Previous Issue
Volume 5, June
 
 

Magnetism, Volume 5, Issue 3 (September 2025) – 2 articles

  • Issues are regarded as officially published after their release is announced to the table of contents alert mailing list.
  • You may sign up for e-mail alerts to receive table of contents of newly released issues.
  • PDF is the official format for papers published in both, html and pdf forms. To view the papers in pdf format, click on the "PDF Full-text" link, and use the free Adobe Reader to open them.
Order results
Result details
Select all
Export citation of selected articles as:
23 pages, 816 KiB  
Article
Large Angular Momentum
by Kenichi Konishi and Roberto Menta
Magnetism 2025, 5(3), 16; https://doi.org/10.3390/magnetism5030016 - 9 Jul 2025
Viewed by 62
Abstract
The quantum states of a spin 12 (a qubit) are parametrized by the space CP1S2, the Bloch sphere. A spin j for a generic j (a 2j+1-state system) is represented instead by a [...] Read more.
The quantum states of a spin 12 (a qubit) are parametrized by the space CP1S2, the Bloch sphere. A spin j for a generic j (a 2j+1-state system) is represented instead by a point in a larger space, CP2j. Here we study the state of a single angular momentum/spin in the limit j. A special class of states, |j,nCP2j, with spin oriented towards definite spatial directions, nS2, i.e., (J^·n)|j,n=j|j,n, are found to behave as classical angular momenta, jn, in this limit. Vice versa, general spin states in CP2j do not become classical, even at a large j. We study these questions by analyzing the Stern–Gerlach processes, the angular momentum composition rule, and the rotation matrix. Our observations help to better clarify how classical mechanics emerges from quantum mechanics in this context (e.g., with the unique trajectories of a particle carrying a large spin in an inhomogeneous magnetic field) and to make the widespread idea that large spins somehow become classical more precise. Full article
Show Figures

Figure 1

15 pages, 689 KiB  
Article
Magnetic Toroidal Monopole in a Single-Site System
by Satoru Hayami
Magnetism 2025, 5(3), 15; https://doi.org/10.3390/magnetism5030015 - 25 Jun 2025
Viewed by 226
Abstract
A magnetic toroidal monopole, which characterizes time-reversal-odd polar-charge quantity, manifests itself not only in antiferromagnetism but also in time-reversal switching physical responses. We theoretically investigate an atomic-scale description of the magnetic toroidal monopole based on multipole representation theory, which consists of four types [...] Read more.
A magnetic toroidal monopole, which characterizes time-reversal-odd polar-charge quantity, manifests itself not only in antiferromagnetism but also in time-reversal switching physical responses. We theoretically investigate an atomic-scale description of the magnetic toroidal monopole based on multipole representation theory, which consists of four types of multipoles. We show that the magnetic toroidal monopole degree of freedom is activated as the off-diagonal imaginary hybridization between the single-site orbitals with the same orbital angular momentum but different principal quantum numbers. We demonstrate that the expectation value of the magnetic toroidal monopole becomes nonzero when both electric and magnetic fields are applied to the system. Full article
Show Figures

Figure 1

Previous Issue
Back to TopTop