Influence of Starch on the Rheological, Textural, and Microstructural Properties of Processed and Analogue Cheeses
Abstract
:1. Introduction
2. Starch: An Overview
3. Milk Protein–Starch Interactions
3.1. Casein–Starch Interactions
3.2. Whey Protein–Starch Interactions
4. Interactions of Milk Fat and Lactose with Starch
5. Starch in Processed Cheese
5.1. Effect of Starch on the Microstructure of Processed Cheese
5.2. Effect of Starch on Rheological Properties of Processed Cheese
5.3. Effect of Starch on the Meltability of Processed Cheese
5.4. Effect of Starch on Textural Properties of Processed Cheese
5.5. Role of pH in Starch Addition to Processed Cheese
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kapoor, R.; Metzger, L.E. Process cheese: Scientific and technological aspects—A review. Compr. Rev. Food Sci. Food Saf. 2008, 7, 194–214. [Google Scholar]
- Koca, N.; Erbay, Z.; Öztürk, M.U. Regulations and legislations on processed cheese. In Processed Cheese Science and Technology; Elsevier: Amsterdam, The Netherlands, 2022; pp. 449–490. [Google Scholar]
- Talbot-Walsh, G.; Kannar, D.; Selomulya, C. A review on technological parameters and recent advances in the fortification of processed cheese. Trends Food Sci. Technol. 2018, 81, 193–202. [Google Scholar]
- Mulsow, B.; Jaros, D.; Rohm, H. Processed cheese and cheese analogues. In Structure of Dairy Products; Blackwell Publishing Ltd.: Oxford, UK, 2007; pp. 210–235. [Google Scholar]
- Deshwal, G.K.; Akshit, F.; Altay, I.; Huppertz, T. A Review on the Production and Characteristics of Cheese Powders. Foods 2024, 13, 2204. [Google Scholar] [CrossRef]
- Ye, A.; Hewitt, S.; Taylor, S. Characteristics of rennet–casein-based model processed cheese containing maize starch: Rheological properties, meltabilities and microstructures. Food Hydrocoll. 2009, 23, 1220–1227. [Google Scholar] [CrossRef]
- Corredig, M.; Sharafbafi, N.; Kristo, E. Polysaccharide–protein interactions in dairy matrices, control and design of structures. Food Hydrocoll. 2011, 25, 1833–1841. [Google Scholar]
- Florczuk, A.; Dąbrowska, A.; Aljewicz, M. An evaluation of the effect of curdlan and scleroglucan on the functional properties of low-fat processed cheese spreads. LWT 2022, 163, 113564. [Google Scholar]
- Matignon, A.; Neveu, A.; Ducept, F.; Chantoiseau, E.; Barey, P.; Mauduit, S.; Michon, C. Influence of thermo-mechanical treatment and skim milk components on the swelling behavior and rheological properties of starch suspensions. J. Food Eng. 2015, 150, 1–8. [Google Scholar]
- Kumar, L.; Brennan, M.A.; Mason, S.L.; Zheng, H.; Brennan, C.S. Rheological, pasting and microstructural studies of dairy protein–starch interactions and their application in extrusion-based products: A review. Starch-Stärke 2017, 69, 1600273. [Google Scholar]
- Considine, T.; Noisuwan, A.; Hemar, Y.; Wilkinson, B.; Bronlund, J.; Kasapis, S. Rheological investigations of the interactions between starch and milk proteins in model dairy systems: A review. Food Hydrocoll. 2011, 25, 2008–2017. [Google Scholar] [CrossRef]
- Gul, K.; Mir, N.A.; Yousuf, B.; Allai, F.M.; Sharma, S. Starch: An Overview. Food Biopolym. Struct. Funct. Nutraceutical Prop. 2021, 3–17. [Google Scholar]
