Smart Factories for Mass Individualization
Definition
:1. Introduction
1.1. Evolution and Trends for Modern Manufacturing
1.2. An Example: Interior Design of Automobiles
1.3. Types of Mass-Individualized Products
1.4. Study Scope
2. Relationship between Mass Individualization and Other Manufacturing Paradigms in Industry 4.0/5.0 Era
2.1. Mass Individualization and Industry 4.0
2.2. Mass Individualization and Industry 5.0
2.3. Summary
3. Product Design for Mass Individualization
4. Smart Factories for Mass-Individualized Production
4.1. Manufacturing Systems for Individualized Products
- RMS architecture with a return conveyor
- Integrated RMS with honeycomb architecture
- Although embedding flexible routings improves system flexibility, it will make the traffic in the system significantly complicated, thereby increasing the difficulty in terms of control and coordination. In addition, there are multiple types of operational decisions to make, such as scheduling, reconfiguration, and maintenance, and these decisions should be made simultaneously, which makes operational decision-making extremely challenging.
- Since mass-individualized products are unique, the operations that are performed on a new product may not be the same for any of the old products, so uncertainties may exist in parameter estimations. The incorporation of such parameter uncertainties into the decision-making process is essential for cost-effectively manufacturing mass-individualized products.
- Due to the dynamic conditions (i.e., different configurations, different scenarios of the up/down states of the machines) of the manufacturing systems as well as unpredictable events (e.g., rush orders, programming errors, random failures of machines/material handling systems), real-time data collection, analysis, and decision-making are usually needed. Therefore, the optimization algorithms should have high efficiency, which is challenging, especially when coupled with the complexity of the system.
- Because of the complexity of the tasks, humans will play a significant role in such systems and are required to responsively change system capabilities by reprogramming machines and adjusting tools. Modeling human behavior and efficiency is difficult, as they may change over time due to learning (e.g., a worker will be more and more familiar with the process over time) and are affected by environmental and emotional factors.
4.2. Concept of Smart Factories
4.3. Smart Factories for Mass Individualization
- Process simulation and planning for individualized production
- Real-time process monitoring and quality control for individualized production
- Operational decision-making and optimization in a dynamic environment
- Human–machine collaboration for complex manufacturing tasks
4.4. Smart Collaborative Manufacturing Network
5. Conclusions and Outlook
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Koren, Y. The invention of reconfigurable manufacturing systems—A survey of RMS early patents. Manuf. Lett. 2022, 33, 51–53. [Google Scholar] [CrossRef]
- Koren, Y.; Gu, X.; Badurdeen, F.; Jawahir, I.S. Sustainable living factories for next generation manufacturing. Procedia Manuf. 2018, 21, 26–36. [Google Scholar] [CrossRef]
- Hu, S.J. Evolving paradigms of manufacturing: From mass production to mass customization and personalization. Procedia CIRP 2013, 7, 3–8. [Google Scholar] [CrossRef]
- Sikhwal, R.K.; Childs, P.R. Towards mass individualisation: Setting the scope and industrial implication. Des. Sci. 2021, 7, e16. [Google Scholar] [CrossRef]
- Jiang, P.; Leng, J.; Ding, K.; Gu, P.; Koren, Y. Social manufacturing as a sustainable paradigm for mass individualization. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2016, 230, 1961–1968. [Google Scholar] [CrossRef]
- Gu, X.; Koren, Y. Mass-Individualisation–the twenty first century manufacturing paradigm. Int. J. Prod. Res. 2022, 60, 7572–7587. [Google Scholar] [CrossRef]
- Koren, Y. The Global Manufacturing Revolution: Product-Process-Business Integration and Reconfigurable Systems; John Wiley & Sons: Hoboken, NJ, USA, 2010. [Google Scholar]
- Koren, Y.; Barhak, J.; Pasek, Z. Method and Apparatus for Re-Configurable Vehicle Interior Design and Business Transaction. U.S. Patent Application 11/326,069, 5 July 2007. [Google Scholar]
- Kopelman, S. Negotiating Genuinely: Being Yourself in Business; Stanford University Press: Redwood City, CA, USA, 2014. [Google Scholar]
- XPeng P5. Available online: https://en.wikipedia.org/wiki/XPeng_P5 (accessed on 30 September 2023).
