Nonlocal Elasticity for Nanostructures: A Review of Recent Achievements
Abstract
:1. Introduction
2. Eringen’s Theory of Integral Elasticity
2.1. Averaging Kernel and Green’s Function
- Symmetry and positivity
- Normalization
- Limit impulsivity
2.2. The Alleged Paradox of the Nonlocal Elastic Cantilever
3. Strain-Driven Nonlocal Methodologies
4. The Stress-Driven Nonlocal Model
Nonlinear Mechanics of Nonlocal Elastic Beams
5. A Nonlocal Methodology for Shear Deformation Beam Theories
6. Stress-Driven Two-Phase Elasticity
6.1. Two-Phase Elasticity for Stubby Curved Beams
6.2. Two-Phase Elasticity for Plates
7. Dynamics of Nanobeams
8. Nonlocal Elasticity for Structural Assemblages
9. Nanostructures on Nonlocal Foundations
10. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rogula, D. Influence of spatial acoustic dispersion on dynamical properties of dislocations. Bull. Pol. Acad. Sci. Tech. Sci. 1965, 13, 337–385. [Google Scholar]
- Kröner, E. Elasticity theory of materials with long range cohesive forces. Int. J. Solids Struct. 1967, 3, 731–742. [Google Scholar] [CrossRef]
- Meo, M.; Rossi, M. Prediction of Young’s modulus of single wall carbon nanotubes by molecular-mechanics based finite element modeling. Compos. Sci. Technol. 2006, 66, 1597–1605. [Google Scholar] [CrossRef]
- Malagù, M.; Benvenuti, E.; Simone, A. One-dimensional nonlocal elasticity for tensile single-walled carbon nanotubes: A molecular structural mechanics characterization. Eur. J. Mech.—A/Solids 2015, 54, 160–170. [Google Scholar] [CrossRef]
- Duan, K.; Li, L.; Hu, Y.; Wang, X. Enhanced interfacial strength of carbon nanotube/copper nanocomposites via Ni-coating: Molecular-dynamics insights. Phys. E Low-Dimens. Syst. Nanostructures 2017, 88, 259–264. [Google Scholar] [CrossRef]
- Eringen, A.C. Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 1972, 10, 425–435. [Google Scholar] [CrossRef]
- Eringen, A.C. On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J. Appl. Phys. 1983, 54, 4703–4710. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R. Stress-driven versus strain-driven nonlocal integral model for elastic nano-beams. Compos. B. Eng. 2017, 114, 184–188. [Google Scholar] [CrossRef]
- Peddieson, J.; Buchanan, G.R.; McNitt, R.P. Application of nonlocal continuum models to nanotechnology. Int. J. Eng. Sci. 2003, 41, 305–312. [Google Scholar] [CrossRef]
- Challamel, N.; Wang, C.M. The small length scale effect for a non-local cantilever beam: A paradox solved. Nanotechnology 2008, 19, 345703. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R.; Diaco, M. On nonlocal integral models for elastic nano-beams. Int. J. Mech. Sci. 2017, 131-132, 490–499. [Google Scholar] [CrossRef]
- Eringen, A.C. Theory of nonlocal elasticity and some applications. Res. Mech. 1987, 21, 313–342. [Google Scholar]
- Eringen, A.C. Nonlocal Continuum Field Theories; Springer: New York, NY, USA, 2002. [Google Scholar]
- Khodabakhshi, P.; Reddy, J. A unified integro-differential nonlocal model. Int. J. Eng. Sci. 2015, 95, 60–75. [Google Scholar] [CrossRef]
- Pisano, A.A.; Fuschi, P. Closed form solution for a nonlocal elastic bar in tension. Int. J. Solids Struct. 2003, 40, 13–23. [Google Scholar] [CrossRef]
- Fuschi, P.; Pisano, A.; Polizzotto, C. Size effects of small-scale beams in bending addressed with a strain-difference based nonlocal elasticity theory. Int. J. Mech. Sci. 2019, 151, 661–671. [Google Scholar] [CrossRef]
- Aifantis, E.C. Update on a class of gradient theories. Mech. Mater. 2003, 35, 259–280. [Google Scholar] [CrossRef]
- Aifantis, E.C. Exploring the applicability of gradient elasticity to certain micro/nano reliability problems. Microsyst. Technol. 2009, 15, 109–115. [Google Scholar] [CrossRef]
- Aifantis, E.C. On the gradient approach–relation to Eringen’s nonlocal theory. Int. J. Eng. Sci. 2011, 49, 1367–1377. [Google Scholar] [CrossRef]
