d |
SP-5LF150 | 44 ± 9 a,b | 57.9 ± 1.5 d,e | 14.2 ± 0.9 d | 0.47 ± 0.04 d |
SP-10LF150 | 39 ± 9 a,b | 45.6 ± 0.3 c | 8.9 ± 0.2 c | 0.27 ± 0.01 c |
SP-5LF170 | 35 ± 9 a | 42.4 ± 1.2 b | 5.5 ± 0.2 b | 0.18 ± 0.01 b |
SP-10LF170 | 34 ± 9 a | 18.7 ± 4 a | 1.2 ± 0.2 a | 0.05 ± 0.01 a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gómez-Contreras, P.; Cháfer, M.; Chiralt, A.; González-Martínez, C. Beer Bagasse as Filler for Starch-Based Biocomposite Films for Food Packaging Applications. Biomass 2025, 5, 46. https://doi.org/10.3390/biomass5030046
Gómez-Contreras P, Cháfer M, Chiralt A, González-Martínez C. Beer Bagasse as Filler for Starch-Based Biocomposite Films for Food Packaging Applications. Biomass. 2025; 5(3):46. https://doi.org/10.3390/biomass5030046
Chicago/Turabian StyleGómez-Contreras, Paula, Maite Cháfer, Amparo Chiralt, and Chelo González-Martínez. 2025. "Beer Bagasse as Filler for Starch-Based Biocomposite Films for Food Packaging Applications" Biomass 5, no. 3: 46. https://doi.org/10.3390/biomass5030046
APA StyleGómez-Contreras, P., Cháfer, M., Chiralt, A., & González-Martínez, C. (2025). Beer Bagasse as Filler for Starch-Based Biocomposite Films for Food Packaging Applications. Biomass, 5(3), 46. https://doi.org/10.3390/biomass5030046