- Siegbert, R.; Yesildag, N.; Frings, M.; Schmidt, F.; Elgeti, S.; Sauerland, H.; Behr, M.; Windeck, C.; Hopmann, C.; Queudeville, Y. Individualized production in die-based manufacturing processes using numerical optimization. Int. J. Adv. Manuf. Technol. 2015, 80, 851–858. [Google Scholar] [CrossRef]
- Kang, H.S.; Do Noh, S.; Son, J.Y.; Kim, H.; Park, J.H.; Lee, J.Y. The FaaS system using additive manufacturing for personalized production. Rapid Prototyp. J. 2018, 24, 1486–1499. [Google Scholar] [CrossRef]
- Koren, Y.; Hu, S.J.; Gu, P.; Shpitalni, M. Open-architecture products. CIRP Ann. 2013, 62, 719–729. [Google Scholar] [CrossRef]
- Würtz, G.; Ardilio, A.; Lasi, H.; Warschat, J. Towards mass individualization: Life-cycle oriented configuration of time-variable product-service systems. In Proceedings of the 2013 Proceedings of PICMET’13: Technology Management in the IT-Driven Services (PICMET), San Jose, CA, USA, 28 July–1 August 2013. [Google Scholar]
- Koren, Y. The local factory of the future for producing individualized products. Bridge 2021, 51, 20–26. [Google Scholar]
- Shang, X.; Liu, X.; Xiong, G.; Cheng, C.; Ma, Y.; Nyberg, T.R. Social manufacturing cloud service platform for the mass customization in apparel industry. In Proceedings of the 2013 IEEE International Conference on Service Operations and Logistics, and Informatics, Dongguan, China, 28–30 July 2013; pp. 220–224. [Google Scholar]
- Ding, J.; Wang, M.; Zeng, X.; Qu, W.; Vassiliadis, V.S. Mass personalization strategy under Industrial Internet of Things: A case study on furniture production. Adv. Eng. Inform. 2021, 50, 101439. [Google Scholar] [CrossRef]
- Leng, J.; Ruan, G.; Song, Y.; Liu, Q.; Fu, Y.; Ding, K.; Chen, X. A loosely-coupled deep reinforcement learning approach for order acceptance decision of mass-individualized printed circuit board manufacturing in industry 4.0. J. Clean. Prod. 2021, 280, 124405. [Google Scholar] [CrossRef]
- Monostori, L.; Kádár, B.; Bauernhansl, T.; Kondoh, S.; Kumara, S.; Reinhart, G.; Sauer, O.; Schuh, G.; Sihn, W.; Ueda, K. Cyber-physical systems in manufacturing. CIRP Ann. 2016, 65, 621–641. [Google Scholar] [CrossRef]
- Esmaeilian, B.; Behdad, S.; Wang, B. The evolution and future of manufacturing: A review. J. Manuf. Syst. 2016, 39, 79–100. [Google Scholar] [CrossRef]
- Kusiak, A. Smart manufacturing. Int. J. Prod. Res. 2018, 56, 508–517. [Google Scholar] [CrossRef]
- Jardim-Goncalves, R.; Romero, D.; Grilo, A. Factories of the future: Challenges and leading innovations in intelligent manufacturing. Int. J. Comput. Integr. Manuf. 2017, 30, 4–14. [Google Scholar]
- Wang, B.; Tao, F.; Fang, X.; Liu, C.; Liu, Y.; Freiheit, T. Smart manufacturing and intelligent manufacturing: A comparative review. Engineering 2021, 7, 738–757. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Liu, A.; Kusiak, A. Data-driven smart manufacturing. J. Manuf. Syst. 2018, 48, 157–169. [Google Scholar] [CrossRef]
- Xu, X. From cloud computing to cloud manufacturing. Robot. Comput. Integr. Manuf. 2012, 28, 75–86. [Google Scholar] [CrossRef]