- Lim, C.; Zhang, G.; Reddy, J. A higher-order nonlocal elasticity and strain gradient theory and its Applications in wave propagation. J. Mech. Phys. Solids 2015, 78, 298–313. [Google Scholar] [CrossRef]
- Barretta, R.; Marotti de Sciarra, F. Constitutive boundary conditions for nonlocal strain gradient elastic nano-beams. Int. J. Eng. Sci. 2018, 130, 187–198. [Google Scholar] [CrossRef]
- Barretta, R.; Faghidian, S.; Marotti de Sciarra, F.; Vaccaro, M. Nonlocal strain gradient torsion of elastic beams: Variational formulation and constitutive boundary conditions. Arch. Appl. Mech. 2020, 90, 691–706. [Google Scholar] [CrossRef]
- Gurtin, M.; Murdoch, A. A Continuum Theory of Elastic Material Surfaces. Arch. Ration. Mech. Anal. 1975, 57, 291–323. [Google Scholar] [CrossRef]
- Li, L.; Lin, R.; Ng, T.Y. Contribution of nonlocality to surface elasticity. Int. J. Eng. Sci. 2020, 152, 103311. [Google Scholar] [CrossRef]
- Carbone, L.; Gaudiello, A.; Hernández-Llanos, P. T-junction of ferroelectric wires. ESAIM Math. Model. Numer. Anal. 2020, 54, 1429–1463. [Google Scholar] [CrossRef]
- Gaudiello, A.; Sili, A. Limit models for thin heterogeneous structures with high contrast. J. Differ. Equ. 2021, 302, 37–63. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R. Nonlocal elasticity in nanobeams: The stress-driven integral model. Int. J. Eng. Sci. 2017, 115, 14–27. [Google Scholar] [CrossRef]
- Barretta, R.; Marotti de Sciarra, F.; Vaccaro, M.S. On nonlocal mechanics of curved elastic beams. Int. J. Eng. Sci. 2019, 144, 103140. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R.; Diaco, M. Iterative methods for nonlocal elasticity problems. Contin. Mech. Thermodyn. 2019, 31, 669–689. [Google Scholar] [CrossRef]
- Sedighi, H.M.; Malikan, M. Stress-driven nonlocal elasticity for nonlinear vibration characteristics of carbon/boron-nitride hetero-nanotube subject to magneto-thermal environment. Phys. Scr. 2020, 95, 055218. [Google Scholar] [CrossRef]
- Farajpour, A.; Howard, C.Q.; Robertson, W.S.P. On size-dependent mechanics of nanoplates. Int. J. Eng. Sci. 2020, 156, 103368. [Google Scholar] [CrossRef]
- Barretta, R.; Fabbrocino, F.; Luciano, R.; Marotti de Sciarra, F. Closed-form solutions in stress-driven two-phase integral elasticity for bending of functionally graded nano-beams. Phys. E Low-Dimens. Syst. Nanostructures 2018, 97, 13–30. [Google Scholar] [CrossRef]
- Vaccaro, M.S.; Pinnola, F.P.; Marotti de Sciarra, F.; <i>C</i>ˇanađija, M.; Barretta, R. Stress-driven two-phase integral elasticity for Timoshenko curved beams. Proc. Inst. Mech. Eng. Part N J. Nanomater. Nanoeng. Nanosyst. 2021, 235, 52–63. [Google Scholar] [CrossRef]
- Zhang, P.; Qing, H.; Gao, C.F. Exact solutions for bending of Timoshenko curved nanobeams made of functionally graded materials based on stress-driven nonlocal integral model. Compos. Struct. 2020, 245, 112362. [Google Scholar] [CrossRef]
- Vaccaro, M.S.; Sedighi, H.M. Two-phase elastic axisymmetric nanoplates. Eng. Comput. 2022, in press. [Google Scholar] [CrossRef]
- Farajpour, A.; Ghayesh, M.H.; Farokhi, H. A review on the mechanics of nanostructures. Int. J. Eng. Sci. 2018, 133, 231–263. [Google Scholar] [CrossRef]
- Shariati, M.; Shishesaz, M.; Sahbafar, H.; Pourabdy, M.; Hosseini, M. A review on stress-driven nonlocal elasticity theory. J. Comput. Appl. Mech. 2021, 52, 535–552. [Google Scholar]
- Rogula, D. Introduction to nonlocal theory of material media. In Nonlocal Theory of Material Media; Rogula, D., Ed.; Springer: Vienna, Austria, 1982; pp. 123–222. [Google Scholar]
- Krumhansl, J.A. Some considerations of the relation between solid state physics and generalized continuum mechanics. In Proceedings of the Mechanics of Generalized Continua; Kröner, E., Ed.; Springer: Berlin/Heidelberg, Germany, 1968; pp. 298–311. [Google Scholar]
