A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams
Abstract
1. Introduction
2. Materials and Methods
2.1. DL Methods
2.1.1. ANN Based Framework
2.1.2. ANN Training
2.2. Materials and Experimental Methods
2.2.1. Specimen Geometry and Materials
2.2.2. Sensor Installation and Strain Monitoring
2.2.3. Loading Setup
2.3. Finite Element Methods
2.3.1. Finite Element Modelling
2.3.2. Concrete Damaged Plasticity (CDP) Model
2.3.3. Synthetic Strain Data Generation
3. Results and Discussion
3.1. Analysis of DOFS and FEA Rebar Strain Results
3.2. Analysis of DOFS and FEA Surface Strain Results
Deep Learning Predictions
4. Conclusions
- The DL model recorded more than 98.75% training and validation accuracy.
- The overall prediction accuracy of the DL model was 100% for the experimental dataset.
- The prediction accuracy of both side and bottom sensors was 100%, and the side sensor could replace the bottom sensor if it were damaged, or vice versa, so decreasing sensor position reliance.
- It is recommended to attach sensors on the beam sidewall compared to the bottom surface due to the low SSQ values (<0.15).
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Cai, X.; Chang, W.; Gao, L.; Zhou, C. Design and application of real-time monitoring system for service status of continuously welded turnout on the high-speed railway bridge. J. Transp. Saf. Secur. 2021, 13, 735–758. [Google Scholar] [CrossRef]
- Weinstein, J.C.; Sanayei, M.; Brenner, B.R. Bridge damage identification using artificial neural networks. J. Bridge Eng. 2018, 23, 04018084. [Google Scholar] [CrossRef]
- Zhang, C.; Ge, Y.; Hu, Z.; Zhou, K.; Ren, G.; Wang, X. Research on deflection monitoring for long span cantilever bridge based on optical fiber sensing. Opt. Fiber Technol. 2019, 53, 102035. [Google Scholar] [CrossRef]
- Ren, L.; Jiang, T.; Jia, Z.-g.; Li, D.-s.; Yuan, C.-l.; Li, H.-n. Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology. Measurement 2018, 122, 57–65. [Google Scholar] [CrossRef]
- Xu, Y.; Li, J.; Zhang, M.; Yu, T.; Yan, B.; Zhou, X.; Yu, F.; Zhang, J.; Qiao, L.; Wang, T. Pipeline leak detection using Raman distributed fiber sensor with dynamic threshold identification method. IEEE Sens. J. 2020, 20, 7870–7877. [Google Scholar] [CrossRef]
- Vahdati, N.; Wang, X.; Shiryayev, O.; Rostron, P.; Yap, F.F. External corrosion detection of oil pipelines using fiber optics. Sensors 2020, 20, 684. [Google Scholar] [CrossRef]
- Cao, B.-T.; Obel, M.; Freitag, S.; Mark, P.; Meschke, G. Artificial neural network surrogate modelling for real-time predictions and control of building damage during mechanised tunnelling. Adv. Eng. Softw. 2020, 149, 102869. [Google Scholar] [CrossRef]
- Moosazadeh, S.; Namazi, E.; Aghababaei, H.; Marto, A.; Mohamad, H.; Hajihassani, M. Prediction of building damage induced by tunnelling through an optimized artificial neural network. Eng. Comput. 2019, 35, 579–591. [Google Scholar] [CrossRef]
- Gómez, J.; Casas, J.R.; Villalba, S. Structural Health Monitoring with Distributed Optical Fiber Sensors of tunnel lining affected by nearby construction activity. Autom. Constr. 2020, 117, 103261. [Google Scholar] [CrossRef]
- Li, N.-L.; Jiang, S.-F.; Wu, M.-H.; Shen, S.; Zhang, Y. Deformation monitoring for Chinese traditional timber buildings using fiber Bragg grating sensors. Sensors 2018, 18, 1968. [Google Scholar] [CrossRef]
- Oh, B.K.; Kim, K.J.; Kim, Y.; Park, H.S.; Adeli, H. Evolutionary learning based sustainable strain sensing model for structural health monitoring of high-rise buildings. Appl. Soft Comput. 2017, 58, 576–585. [Google Scholar] [CrossRef]