- Zhong, R.Y.; Xu, X.; Klotz, E.; Newman, S.T. Intelligent manufacturing in the context of industry 4.0: A review. Engineering 2017, 3, 616–630. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, X. Industry 4.0 and cloud manufacturing: A comparative analysis. J. Manuf. Sci. Eng. 2017, 139, 034701. [Google Scholar] [CrossRef]
- Huang, S.; Wang, B.; Li, X.; Zheng, P.; Mourtzis, D.; Wang, L. Industry 5.0 and Society 5.0—Comparison, complementation and co-evolution. J. Manuf. Syst. 2022, 64, 424–428. [Google Scholar] [CrossRef]
- Xu, X.; Lu, Y.; Vogel-Heuser, B.; Wang, L. Industry 4.0 and Industry 5.0—Inception, conception and perception. J. Manuf. Syst. 2021, 61, 530–535. [Google Scholar] [CrossRef]
- Mourtzis, D. The Metaverse in Industry 5.0: A Human-Centric Approach towards Personalized Value Creation. Encyclopedia 2023, 3, 1105–1120. [Google Scholar] [CrossRef]
- Leng, J.; Sha, W.; Wang, B.; Zheng, P.; Zhuang, C.; Liu, Q.; Wuest, T.; Mourtzis, D.; Wang, L. Industry 5.0: Prospect and retrospect. J. Manuf. Syst. 2022, 65, 279–295. [Google Scholar] [CrossRef]
- Jovane, F.; Yoshikawa, H.; Alting, L.; Boer, C.R.; Westkamper, E.; Williams, D.; Tseng, M.; Seliger, G.; Paci, A.M. The incoming global technological and industrial revolution towards competitive sustainable manufacturing. CIRP Ann. 2008, 57, 641–659. [Google Scholar] [CrossRef]
- Joshi, K.; Venkatachalam, A.; Jawahir, I.S. A new methodology for transforming 3R concept into 6R concept for improved product sustainability. In Proceedings of the IV Global Conference on Sustainable Product Development and Life Cycle Engineering, Sao Carolos, Brazil, 3–6 October 2006; pp. 3–6. [Google Scholar]
- Gupta, S.; Jain, S.K. A literature review of lean manufacturing. Int. J. Manag. Sci. Eng. Manag. 2013, 8, 241–249. [Google Scholar] [CrossRef]
- Boër, C.R.; Redaelli, C.; Boër, D.; Gatti, M.T. Mass customization and personalization: A way to improve sustainability beyond a common paradox. In Customization 4.0: Proceedings of the 9th World Mass Customization & Personalization Conference (MCPC 2017), Aachen, Germany, 20–21 November 2017; Springer: Cham, Switzerland, 2018; pp. 237–250. [Google Scholar]
- Jiang, P.; Leng, J.; Ding, K. Social manufacturing: A survey of the state-of-the-art and future challenges. In Proceedings of the 2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), Beijing, China, 10–12 July 2016; pp. 12–17. [Google Scholar]
- Leng, J.; Jiang, P.; Liu, C.; Wang, C. Contextual self-organizing of manufacturing process for mass individualization: A cyber-physical-social system approach. Enterp. Inf. Syst. 2020, 14, 1124–1149. [Google Scholar] [CrossRef]
- Zhou, Y.; Xiong, G.; Nyberg, T.; Mohajeri, B.; Bao, S. Social manufacturing realizing personalization production: A state-of-the-art review. In Proceedings of the 2016 IEEE International Conference on Service Operations and Logistics, and Informatics (SOLI), Beijing, China, 10–12 July 2016; pp. 7–11. [Google Scholar]
- Wang, Y.; Ma, H.; Yang, J.; Wang, K. Industry 4.0: A way from mass customization to mass personalization production. Adv. Manuf. 2017, 5, 311–320. [Google Scholar] [CrossRef]