- Kunin, I.A. The theory of elastic media with microstructure and the theory of dislocations. In Proceedings of the Mechanics of Generalized Continua; Kröner, E., Ed.; Springer: Berlin/Heidelberg, Germany, 1968; pp. 321–329. [Google Scholar]
- Romano, G.; Luciano, R.; Barretta, R.; Diaco, M. Nonlocal integral elasticity in nanostructures, mixtures, boundary effects and limit behaviours. Contin. Mech. Thermodyn. 2018, 30, 641–655. [Google Scholar] [CrossRef]
- Benvenuti, E.; Simone, A. One-dimensional nonlocal and gradient elasticity: Closed-form solution and size effect. Mech. Res. Commun. 2013, 48, 46–51. [Google Scholar] [CrossRef]
- Vaccaro, M.S.; Barretta, R.; Marotti de Sciarra, F.; Reddy, J.N. Nonlocal integral elasticity for third-order small-scale beams. Acta Mech. 2022, 233, 2393–2403. [Google Scholar] [CrossRef]
- Fernández-Sáez, J.; Zaera, R.; Loya, J.; Reddy, J. Bending of Euler–Bernoulli beams using Eringen’s integral formulation: A paradox resolved. Int. J. Eng. Sci. 2016, 99, 107–116. [Google Scholar] [CrossRef]
- Romano, G.; Barretta, R.; Diaco, M.; Marotti de Sciarra, F. Constitutive boundary conditions and paradoxes in nonlocal elastic nanobeams. Int. J. Mech. Sci. 2017, 121, 151–156. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, Y.; Dai, H.H. Buckling analysis of Euler–Bernoulli beams using Eringen’s two-phase nonlocal model. Int. J. Eng. Sci. 2017, 116, 130–140. [Google Scholar] [CrossRef]
- Zhang, P.; Qing, H. Free vibration analysis of Euler–Bernoulli curved beams using two-phase nonlocal integral models. J. Vib. Control. 2021, 28, 2861–2878. [Google Scholar] [CrossRef]
- Naghinejad, M.; Ovesy, H.R. Nonlinear post-buckling analysis of viscoelastic nano-scaled beams by nonlocal integral finite element method. ZAMM J. Appl. Math. Mech./Z. für Angew. Math. Und Mech. 2022, 102, e202100148. [Google Scholar] [CrossRef]
- Providas, E. Closed-Form Solution of the Bending Two-Phase Integral Model of Euler-Bernoulli Nanobeams. Algorithms 2022, 15, 151. [Google Scholar] [CrossRef]
- Zhang, P.; Qing, H. Closed-form solution in bi-Helmholtz kernel based two-phase nonlocal integral models for functionally graded Timoshenko beams. Compos. Struct. 2021, 265, 113770. [Google Scholar] [CrossRef]
- Tricomi, F.G. Integral Equations; Interscience: New York, NY, USA, 1957. [Google Scholar]
- Polyanin, P.; Manzhirov, A. Handbook of Integral Equations, 2nd ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2008. [Google Scholar]
- Romano, G.; Diaco, M. On formulation of nonlocal elasticity problems. Meccanica 2020, 56, 1303–1328. [Google Scholar] [CrossRef]
- Pisano, A.A.; Fuschi, P.; Polizzotto, C. Integral and differential approaches to Eringen’s nonlocal elasticity models accounting for boundary effects with applications to beams in bending. ZAMM J. Appl. Math. Mech./Z. für Angew. Math. Und Mech. 2021, 101, e202000152. [Google Scholar] [CrossRef]
- Pisano, A.A.; Fuschi, P.; Polizzotto, C. Euler–Bernoulli elastic beam models of Eringen’s differential nonlocal type revisited within a C0-continuous displacement framework. Meccanica 2021, 56, 2323–2337. [Google Scholar] [CrossRef]
- Barretta, R.; Faghidian, S.A.; Marotti de Sciarra, F. Stress-driven nonlocal integral elasticity for axisymmetric nano-plates. Int. J. Eng. Sci. 2019, 136, 38–52. [Google Scholar] [CrossRef]
- Oskouie, M.F.; Ansari, R.; Rouhi, H. Bending of Euler-Bernoulli nanobeams based on the strain- and stress-driven nonlocal integral models: A numerical approach. Acta Mech. Sin. 2018, 34, 871–882. [Google Scholar] [CrossRef]
- Oskouie, M.F.; Ansari, R.; Rouhi, H. A numerical study on the buckling and vibration of nanobeams based on the strain- and stress-driven nonlocal integral models. Int. J. Comput. Mater. Sci. Eng. 2018, 7, 1850016. [Google Scholar]