- Compart, J.; Singh, A.; Fettke, J.; Apriyanto, A. Customizing starch properties: A review of starch modifications and their applications. Polymers 2023, 15, 3491. [Google Scholar] [CrossRef] [PubMed]
- Jia, R.; Cui, C.; Gao, L.; Qin, Y.; Ji, N.; Dai, L.; Wang, Y.; Xiong, L.; Shi, R.; Sun, Q. A review of starch swelling behavior: Its mechanism, determination methods, influencing factors, and influence on food quality. Carbohydr. Polym. 2023, 321, 121260. [Google Scholar] [CrossRef] [PubMed]
- Delcour, J.A.; Bruneel, C.; Derde, L.J.; Gomand, S.V.; Pareyt, B.; Putseys, J.A.; Wilderjans, E.; Lamberts, L. Fate of starch in food processing: From raw materials to final food products. Annu. Rev. Food Sci. Technol. 2010, 1, 87–111. [Google Scholar] [CrossRef] [PubMed]
- Zia-Ud-Din; Xiong, H.; Fei, P. Physical and chemical modification of starches: A review. Crit. Rev. Food Sci. Nutr. 2017, 57, 2691–2705. [Google Scholar] [PubMed]
- Sinhmar, A.; Pathera, A.K.; Sharma, S.; Nehra, M.; Thory, R.; Nain, V. Impact of various modification methods on physicochemical and functional properties of starch: A review. Starch-Stärke 2023, 75, 2200117. [Google Scholar]
- Bonto, A.P.; Tiozon Jr, R.N.; Sreenivasulu, N.; Camacho, D.H. Impact of ultrasonic treatment on rice starch and grain functional properties: A review. Ultrason. Sonochemistry 2021, 71, 105383. [Google Scholar] [CrossRef] [PubMed]
- Zakaria, N.; Muhammad, N.; Abdullah, M. Potential of starch nanocomposites for biomedical applications. In IOP Conference Series: Materials Science and Engineering; IOP Publishing: Bristol, UK, 2017; p. 012087. [Google Scholar]
- Foley, A.E.; Hristov, A.; Melgar, A.; Ropp, J.; Etter, R.; Zaman, S.; Hunt, C.; Huber, K.; Price, W. Effect of barley and its amylopectin content on ruminal fermentation and nitrogen utilization in lactating dairy cows. J. Dairy Sci. 2006, 89, 4321–4335. [Google Scholar] [CrossRef] [PubMed]
- Seoud, O.A.E.; Nawaz, H.; Arêas, E.P. Chemistry and applications of polysaccharide solutions in strong electrolytes/dipolar aprotic solvents: An overview. Molecules 2013, 18, 1270–1313. [Google Scholar] [CrossRef] [PubMed]
- Khatefov, E.B.; Goldstein, V.G.; Krivandin, A.V.; Wasserman, L.A. Main characteristics of processed grain starch products and physicochemical features of the starches from maize (Zea mays L.) with different genotypes. Polymers 2023, 15, 1976. [Google Scholar] [CrossRef]
- Kaur, P.; Kaur, K.; Basha, S.J.; Kennedy, J.F. Current trends in the preparation, characterization and applications of oat starch—A review. Int. J. Biol. Macromol. 2022, 212, 172–181. [Google Scholar]
- Hsieh, C.-F.; Liu, W.; Whaley, J.K.; Shi, Y.-C. Structure, properties, and potential applications of waxy tapioca starches–A review. Trends Food Sci. Technol. 2019, 83, 225–234. [Google Scholar] [CrossRef]
- Kumar, L.; Brennan, M.; Brennan, C.; Zheng, H. Influence of whey protein isolate on pasting, thermal, and structural characteristics of oat starch. J. Dairy Sci. 2022, 105, 56–71. [Google Scholar] [CrossRef] [PubMed]
- Sun, N.-x.; Liang, Y.; Yu, B.; Tan, C.-p.; Cui, B. Interaction of starch and casein. Food Hydrocoll. 2016, 60, 572–579. [Google Scholar] [CrossRef]