- Tseng, M.M.; Jiao, R.J.; Wang, C. Design for mass personalization. CIRP Ann. 2010, 59, 175–178. [Google Scholar] [CrossRef]
- Tao, F.; Sui, F.; Liu, A.; Qi, Q.; Zhang, M.; Song, B.; Guo, Z.; Lu, S.C.; Nee, A.Y. Digital twin-driven product design framework. Int. J. Prod. Res. 2019, 57, 3935–3953. [Google Scholar] [CrossRef]
- Zheng, P.; Yu, S.; Wang, Y.; Zhong, R.Y.; Xu, X. User-experience based product development for mass personalization: A case study. Procedia CIRP 2017, 63, 2–7. [Google Scholar] [CrossRef]
- Zhou, F.; Ji, Y.; Jiao, R.J. Affective and cognitive design for mass personalization: Status and prospect. J. Intell. Manuf. 2013, 24, 1047–1069. [Google Scholar] [CrossRef]
- Berry, C.; Wang, H.; Hu, S.J. Product architecting for personalization. J. Manuf. Syst. 2013, 32, 404–411. [Google Scholar] [CrossRef]
- Tan, C.; Hu, S.J.; Chung, H.; Barton, K.; Piya, C.; Ramani, K.; Banu, M. Product personalization enabled by assembly architecture and cyber physical systems. CIRP Ann. 2017, 66, 33–36. [Google Scholar] [CrossRef]
- Chen, Y.; Peng, Q.; Gu, P. Methods and tools for the optimal adaptable design of open-architecture products. Int. J. Adv. Manuf. Technol. 2018, 94, 991–1008. [Google Scholar] [CrossRef]
- Zheng, P.; Xu, X.; Yu, S.; Liu, C. Personalized product configuration framework in an adaptable open architecture product platform. J. Manuf. Syst. 2017, 43, 422–435. [Google Scholar] [CrossRef]
- Tan, C.; Chung, H.; Barton, K.; Hu, S.J.; Freiheit, T. Incorporating customer personalization preferences in open product architecture design. J. Manuf. Syst. 2020, 56, 72–83. [Google Scholar] [CrossRef]
- Gu, X.; Koren, Y. Manufacturing system architecture for cost-effective mass-individualization. Manuf. Lett. 2018, 16, 44–48. [Google Scholar] [CrossRef]
- Zhang, X.; Ming, X.; Bao, Y. A flexible smart manufacturing system in mass personalization manufacturing model based on multi-module-platform, multi-virtual-unit, and multi-production-line. Comput. Ind. Eng. 2022, 171, 108379. [Google Scholar] [CrossRef]
- Lanz, M.; Tuokko, R. Concepts, methods and tools for individualized production. Prod. Eng. 2017, 11, 205–212. [Google Scholar] [CrossRef]
- Koren, Y.; Wang, W.; Gu, X. Value creation through design for scalability of reconfigurable manufacturing systems. Int. J. Prod. Res. 2017, 55, 1227–1242. [Google Scholar] [CrossRef]
- Koren, Y.; Hill, R.L. Integrated Reconfigurable Manufacturing System. U.S. Patent 6,920,973, 26 July 2005. [Google Scholar]
- Ivanov, D.; Sokolov, B.; Chen, W.; Dolgui, A.; Werner, F.; Potryasaev, S. A control approach to scheduling flexibly configurable jobs with dynamic structural-logical constraints. IISE Trans. 2021, 53, 21–38. [Google Scholar] [CrossRef]
- Zuehlke, D. SmartFactory—Towards a factory-of-things. Annu. Rev. Control 2010, 34, 129–138. [Google Scholar] [CrossRef]
- Strozzi, F.; Colicchia, C.; Creazza, A.; Noè, C. Literature review on the ‘Smart Factory’ concept using bibliometric tools. Int. J. Prod. Res. 2017, 55, 6572–6591. [Google Scholar] [CrossRef]