- Barretta, R.; Faghidian, S.A.; Luciano, R. Longitudinal vibrations of nano-rods by stress-driven integral elasticity. Mech. Adv. Mater. Struct. 2019, 26, 1307–1315. [Google Scholar] [CrossRef]
- Qing, H.; Wei, L. Linear and nonlinear free vibration analysis of functionally graded porous nanobeam using stress-driven nonlocal integral model. Commun. Nonlinear Sci. Numer. Simul. 2022, 109, 106300. [Google Scholar] [CrossRef]
- Mahmoudpour, E.; Esmaeili, M. Nonlinear free and forced vibration of carbon nanotubes conveying magnetic nanoflow and subjected to a longitudinal magnetic field using stress-driven nonlocal integral model. Thin-Walled Struct. 2021, 166, 108134. [Google Scholar] [CrossRef]
- Darban, H.; Luciano, R.; Darban, R. Buckling of cracked micro- and nanocantilevers. Acta Mech. 2022, 234, 693–704. [Google Scholar] [CrossRef]
- Abazari, A.M.; Safavi, S.M.; Rezazadeh, G.; Villanueva, L.G. Modelling the Size Effects on the Mechanical Properties of Micro/Nano Structures. Sensors 2015, 15, 28543–28562. [Google Scholar] [CrossRef]
- Lam, D.C.C.; Yang, F.; Chong, A.C.M.; Wang, J.; Tong, P. Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 2003, 51, 1477–1508. [Google Scholar] [CrossRef]
- Zarepour, M.; Hosseini, S.; Akbarzadeh, A. Geometrically nonlinear analysis of Timoshenko piezoelectric nanobeams with flexoelectricity effect based on Eringen’s differential model. Appl. Math. Model. 2019, 69, 563–582. [Google Scholar] [CrossRef]
- Gholipour, A.; Ghayesh, M.H. Nonlinear coupled mechanics of functionally graded nanobeams. Int. J. Eng. Sci. 2020, 150, 103221. [Google Scholar] [CrossRef]
- Ghaffari, S.S.; Ceballes, S.; Abdelkefi, A. Nonlinear dynamical responses of forced carbon nanotube-based mass sensors under the influence of thermal loadings. Nonlinear Dyn. 2020, 100, 1013–1035. [Google Scholar] [CrossRef]
- Gholami, M.; Zare, E.; Alibazi, A. Applying Eringen’s nonlocal elasticity theory for analyzing the nonlinear free vibration of bidirectional functionally graded Euler–Bernoulli nanobeams. Arch. Appl. Mech. 2021, 91, 2957–2971. [Google Scholar] [CrossRef]
- Saadatmand, M.; Shahabodini, A.; Ahmadi, B.; Chegini, S. Nonlinear forced vibrations of initially curved rectangular single layer graphene sheets: An analytical approach. Phys. E Low-Dimens. Syst. Nanostructures 2021, 127, 114568. [Google Scholar] [CrossRef]
- Lanzoni, L.; Tarantino, A.M. Bending of nanobeams in finite elasticity. Int. J. Mech. Sci. 2021, 202-203, 106500. [Google Scholar] [CrossRef]
- Karimipour, I.; Beni, Y.T. Nonlinear dynamic analysis of nonlocal composite laminated toroidal shell segments subjected to mechanical shock. Commun. Nonlinear Sci. Numer. Simul. 2022, 106, 106105. [Google Scholar] [CrossRef]
- Jin, Q.; Ren, Y. Nonlinear size-dependent bending and forced vibration of internal flow-inducing pre- and post-buckled FG nanotubes. Commun. Nonlinear Sci. Numer. Simul. 2022, 104, 106044. [Google Scholar] [CrossRef]
- Alibakhshi, A.; Dastjerdi, S.; Fantuzzi, N.; Rahmanian, S. Nonlinear free and forced vibrations of a fiber-reinforced dielectric elastomer-based microbeam. Int. J.-Non-Linear Mech. 2022, 144. [Google Scholar] [CrossRef]
- Tang, Y.; Qing, H. Size-dependent nonlinear post-buckling analysis of functionally graded porous Timoshenko microbeam with nonlocal integral models. Commun. Nonlinear Sci. Numer. Simul. 2023, 116, 106808. [Google Scholar] [CrossRef]
- Mamandi, A. Nonlocal large deflection analysis of a cantilever nanobeam on a nonlinear Winkler-Pasternak elastic foundation and under uniformly distributed lateral load. J. Mech. Sci. Technol. 2023, 37, 813–824. [Google Scholar] [CrossRef]
- Malikan, M.; Wiczenbach, T.; Eremeyev, V. Thermal buckling of functionally graded piezomagnetic micro- and nanobeams presenting the flexomagnetic effect. Contin. Mech. Thermodyn. 2022, 34, 1051–1066. [Google Scholar] [CrossRef]