- Noisuwan, A.; Hemar, Y.; Wilkinson, B.; Bronlund, J. Adsorption of milk proteins onto rice starch granules. Carbohydr. Polym. 2011, 84, 247–254. [Google Scholar] [CrossRef]
- Wang, J.; Zhao, S.; Min, G.; Qiao, D.; Zhang, B.; Niu, M.; Jia, C.; Xu, Y.; Lin, Q. Starch-protein interplay varies the multi-scale structures of starch undergoing thermal processing. Int. J. Biol. Macromol. 2021, 175, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Guan, Y.; Zhao, G.; Thaiudom, S. Evaluation of the physico-chemical properties of potato starch-based foods and their interactions with milk protein and soybean oil. Food Chem. X 2022, 16, 100495. [Google Scholar] [CrossRef]
- Yang, C.; Zhong, F.; Goff, H.D.; Li, Y. Study on starch-protein interactions and their effects on physicochemical and digestible properties of the blends. Food Chem. 2019, 280, 51–58. [Google Scholar] [CrossRef]
- Guo, B.; Hu, X.; Wu, J.; Chen, R.; Dai, T.; Liu, Y.; Luo, S.; Liu, C. Soluble starch/whey protein isolate complex-stabilized high internal phase emulsion: Interaction and stability. Food Hydrocoll. 2021, 111, 106377. [Google Scholar] [CrossRef]
- Xu, F.; Zhang, L.; Liu, W.; Liu, Q.; Wang, F.; Zhang, H.; Hu, H.; Blecker, C. Physicochemical and structural characterization of potato starch with different degrees of gelatinization. Foods 2021, 10, 1104. [Google Scholar] [CrossRef]
- Karakelle, B.; Kian-Pour, N.; Toker, O.S.; Palabiyik, I. Effect of process conditions and amylose/amylopectin ratio on the pasting behavior of maize starch: A modeling approach. J. Cereal Sci. 2020, 94, 102998. [Google Scholar] [CrossRef]
- Bello-Pérez, L.A.; Flores-Silva, P.C.; Sifuentes-Nieves, I.; Agama-Acevedo, E. Controlling starch digestibility and glycaemic response in maize-based foods. J. Cereal Sci. 2021, 99, 103222. [Google Scholar]
- Mounsey, J.S.; O’Riordan, E.D. Influence of pre-gelatinised maize starch on the rheology, microstructure and processing of imitation cheese. J. Food Eng. 2008, 84, 57–64. [Google Scholar]
- Azim, Z.; Alexander, M.; Koxholt, M.; Corredig, M. Influence of cross-linked waxy maize starch on the aggregation behavior of casein micelles during acid-induced gelation. Food Biophys. 2010, 5, 227–237. [Google Scholar]
- Zhu, P.; Wang, M.; Du, X.; Chen, Z.; Liu, C.; Zhao, H. Morphological and physicochemical properties of rice starch dry heated with whey protein isolate. Food Hydrocoll. 2020, 109, 106091. [Google Scholar]
- Huang, S.; Chao, C.; Yu, J.; Copeland, L.; Wang, S. New insight into starch retrogradation: The effect of short-range molecular order in gelatinized starch. Food Hydrocoll. 2021, 120, 106921. [Google Scholar]
- Yang, N.; Ashton, J.; Kasapis, S. The influence of chitosan on the structural properties of whey protein and wheat starch composite systems. Food Chem. 2015, 179, 60–67. [Google Scholar]
- Oh, H.; Anema, S.; Pinder, D.; Wong, M. Effects of different components in skim milk on high-pressure-induced gelatinisation of waxy rice starch and normal rice starch. Food Chem. 2009, 113, 1–8. [Google Scholar]