- Osterrieder, P.; Budde, L.; Friedli, T. The smart factory as a key construct of industry 4.0: A systematic literature review. Int. J. Prod. Econ. 2020, 221, 107476. [Google Scholar] [CrossRef]
- Soori, M.; Arezoo, B.; Dastres, R. Internet of things for smart factories in industry 4.0, a review. Internet Things Cyber-Phys. Syst. 2023, 3, 192–204. [Google Scholar] [CrossRef]
- Pech, M.; Vrchota, J.; Bednář, J. Predictive maintenance and intelligent sensors in smart factory. Sensors 2021, 21, 1470. [Google Scholar] [CrossRef]
- Zenkert, J.; Weber, C.; Dornhöfer, M.; Abu-Rasheed, H.; Fathi, M. Knowledge integration in smart factories. Encyclopedia 2021, 1, 792–811. [Google Scholar] [CrossRef]
- Tomiyama, T.; Lutters, E.; Stark, R.; Abramovici, M. Development capabilities for smart products. CIRP Ann. 2019, 68, 727–750. [Google Scholar] [CrossRef]
- Jung, W.; Kim, D.; Lee, H.; Lee, T.; Yang, I.; Youn, B.D.; Zontar, D.; Brockmann, M.; Brecher, C.; Ahn, S. Appropriate smart factory for SMEs: Concept, application and perspective. Int. J. Precis. Eng. Manuf. 2021, 22, 201–215. [Google Scholar] [CrossRef]
- Park, K.T.; Lee, J.; Kim, H.; Noh, S.D. Digital twin-based cyber physical production system architectural framework for personalized production. Int. J. Adv. Manuf. 2020, 106, 1787–1810. [Google Scholar] [CrossRef]
- Chryssolouris, G.; Mavrikios, D.; Papakostas, N.; Mourtzis, D.; Michalos, G.; Georgoulias, K. Digital manufacturing: History, perspectives, and outlook. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2009, 223, 451–462. [Google Scholar] [CrossRef]
- Aheleroff, S.; Zhong, R.Y.; Xu, X. A digital twin reference for mass personalization in industry 4.0. Procedia CIRP 2020, 93, 228–233. [Google Scholar] [CrossRef]
- Tao, F.; Qi, Q.; Wang, L.; Nee, A. Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering 2019, 5, 653–661. [Google Scholar] [CrossRef]
- Söderberg, R.; Wärmefjord, K.; Carlson, J.S.; Lindkvist, L. Toward a Digital Twin for real-time geometry assurance in individualized production. CIRP Ann. 2017, 66, 137–140. [Google Scholar] [CrossRef]
- Wree, C.; Raßmann, R.; Daâs, J.; Bause, F.; Schönfeld, T. Real-time image analysis with neural networks on industrial controllers for individualized production. In International Workshop on Service Orientation in Holonic and Multi-Agent Manufacturing; Springer: Cham, Switzerland, 2021; pp. 471–481. [Google Scholar]
- Zhong, R.Y.; Dai, Q.Y.; Qu, T.; Hu, G.J.; Huang, G.Q. RFID-enabled real-time manufacturing execution system for mass-customization production. Robot. Comput. Integr. Manuf. 2013, 29, 283–292. [Google Scholar] [CrossRef]
- Wang, J.; Ma, Y.; Zhang, L.; Gao, R.X.; Wu, D. Deep learning for smart manufacturing: Methods and applications. J. Manuf. Syst. 2018, 48, 144–156. [Google Scholar] [CrossRef]
- Bang, S.H.; Ak, R.; Narayanan, A.; Lee, Y.T.; Cho, H. A survey on knowledge transfer for manufacturing data analytics. Comput. Ind. 2019, 104, 116–130. [Google Scholar] [CrossRef]