- Vaccaro, M.S. On geometrically nonlinear mechanics of nanocomposite beams. Int. J. Eng. Sci. 2022, 173, 103653. [Google Scholar] [CrossRef]
- Chen, L. An integral approach for large deflection cantilever beams. Int. J.-Non-Linear Mech. 2010, 45, 301–305. [Google Scholar] [CrossRef]
- Reddy, J.N. A simple higher-order theory for laminated composite plates. J. Appl. Mech. 1984, 51, 745–752. [Google Scholar] [CrossRef]
- Reddy, J.N.; Wang, C.M.; Lee, K.H. Relationships between bending solutions of classical and shear deformation beam theories. Int. J. Solids Struct. 1997, 34, 3373–3384. [Google Scholar] [CrossRef]
- Heyliger, P.R.; Reddy, J.N. A higher-order beam finite element for bending and vibration problems. J. Sound Vib. 1988, 126, 309–326. [Google Scholar] [CrossRef]
- Reddy, J.N. Theories and Analyses of Beams and Axisymmetric Circular Plates; Taylor & Francis (CRC Press): Philadelphia, PA, USA, 2022. [Google Scholar]
- Levinson, M. A new rectangular beam theory. J. Sound Vib. 1981, 74, 81–87. [Google Scholar] [CrossRef]
- Bickford, W.B. A consistent higher order beam theory. Dev. Theor. Appl. Mech. 1982, 11, 137–150. [Google Scholar]
- Reddy, J.N. Energy Principles and Variational Methods in Applied Mechanics, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2002. [Google Scholar]
- Jankowski, P.; Żur, K.K.; Kim, J.; Reddy, J. On the bifurcation buckling and vibration of porous nanobeams. Compos. Struct. 2020, 250, 112632. [Google Scholar] [CrossRef]
- Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Ruta, G. Stress-driven nonlocal integral model for Timoshenko elastic nano-beams. Eur. J. Mech. A/Solids 2018, 72, 275–286. [Google Scholar] [CrossRef]
- Zhang, P.; Qing, H. On well-posedness of two-phase nonlocal integral models for higher-order refined shear deformation beams. Appl. Math. Mech. 2021, 42, 931–950. [Google Scholar] [CrossRef]
- Vantadori, S.; Luciano, R.; Scorza, D.; Darban, H. Fracture analysis of nanobeams based on the stress-driven non-local theory of elasticity. Mech. Adv. Mater. Struct. 2022, 29, 1967–1976. [Google Scholar] [CrossRef]
- Zhang, P.; Schiavone, P.; Qing, H. Unified two-phase nonlocal formulation for vibration of functionally graded beams resting on nonlocal viscoelastic Winkler-Pasternak foundation. Appl. Math. Mech.-Engl. 2022, 44, 89–108. [Google Scholar] [CrossRef]
- Scorza, D.; Luciano, R.; Vantadori, S. Fracture behaviour of nanobeams through Two-Phase Local/Nonlocal Stress-Driven model. Compos. Struct. 2022, 280, 114957. [Google Scholar] [CrossRef]
- Rezaiee-Pajand, M.; Rajabzadeh-Safaei, N. Stress-driven nonlinear behavior of curved nanobeams. Int. J. Eng. Sci. 2022, 178, 103724. [Google Scholar] [CrossRef]
- Xu, X.; Karami, B.; Shahsavari, D. Time-dependent behavior of porous curved nanobeam. Int. J. Eng. Sci. 2021, 160, 103455. [Google Scholar] [CrossRef]
- Karamanli, A.; Vo, T.P. Finite element model for free vibration analysis of curved zigzag nanobeams. Compos. Struct. 2022, 282, 115097. [Google Scholar] [CrossRef]
- Bacciocchi, M.; Tarantino, A.M. Analytical solutions for vibrations and buckling analysis of laminated composite nanoplates based on third-order theory and strain gradient approach. Compos. Struct. 2021, 272, 114083. [Google Scholar] [CrossRef]
- Bacciocchi, M.; Fantuzzi, N.; Neves, A.; Ferreira, A. Vibrations and bending of thin laminated square plates with holes in gradient elasticity: A finite element solution. Mech. Res. Commun. 2023, 128. [Google Scholar] [CrossRef]
- Lin, M.X.; Chen, C. Investigation of pull-in behavior of circular nanoplate actuator based on the modified couple stress theory. Eng. Comput. 2020, 38, 2648–2665. [Google Scholar] [CrossRef]