- Abu-Jdayil, B.; Mohameed, H.A.; Eassa, A. Rheology of wheat starch–milk–sugar systems: Effect of starch concentration, sugar type and concentration, and milk fat content. J. Food Eng. 2004, 64, 207–212. [Google Scholar]
- Ahmad, F.B.; Williams, P.A. Effect of sugars on the thermal and rheological properties of sago starch. Biopolym. Orig. Res. Biomol. 1999, 50, 401–412. [Google Scholar]
- Acquarone, V.; Rao, M. Influence of sucrose on the rheology and granule size of cross-linked waxy maize starch dispersions heated at two temperatures. Carbohydr. Polym. 2003, 51, 451–458. [Google Scholar]
- Yang, H.; Irudayaraj, J.; Otgonchimeg, S.; Walsh, M. Rheological study of starch and dairy ingredient-based food systems. Food Chem. 2004, 86, 571–578. [Google Scholar]
- Guinee, T. The role of dairy ingredients in processed cheese products. In Dairy-Derived Ingredients; Elsevier: Amsterdam, The Netherlands, 2009; pp. 507–538. [Google Scholar]
- Diamantino, V.R.; Costa, M.S.; Taboga, S.R.; Vilamaior, P.S.; Franco, C.M.; Penna, A.L.B. Starch as a potential fat replacer for application in cheese: Behaviour of different starches in casein/starch mixtures and in the casein matrix. Int. Dairy J. 2019, 89, 129–138. [Google Scholar]
- Akhtar, A.; Nasim, I.; ud Din, M.S.; Araki, T.; Khalid, N. Effects of different fat replacers on functional and rheological properties of low-fat mozzarella cheeses: A review. Trends Food Sci. Technol. 2023, 139, 104136. [Google Scholar]
- Peng, X.; Yao, Y. Carbohydrates as fat replacers. Annu. Rev. Food Sci. Technol. 2017, 8, 331–351. [Google Scholar] [CrossRef] [PubMed]
- Schädle, C.N.; Sanahuja, S.; Bader-Mittermaier, S. Influence of fat replacers on the rheological, tribological, and aroma release properties of reduced-fat emulsions. Foods 2022, 11, 820. [Google Scholar] [CrossRef]
- Nasiri, M.; Tavakolipour, H.; Safaeian, S.; Nadushan, R.M. Exploring the potential of modified potato starch and seaweed salt as structuring agents to design processed cheeses with desirable properties. Int. Dairy J. 2022, 133, 105439. [Google Scholar]
- Trivedi, D.; Bennett, R.J.; Hemar, Y.; Reid, D.C.; Lee, S.K.; Illingworth, D. Effect of different starches on rheological and microstructural properties of (II) commercial processed cheese. Int. J. Food Sci. Technol. 2008, 43, 2197–2203. [Google Scholar]
- Talbot-Walsh, G.; Kannar, D.; Selomulya, C. pH effect on the physico-chemical, microstructural and sensorial properties of processed cheese manufactured with various starches. LWT 2019, 111, 414–422. [Google Scholar]
- Małecki, J.; Tomasevic, I.; Djekic, I.; Sołowiej, B.G. The effect of protein source on the physicochemical, nutritional properties and microstructure of high-protein bars intended for physically active people. Foods 2020, 9, 1467. [Google Scholar] [CrossRef] [PubMed]
- Gampala, P.; Brennan, C.S. Potential starch utilisation in a model processed cheese system. Starch-Stärke 2008, 60, 685–689. [Google Scholar]
- Fu, W.; Nakamura, T. Effects of starches on the mechanical properties and microstructure of processed cheeses with different types of casein network structures. Food Hydrocoll. 2018, 79, 587–595. [Google Scholar] [CrossRef]