- Bidmead, J.; Bhatiani, S.; Xu, X. Decentralized factory control based on multi-agent technologies. In Proceedings of the 2022 IEEE 18th International Conference on Automation Science and Engineering (CASE), Mexico City, Mexico, 20–24 August 2022; pp. 307–311. [Google Scholar]
- Leng, J.; Chen, Z.; Sha, W.; Ye, S.; Liu, Q.; Chen, X. Cloud-edge orchestration-based bi-level autonomous process control for mass individualization of rapid printed circuit boards prototyping services. J. Manuf. Syst. 2022, 63, 143–161. [Google Scholar] [CrossRef]
- Wang, S.; Wan, J.; Zhang, D.; Li, D.; Zhang, C. Towards smart factory for industry 4.0: A self-organized multi-agent system with big data based feedback and coordination. Comput. Netw. 2016, 101, 158–168. [Google Scholar] [CrossRef]
- Li, S.; Wang, R.; Zheng, P.; Wang, L. Towards proactive human–robot collaboration: A foreseeable cognitive manufacturing paradigm. J. Manuf. Syst. 2021, 60, 547–552. [Google Scholar] [CrossRef]
- Kumar, N.; Lee, S.C. Human-machine interface in smart factory: A systematic literature review. Technol. Forecast. Soc. Chang. 2022, 174, 121284. [Google Scholar] [CrossRef]
- Li, X.; Nassehi, A.; Wang, B.; Hu, S.J.; Epureanu, B.I. Human-centric manufacturing for human-system coevolution in Industry 5.0. CIRP Ann. 2023, 72, 393–396. [Google Scholar] [CrossRef]
- Torn, I.; Vaneker, T.H. Mass personalization with Industry 4.0 by SMEs: A concept for collaborative networks. Procedia Manuf. 2019, 28, 135–141. [Google Scholar] [CrossRef]
- Qin, Z.; Lu, Y. Self-organizing manufacturing network: A paradigm towards smart manufacturing in mass personalization. J. Manuf. Syst. 2021, 60, 35–47. [Google Scholar] [CrossRef]
- Hong, Q.; Chen, Z.; Dong, C.; Xiong, Q. A dynamic demand-driven smart manufacturing for mass individualization production. In Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 3297–3302. [Google Scholar]
- Yang, C.; Lan, S.; Shen, W.; Huang, G.Q.; Wang, X.; Lin, T. Towards product customization and personalization in IoT-enabled cloud manufacturing. Clust. Comput. 2017, 20, 1717–1730. [Google Scholar] [CrossRef]
- Li, X.; Zheng, P.; Bao, J.; Gao, L.; Xu, X. Achieving cognitive mass personalization via the self-X cognitive manufacturing network: An industrial knowledge graph-and graph embedding-enabled pathway. Engineering 2023, 22, 14–19. [Google Scholar] [CrossRef]
- Leng, J.; Ye, S.; Zhou, M.; Zhao, J.L.; Liu, Q.; Guo, W.; Cao, W.; Fu, L. Blockchain-secured smart manufacturing in industry 4.0: A survey. IEEE Trans. Syst. Man Cybern. Syst. 2020, 51, 237–252. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gu, X.; Koren, Y. Smart Factories for Mass Individualization. Encyclopedia 2024, 4, 415-429. https://doi.org/10.3390/encyclopedia4010028
Gu X, Koren Y. Smart Factories for Mass Individualization. Encyclopedia. 2024; 4(1):415-429. https://doi.org/10.3390/encyclopedia4010028
Chicago/Turabian StyleGu, Xi, and Yoram Koren. 2024. "Smart Factories for Mass Individualization" Encyclopedia 4, no. 1: 415-429. https://doi.org/10.3390/encyclopedia4010028
APA StyleGu, X., & Koren, Y. (2024). Smart Factories for Mass Individualization. Encyclopedia, 4(1), 415-429. https://doi.org/10.3390/encyclopedia4010028