- Furletov, A.; Apyari, V.; Garshev, A.; Dmitrienko, S.; Zolotov, Y. Fast and Sensitive Determination of Bioflavonoids Using a New Analytical System Based on Label-Free Silver Triangular Nanoplates. Sensors 2022, 22, 843. [Google Scholar] [CrossRef]
- Fernández-Sáez, J.; Morassi, A.; Rubio, L.; Zaera, R. Transverse free vibration of resonant nanoplate mass sensors: Identification of an attached point mass. Int. J. Mech. Sci. 2019, 150, 217–225. [Google Scholar] [CrossRef]
- Farajpour, A.; Żur, K.K.; Kim, J.; Reddy, J. Nonlinear frequency behaviour of magneto-electromechanical mass nanosensors using vibrating MEE nanoplates with multiple nanoparticles. Compos. Struct. 2021, 260, 113458. [Google Scholar] [CrossRef]
- Chenghui, X.; Qu, J.; Rong, D.; Zhou, Z.; Leung, A. Theory and modeling of a novel class of nanoplate-based mass sensors with corner point supports. Thin-Walled Struct. 2021, 159, 107306. [Google Scholar]
- Zhou, H.; Shao, D.; Song, X.; Li, P. Three-dimensional thermoelastic damping models for rectangular micro/nanoplate resonators with nonlocal-single-phase-lagging effect of heat conduction. Int. J. Heat Mass Transf. 2022, 196, 123271. [Google Scholar] [CrossRef]
- Pham, Q.H.; Tran, T.T.; Nguyen, P.C. Nonlocal free vibration of functionally graded porous nanoplates using higher-order isogeometric analysis and ANN prediction. Alex. Eng. J. 2023, 66, 651–667. [Google Scholar] [CrossRef]
- Al-Furjan, M.; Shan, L.; Shen, X.; Kolahchi, R.; Rajak, D.K. Combination of FEM-DQM for nonlinear mechanics of porous GPL-reinforced sandwich nanoplates based on various theories. Thin-Walled Struct. 2022, 178, 109495. [Google Scholar] [CrossRef]
- Kawano, A.; Morassi, A.; Zaera, R. Inverse load identification in vibrating nanoplates. Math. Methods Appl. Sci. 2023, 46, 1045–1075. [Google Scholar] [CrossRef]
- Pinnola, F.P.; Vaccaro, M.S.; Barretta, R.; Marotti de Sciarra, F. Random vibrations of stress-driven nonlocal beams with external damping. Meccanica 2021, 56, 1329–1344. [Google Scholar] [CrossRef]
- Shinozuka, M.; Deodatis, G. Stochastic process models for earthquake ground motion. Probabilistic Eng. Mech. 1988, 3, 114–123. [Google Scholar] [CrossRef]
- Dilena, M.; Fedele Dell’Oste, M.; Fernández-Sáez, J.; Morassi, A.; Zaera, R. Hearing distributed mass in nanobeam resonators. Int. J. Solids Struct. 2020, 193, 568–592. [Google Scholar] [CrossRef]
- Alibakhshi, A.; Dastjerdi, S.; Malikan, M.; Eremeyev, V. Nonlinear free and forced vibrations of a dielectric elastomer-based microcantilever for atomic force microscopy. Contin. Mech. Thermodyn. 2022, in press. [Google Scholar] [CrossRef]
- Nguyen, P.C.; Pham, Q.H. A nonlocal isogeometric model for buckling and dynamic instability analyses of FG graphene platelets-reinforced nanoplates. Mater. Today Commun. 2023, 34, 105211. [Google Scholar] [CrossRef]
- Zhang, Q.; Li, M.; Zhao, M. Dynamic analysis of a piezoelectric semiconductor nanoplate with surface effect. Mater. Today Commun. 2022, 33, 104406. [Google Scholar] [CrossRef]
- Gusella, V.; Autuori, G.; Pucci, P.; Cluni, F. Dynamics of Nonlocal Rod by Means of Fractional Laplacian. Symmetry 2020, 12, 1933. [Google Scholar] [CrossRef]
- Darban, H.; Luciano, R.; Basista, M. Free transverse vibrations of nanobeams with multiple cracks. Int. J. Eng. Sci. 2022, 177, 103703. [Google Scholar] [CrossRef]
- Corigliano, A.; Ardito, R.; Comi, C.; Ghisi, A.; Mariani, S. Mechanics of Microsystems; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2018. [Google Scholar] [CrossRef]
- Jalaei, M.; Thai, H.T.; Civalek, O. On viscoelastic transient response of magnetically imperfect functionally graded nanobeams. Int. J. Eng. Sci. 2022, 172, 103629. [Google Scholar] [CrossRef]
- Akgöz, B.; Civalek, O. Buckling Analysis of Functionally Graded Tapered Microbeams via Rayleigh–Ritz Method. Mathematics 2022, 10, 4429. [Google Scholar] [CrossRef]