- Fang, Z.; Su, H.; Ansari, F. Modal analysis of structures based on distributed measurement of dynamic strains with optical fibers. Mech. Syst. Signal Process. 2021, 159, 107835. [Google Scholar] [CrossRef]
- Cao, W.; Wen, Z.; Su, H. Spatiotemporal clustering analysis and zonal prediction model for deformation behavior of super-high arch dams. Expert Syst. Appl. 2023, 216, 119439. [Google Scholar] [CrossRef]
- Pathirage, C.S.N.; Li, J.; Li, L.; Hao, H.; Liu, W.; Ni, P. Structural damage identification based on autoencoder neural networks and deep learning. Eng. Struct. 2018, 172, 13–28. [Google Scholar] [CrossRef]
- Kurata, M.; Li, X.; Fujita, K.; Yamaguchi, M. Piezoelectric dynamic strain monitoring for detecting local seismic damage in steel buildings. Smart Mater. Struct. 2013, 22, 115002. [Google Scholar] [CrossRef]
- Suzuki, A.; Liao, W.; Shibata, D.; Yoshino, Y.; Kimura, Y.; Shimoi, N. Structural damage detection technique of secondary building components using piezoelectric sensors. Buildings 2023, 13, 2368. [Google Scholar] [CrossRef]
- Yu, X.Y.; Li, X.; Li, Y.W. Estimating strain responses of beams in steel moment-resisting frames using limited acceleration data. J. Civ. Struct. Health Monit. 2025, 1–24. [Google Scholar] [CrossRef]
- Ono, K. Review on structural health evaluation with acoustic emission. Appl. Sci. 2018, 8, 958. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, Y.; Tan, X. Review on vibration-based structural health monitoring techniques and technical codes. Symmetry 2021, 13, 1998. [Google Scholar] [CrossRef]
- Hasani, H.; Freddi, F. Operational modal analysis on bridges: A comprehensive review. Infrastructures. 2023, 8, 172. [Google Scholar] [CrossRef]
- Lu, P.; Phares, B. Integration of Structural Health Monitoring (SHM) into Multilayer Statewide Bridge Maintenance and Management Practices–SHM-Facilitated Condition-Based Maintenance (SHM-CBM) Prioritization System (No. 10-367); Midwest Transportation Center: Ames, IA, USA, 2018. [Google Scholar]
- Lydon, M.; Taylor, S.; Lydon, D.; McFarland, B. The socio-economic benefits of Fiber optic strain based SHM of critical infrastructure. In Proceedings of the 9th European Workshop on Structural Health Monitoring, EWSHM 2018, Manchester, UK, 10–13 July 2018. [Google Scholar]
- Bado, M.F.; Casas, J.R. A review of recent distributed optical fiber sensors applications for civil engineering structural health monitoring. Sensors 2021, 21, 1818. [Google Scholar] [CrossRef] [PubMed]
- Mishra, M.; Lourenço, P.B.; Ramana, G.V. Structural health monitoring of civil engineering structures by using the internet of things: A review. J. Build. Eng. 2022, 48, 103954. [Google Scholar] [CrossRef]
- Seventekidis, P.; Giagopoulos, D.; Arailopoulos, A.; Markogiannaki, O. Structural Health Monitoring using deep learning with optimal finite element model generated data. Mech. Syst. Signal Process. 2020, 145, 106972. [Google Scholar] [CrossRef]
- Kaushik, A.; Patnaik, G.; Rajput, A.; Prakash, G. Nonlinear behaviour of concrete under low-velocity impact by using a damaged plasticity model. Iran. J. Sci. Technol. Trans. Civ. Eng. 2022, 46, 3655–3677. [Google Scholar] [CrossRef]
- Bi, J.; Huo, L.; Zhao, Y.; Qiao, H. Modified the smeared crack constitutive model of fiber reinforced concrete under uniaxial loading. Constr. Build. Mater. 2020, 250, 118916. [Google Scholar] [CrossRef]
- Minh, H.-L.; Khatir, S.; Wahab, M.A.; Cuong-Le, T. A concrete damage plasticity model for predicting the effects of compressive high-strength concrete under static and dynamic loads. J. Build. Eng. 2021, 44, 103239. [Google Scholar] [CrossRef]