- Mounsey, J.S.; O’Riordan, E.D. Alteration of imitation cheese structure and melting behaviour with wheat starch. Eur. Food Res. Technol. 2008, 226, 1013–1019. [Google Scholar] [CrossRef]
- Mounsey, J.; O'riordan, E. Characteristics of imitation cheese containing native starches. J. Food Sci. 2001, 66, 586–591. [Google Scholar] [CrossRef]
- Mounsey, J.S.; O’Riordan, E.D. Modification of imitation cheese structure and rheology using pre-gelatinised starches. Eur. Food Res. Technol. 2008, 226, 1039–1046. [Google Scholar] [CrossRef]
- Duggan, E.; Noronha, N.; O’riordan, E.; O’sullivan, M. Effect of resistant starch on the water binding properties of imitation cheese. J. Food Eng. 2008, 84, 108–115. [Google Scholar] [CrossRef]
- Mounsey, J.S.; O’riordan, E. Characteristics of imitation cheese containing native or modified rice starches. Food Hydrocoll. 2008, 22, 1160–1169. [Google Scholar] [CrossRef]
- Montesinos-Herrero, C.; Cottell, D.C.; O’Riordan, E.D.; O’Sullivan, M. Partial replacement of fat by functional fibre in imitation cheese: Effects on rheology and microstructure. Int. Dairy J. 2006, 16, 910–919. [Google Scholar] [CrossRef]
- Ye, A.; Hewitt, S. Phase structures impact the rheological properties of rennet-casein-based imitation cheese containing starch. Food Hydrocoll. 2009, 23, 867–873. [Google Scholar] [CrossRef]
- Benaouadj, F.; Ziane-Zafour, A.H.; Rebiha, M. Effects of modified starch and fat on the rheological characteristics of newly formulated processed cheese: Use of experimental design method. J. Dispers. Sci. Technol. 2017, 142, 693–698. [Google Scholar] [CrossRef]
- Deshwal, G.K.; Gómez-Mascaraque, L.G.; Fenelon, M.; Huppertz, T. A review on the effect of calcium sequestering salts on casein micelles: From model milk protein systems to processed cheese. Molecules 2023, 28, 2085. [Google Scholar] [CrossRef]
- Pereira, R.; Bennett, R.; Hemar, Y.; Campanella, O. Rheological and microstructural characteristics of model processed cheese analogues. J. Texture Stud. 2001, 32, 349–373. [Google Scholar] [CrossRef]
- Sandhu, K.S.; Sharma, L.; Kaur, M. Effect of granule size on physicochemical, morphological, thermal and pasting properties of native and 2-octenyl-1-ylsuccinylated potato starch prepared by dry heating under different pH conditions. LWT-Food Sci. Technol. 2015, 61, 224–230. [Google Scholar] [CrossRef]
- Khalifa, S.A.; Abdeen, E.; El-Shafei, S.M.; Mohamed, A.H. Effect of Quinoa (Chenopodium quinoa) Flour on the Production and Quality of Low-Fat Camel Milk Processed Cheese Spread. Pak. J. Biol. Sci. PJBS 2020, 23, 439–453. [Google Scholar] [CrossRef] [PubMed]
- Atik, D.S.; Huppertz, T. Melting of natural cheese: A review. Int. Dairy J. 2023, 105648. [Google Scholar] [CrossRef]
- Tohamy, M.M.; Ali, M.A.; Shaaban, H.A.-G.; Mohamad, A.G.; Hasanain, A.M. Production of functional spreadable processed cheese using Chlorella vulgaris. Acta Sci. Pol. Technol. Aliment. 2018, 17, 347–358. [Google Scholar]
- Kamath, R.; Basak, S.; Gokhale, J. Recent trends in the development of healthy and functional cheese analogues-a review. LWT 2022, 155, 112991. [Google Scholar] [CrossRef]