- Comi, C.; Corigliano, A.; Frangi, A.; Zega, V. Linear and nonlinear mechanics in MEMS. In Silicon Sensors and Actuators: The Feynman Roadmap; Springer: Cham, Switzerland, 2022; pp. 389–437. [Google Scholar] [CrossRef]
- Numanouglu, H.M.; Ersoy, H.; Akgöz, B.; Civalek, O. A new eigenvalue problem solver for thermo-mechanical vibration of Timoshenko nanobeams by an innovative nonlocal finite element method. Math. Methods Appl. Sci. 2022, 45, 2592–2614. [Google Scholar] [CrossRef]
- Civalek, O.; Uzun, B.; Yayli, M.; Akgöz, B. Size-dependent transverse and longitudinal vibrations of embedded carbon and silica carbide nanotubes by nonlocal finite element method. Eur. Phys. J. Plus 2020, 135, 381. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Barati, M.; Civalek, O. Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 2020, 36, 953–964. [Google Scholar] [CrossRef]
- Żur, K.K.; Farajpour, A.; Lim, C.; Jankowski, P. On the nonlinear dynamics of porous composite nanobeams connected with fullerenes. Compos. Struct. 2021, 274, 114356. [Google Scholar] [CrossRef]
- Vaccaro, M.S.; Marotti de Sciarra, F.; Barretta, R. On the regularity of curvature fields in stress-driven nonlocal elastic beams. Acta Mech. 2021, 232, 2595–2603. [Google Scholar] [CrossRef]
- Caporale, A.; Darban, H.; Luciano, R. Exact closed-form solutions for nonlocal beams with loading discontinuities. Mech. Adv. Mater. Struct. 2022, 29, 694–704. [Google Scholar] [CrossRef]
- Pinnola, F.; Vaccaro, M.S.; Barretta, R.; Marotti de Sciarra, F. Finite element method for stress-driven nonlocal beams. Eng. Anal. Bound. Elem. 2022, 134, 22–34. [Google Scholar] [CrossRef]
- Scorza, D.; Vantadori, S.; Luciano, R. Nanobeams with Internal Discontinuities: A Local/Nonlocal Approach. Nanomaterials 2021, 11, 2651. [Google Scholar] [CrossRef]
- Caporale, A.; Darban, H.; Luciano, R. Nonlocal strain and stress gradient elasticity of Timoshenko nano-beams with loading discontinuities. Int. J. Eng. Sci. 2022, 173, 103620. [Google Scholar] [CrossRef]
- Togun, N.; Bagdatli, S.M. Nonlinear Vibration of a Nanobeam on a Pasternak Elastic Foundation Based on Non-Local Euler-Bernoulli Beam Theory. Math. Comput. Appl. 2016, 21, 3. [Google Scholar] [CrossRef]
- Togun, N. Nonlocal beam theory for nonlinear vibrations of a nanobeam resting on elastic foundation. Bound. Value Probl. 2016, 2016, 57. [Google Scholar] [CrossRef]
- Ebrahimi, F.; Barati, M.R. Buckling analysis of nonlocal third-order shear deformable functionally graded piezoelectric nanobeams embedded in elastic medium. J. Braz. Soc. Mech. Sci. Eng. 2017, 39, 937–952. [Google Scholar] [CrossRef]
- Darban, H.; Fabbrocino, F.; Feo, L.; Luciano, R. Size-dependent buckling analysis of nanobeams resting on two-parameter elastic foundation through stress-driven nonlocal elasticity model. Mech. Adv. Mater. Struct. 2021, 28, 2408–2416. [Google Scholar] [CrossRef]
- Mahmoudpour, E.; Hosseini-Hashemi, S.H.; Faghidian, S.A. Nonlinear vibration analysis of FG nano-beams resting on elastic foundation in thermal environment using stress-driven nonlocal integral model. Appl. Math. Model. 2018, 57, 302–315. [Google Scholar] [CrossRef]
- Uzun, B.; Civalek, O. Free vibration analysis Silicon nanowires surrounded by elastic matrix by nonlocal finite element method. Adv. Nano Res. 2019, 7, 99–108. [Google Scholar]
- Koutsoumaris, C.; Eptaimeros, K. Nonlocal integral static problems of nanobeams resting on an elastic foundation. Eur. J. Mech. A/Solids 2021, 89, 104295. [Google Scholar] [CrossRef]
- Adhikari, S.; Karlicic, D.; Liu, X. Dynamic stiffness of nonlocal damped nano-beams on elastic foundation. Eur. J. Mech. / A Solids 2021, 86, 4. [Google Scholar] [CrossRef]
- Tran, T.T.; Tran, V.K.; Pham, Q.H.; Zenkour, A.M. Extended four-unknown higher-order shear deformation nonlocal theory for bending, buckling and free vibration of functionally graded porous nanoshell resting on elastic foundation. Compos. Struct. 2021, 264, 113737. [Google Scholar] [CrossRef]