- Sharafi, S.; Nateghi, L.; Eyvazzade, O.; Ebrahimi, M.T.A. The physicochemical, texture hardness and sensorial properties of ultrafiltrated low-fat cheese containing galactomannan and novagel gum. Acta Sci. Pol. Technol. Aliment. 2020, 19, 83–100. [Google Scholar]
- Hennelly, P.; Dunne, P.; O’sullivan, M.; O’riordan, E. Textural, rheological and microstructural properties of imitation cheese containing inulin. J. Food Eng. 2006, 75, 388–395. [Google Scholar] [CrossRef]
- Parra-Ocampo, K.A.; Martín-del-Campo, S.T.; Montejano-Gaitán, J.G.; Zárraga-Alcántar, R.; Cardador-Martínez, A. Evaluation of biological, textural, and physicochemical parameters of panela cheese added with probiotics. Foods 2020, 9, 1507. [Google Scholar] [CrossRef]
- Bravo-Núñez, Á.; Garzón, R.; Rosell, C.M.; Gómez, M. Evaluation of starch–protein interactions as a function of pH. Foods 2019, 8, 155. [Google Scholar] [CrossRef]
Starch Type | Milk Protein | Suggested Interaction of Starch with Milk Protein | References |
---|---|---|---|
Rice starch | Sodium caseinate | Hydrophobic interaction/adsorption | [27,28] |
Potato starch | Casein | Hydrogen bonding | [29] |
Modified starch (phosphate starch, hydroxypropyl starch, starch ester of octenyl succinate) | Casein | Hydrogen bonding/hydrophilic/hydrophobic interactions depending on type of starch | [26] |
Rice starch | Whey protein | Hydrophobic and hydrogen bonding | [28] |
Corn starch | Whey protein | Hydrogen bonding | [30] |
Soluble potato starch | Whey protein | Hydrophobic bonding | [31] |
Product | Starch Type | Starch Added (%) | Hardness/ Firmness | Meltability | Adhesiveness/ Cohesiveness | Viscosity | Reference |
---|---|---|---|---|---|---|---|
Processed Cheese | Modified Potato Starch | 0–3% | ↓ | ↓ | [50] | ||
Processed Cheese | Potato Starch, Wheat Starch, High Amylose Corn Starch, Rice Starch | 0–3% | ↑ | [51] | |||
Processed Cheese | Potato Starch, Corn Starch, Waxy Maize Starch | 5% | [52] | ||||
Processed Cheese Analogue | Modified waxy maize starch acetylated di-starch adipate and Hydroxypropyl di-starch phosphate | 1–3% | ↑ | ↓ | ↑ | ↑ | [53] |
Processed Cheese | Corn starch | 1–2% | ↑ | ↓ | ↑ | ↑ | [54] |
Processed Cheese | Waxy Corn Starch, High-Amylose Corn Starch, Rice Starch, Potato Starch, Wheat Starch, Acid Converted Starch | 0–3% | ↑ | [51] | |||
Processed Cheese | Tapioca Starch, Potato Starch | 0–2.5% | ↑ | ↑ | [55] | ||
Processed Cheese | Normal Maize Starch, Waxy Maize Starch, High-amylose maize starch | Starch: Protein (0.05, 0.16, 0.29 and 0.47) | ↑ | [6] |
Cheese | Ingredients | Composition | Reference | |||
---|---|---|---|---|---|---|
Moisture (%) | Fat (%) | Protein (%) | pH | |||
Analogue cheese | Rennet casein, vegetable fat, gelatinized maize starch (3 to 9% w/w) to replace 15–45% of casein protein | 48.8 | 26% | 11–20 | 5.79 | [35] |
Processed cheese | Rennet casein, natural cheese | 47.5 | 26.4 | 18.1 | - | [52] |
Rennet casein, natural cheese, potato starch/corn starch/waxy maize starch (5%) | 45.1 | 25.1 | 17.2 | - | ||
Analogue cheese | Rennet casein, vegetable fat | 49.1 | 25.6 | 20.5 | 5.88 | [56] |
Rennet casein, vegetable fat, native wheat starch (3%) | 48.4 | 26.1 | 16.9 | 5.84 | ||
Rennet casein, vegetable fat, native wheat starch (5%) | 48.4 | 26.3 | 12.8 | 5.82 | ||