- Pham, Q.H.; Tran, V.K.; Tran, T.T.; Nguyen, P.C.; Malekzadeh, P. Dynamic instability of magnetically embedded functionally graded porous nanobeams using the strain gradient theory. Alex. Eng. J. 2022, 61, 10025–10044. [Google Scholar] [CrossRef]
- Jena, S.; Chakraverty, S.; Mahesh, V.; Harursampath, D.; Sedighi, H.M. A Novel Numerical Approach for the Stability of Nanobeam Exposed to Hygro-Thermo-Magnetic Environment Embedded in Elastic Foundation. ZAMM J. Appl. Math. Mech./Z. für Angew. Math. Und Mech. 2022, 102, e202100380. [Google Scholar] [CrossRef]
- Darban, H.; Luciano, R.; Caporale, A.; Basista, M. Modeling of buckling of nanobeams embedded in elastic medium by local-nonlocal stress-driven gradient elasticity theory. Compos. Struct. 2022, 297, 115907. [Google Scholar] [CrossRef]
- Barretta, R.; Čanađija, M.; Luciano, R.; Marotti de Sciarra, F. On the mechanics of nanobeams on nano-foundations. Int. J. Eng. Sci. 2022, 180, 103747. [Google Scholar] [CrossRef]
- Vaccaro, M.S.; Pinnola, F.P.; Marotti de Sciarra, F.; Barretta, R. Elastostatics of Bernoulli–Euler Beams Resting on Displacement-Driven Nonlocal Foundation. Nanomaterials 2021, 11, 573. [Google Scholar] [CrossRef]
- Wieghardt, K. Über den Balken auf nachgiebiger Unterlage. ZAMM-J. Appl. Math. Mech./ Z. für Angew. Math. Und Mech. 1922, 2, 165–184. [Google Scholar] [CrossRef]
- Sollazzo, A. Equilibrio della trave su suolo di Wieghardt. Tec. Ital. 1966, 31, 187–206. [Google Scholar]
0.1 | 2.039 | 2.118 | −1.300 | −1.349 | 0.9429 | 0.9699 | 2.418 | 2.511 |
0.2 | 1.818 | 1.980 | −1.170 | −1.268 | 0.8629 | 0.9199 | 2.162 | 2.351 |
0.3 | 1.629 | 1.862 | −1.058 | −1.198 | 0.7876 | 0.8728 | 1.943 | 2.214 |
0.4 | 1.478 | 1.768 | −0.9655 | −1.140 | 0.7227 | 0.8323 | 1.766 | 2.104 |
0.5 | 1.358 | 1.692 | −0.8905 | −1.094 | 0.6686 | 0.7985 | 1.624 | 2.015 |
0.6 | 1.261 | 1.632 | −0.8293 | −1.055 | 0.6235 | 0.7703 | 1.510 | 1.944 |
0.7 | 1.183 | 1.583 | −0.7787 | −1.024 | 0.5858 | 0.7468 | 1.416 | 1.885 |
0.8 | 1.117 | 1.542 | −0.7364 | −0.9973 | 0.554 | 0.7269 | 1.338 | 1.836 |
0.9 | 1.062 | 1.508 | −0.7006 | −0.9749 | 0.5269 | 0.7099 | 1.273 | 1.795 |
0.1 | 7.233 | 7.522 | −6.970 | −7.221 | −3.903 | −4.03 | 7.233 | 7.522 |
0.2 | 6.447 | 7.031 | −6.214 | −6.748 | −3.568 | −3.821 | 6.447 | 7.031 |
0.3 | 5.783 | 6.616 | −5.563 | −6.341 | −3.261 | −3.629 | 5.783 | 6.616 |
0.4 | 5.252 | 6.284 | −5.042 | −6.016 | −2.996 | −3.464 | 5.252 | 6.284 |
0.5 | 4.830 | 6.020 | −4.628 | −5.757 | −2.775 | −3.325 | 4.830 | 6.020 |
0.6 | 4.489 | 5.807 | −4.296 | −5.550 | −2.591 | −3.210 | 4.489 | 5.807 |
0.7 | 4.211 | 5.633 | −4.026 | −5.380 | −2.436 | −3.113 | 4.211 | 5.633 |
0.8 | 3.980 | 5.489 | −3.802 | −5.241 | −2.305 | −3.032 | 3.980 | 5.489 |
0.9 | 3.786 | 5.367 | −3.614 | −5.123 | −2.193 | −2.962 | 3.786 | 5.367 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barretta, R.; Marotti de Sciarra, F.; Vaccaro, M.S. Nonlocal Elasticity for Nanostructures: A Review of Recent Achievements. Encyclopedia 2023, 3, 279-310. https://doi.org/10.3390/encyclopedia3010018
Barretta R, Marotti de Sciarra F, Vaccaro MS. Nonlocal Elasticity for Nanostructures: A Review of Recent Achievements. Encyclopedia. 2023; 3(1):279-310. https://doi.org/10.3390/encyclopedia3010018
Chicago/Turabian StyleBarretta, Raffaele, Francesco Marotti de Sciarra, and Marzia Sara Vaccaro. 2023. "Nonlocal Elasticity for Nanostructures: A Review of Recent Achievements" Encyclopedia 3, no. 1: 279-310. https://doi.org/10.3390/encyclopedia3010018
APA StyleBarretta, R., Marotti de Sciarra, F., & Vaccaro, M. S. (2023). Nonlocal Elasticity for Nanostructures: A Review of Recent Achievements. Encyclopedia, 3(1), 279-310. https://doi.org/10.3390/encyclopedia3010018