Analogue cheese | Rennet casein, vegetable fat | 48.8 | 26 | 20.3 | 5.83 | [57] |
Rennet casein, vegetable fat, native maize starch/waxy maize starch/wheat starch/potato starch/rice starch (3%) | 48.8 | 26 | 17.2 | - | ||
Analogue cheese | Rennet casein, vegetable fat | 48.9 | 25.8 | 20.3 | 5.84 | [58] |
Rennet casein, natural cheese, pre-gelatinized starches (native maize starch/waxy maize starch/wheat starch/potato starch/rice starch) (3%) | 48.9 | 25.8 | 17 | 5.84 | ||
Analogue cheese | Rennet casein, rapeseed oil (Moisture- 52% w/w) | 51.76 | 23.83 | 19.66 | 5.88 | [59] |
Rennet casein, rapeseed oil, resistant starch (Hi-maize 240) (21.3% on dry matter basis) (Moisture: 52% w/w) | 52.32 | 11.86 | 17.81 | 5.95 | ||
Rennet casein, rapeseed oil, resistant starch (Hi-maize 240) (21.3% on dry matter basis) (Moisture: 55% w/w) | 54.65 | 10.78 | 18.61 | 5.93 | ||
Rennet casein, rapeseed oil, resistant starch (Hi-maize 240) (21.3% on dry matter basis) (Moisture: 60% w/w) | 59.33 | 10.73 | 17.27 | 5.96 | ||
Analogue cheese | Rennet casein, vegetable fat | 48.6 | 25.9 | 20.2 | 5.86 | [60] |
Rennet casein, vegetable fat, waxy/native/high amylose/pre-gelatinized/cross-linked/acetylated waxy rice starches (3% w/w) | 48.6 | 25.9 | 17 | 5.86 | ||
Analogue cheese | Rennet casein, hydrogenated palm oil, rapeseed oil, resistant starch (5% w/w) to replace fat | 52.2 | 17.8 | 20.8 | 6.1 | [61] |
Rennet casein, hydrogenated palm oil, rapeseed oil, resistant starch (7.5% w/w) to replace fat | 52.2 | 16.1 | 20.8 | 6.1 | ||
Rennet casein, hydrogenated palm oil, rapeseed oil, resistant starch (10% w/w) to replace fat | 52.2 | 13.9 | 20.8 | 6.1 | ||
Rennet casein, hydrogenated palm oil, rapeseed oil, resistant starch (12.5% w/w) to replace fat | 52.2 | 11.2 | 20.8 | 6.1 | ||
Analogue cheese | Rennet casein, soya oil, potato starch (7% w/w) | 50.6 | 23.4 | 18.26 | 5.80 | [62] |
Processed cheese | Cheddar cheese, butter, casein, modified starch (1% w/w) | 61.2 | 15 | - | 5.76 | [63] |
Cheddar cheese, butter, casein, modified starch (3% w/w) | 62.7 | 14.9 | - | 5.85 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akshit, F.; Poswal, V.; Kaushik, R.; Deshwal, G.K.; Huppertz, T. Influence of Starch on the Rheological, Textural, and Microstructural Properties of Processed and Analogue Cheeses. Encyclopedia 2025, 5, 41. https://doi.org/10.3390/encyclopedia5020041
Akshit F, Poswal V, Kaushik R, Deshwal GK, Huppertz T. Influence of Starch on the Rheological, Textural, and Microstructural Properties of Processed and Analogue Cheeses. Encyclopedia. 2025; 5(2):41. https://doi.org/10.3390/encyclopedia5020041
Chicago/Turabian StyleAkshit, FNU, Vaishali Poswal, Rakesh Kaushik, Gaurav Kr Deshwal, and Thom Huppertz. 2025. "Influence of Starch on the Rheological, Textural, and Microstructural Properties of Processed and Analogue Cheeses" Encyclopedia 5, no. 2: 41. https://doi.org/10.3390/encyclopedia5020041
APA StyleAkshit, F., Poswal, V., Kaushik, R., Deshwal, G. K., & Huppertz, T. (2025). Influence of Starch on the Rheological, Textural, and Microstructural Properties of Processed and Analogue Cheeses. Encyclopedia, 5(2), 41. https://doi.org/10.3390/encyclopedia5020041