- Raza, A.; Ahmad, A. Numerical investigation of load-carrying capacity of GFRP-reinforced rectangular concrete members using CDP model in ABAQUS. Adv. Civ. Eng. 2019, 1745341. [Google Scholar] [CrossRef]
- Seok, S.; Haikal, G.; Ramirez, J.A.; Lowes, L.N.; Lim, J. Finite element simulation of bond-zone behavior of pullout test of reinforcement embedded in concrete using concrete damage-plasticity model 2 (CDPM2). Eng. Struct. 2020, 221, 110984. [Google Scholar] [CrossRef]
- Malekloo, A.; Ozer, E.; AlHamaydeh, M.; Girolami, M. Machine learning and structural health monitoring overview with emerging technology and high-dimensional data source highlights. Struct. Health Monit. 2022, 21, 1906–1955. [Google Scholar] [CrossRef]
- Najafabadi, M.M.; Villanustre, F.; Khoshgoftaar, T.M.; Seliya, N.; Wald, R.; Muharemagic, E. Deep learning applications and challenges in big data analytics. J. Big Data 2015, 2, 1. [Google Scholar] [CrossRef]
- Azimi, M.; Eslamlou, A.D.; Pekcan, G. Data-driven structural health monitoring and damage detection through deep learning: State-of-the-art review. Sensors 2020, 20, 2778. [Google Scholar] [CrossRef] [PubMed]
- Janiesch, C.; Zschech, P.; Heinrich, K. Machine learning and deep learning. Electron. Mark. 2021, 31, 685–695. [Google Scholar] [CrossRef]
- Abdughani, M.; Ren, J.; Wu, L.; Yang, J.-M.; Zhao, J. Supervised deep learning in high energy phenomenology: A mini review. Commun. Theor. Phys. 2019, 71, 955. [Google Scholar] [CrossRef]
- Yin, Y.; Antonio, J. Application of 3D laser scanning technology for image data processing in the protection of ancient building sites through deep learning. Image Vis. Comput. 2020, 102, 103969. [Google Scholar] [CrossRef]
- Kim, H.; Ahn, E.; Shin, M.; Sim, S.-H. Crack and noncrack classification from concrete surface images using machine learning. Struct. Health Monit. 2019, 18, 725–738. [Google Scholar] [CrossRef]
- Li, S.; Song, Y.; Zhou, G. Leak detection of water distribution pipeline subject to failure of socket joint based on acoustic emission and pattern recognition. Measurement 2018, 115, 39–44. [Google Scholar] [CrossRef]
- Bai, X.; Wang, X.; Liu, X.; Liu, Q.; Song, J.; Sebe, N.; Kim, B. Explainable deep learning for efficient and robust pattern recognition: A survey of recent developments. Pattern Recognit. 2021, 120, 108102. [Google Scholar] [CrossRef]
- Abdelaty, M.; Doriguzzi-Corin, R.; Siracusa, D. DAICS: A deep learning solution for anomaly detection in industrial control systems. IEEE Trans. Emerg. Top. Comput. 2021, 10, 1117–1129. [Google Scholar] [CrossRef]
- Baccouche, A.; Ahmed, S.; Sierra-Sosa, D.; Elmaghraby, A. Malicious text identification: Deep learning from public comments and emails. Information 2020, 11, 312. [Google Scholar] [CrossRef]
- Jayawickrema, U.; Herath, H.; Hettiarachchi, N.; Sooriyaarachchi, H.; Epaarachchi, J. Fibre-optic sensor and deep learning-based structural health monitoring systems for civil structures: A review. Measurement 2022, 199, 111543. [Google Scholar] [CrossRef]
- Siwowski, T.; Rajchel, M.; Howiacki, T.; Sieńko, R.; Bednarski, Ł. Distributed fibre optic sensors in FRP composite bridge monitoring: Validation through proof load tests. Eng. Struct. 2021, 246, 113057. [Google Scholar] [CrossRef]
- Kulpa, M.; Howiacki, T.; Wiater, A.; Siwowski, T.; Sieńko, R. Strain and displacement measurement based on distributed fibre optic sensing (DFOS) system integrated with FRP composite sandwich panel. Measurement 2021, 175, 109099. [Google Scholar] [CrossRef]
- Berrocal, C.G.; Fernandez, I.; Bado, M.F.; Casas, J.R.; Rempling, R. Assessment and visualization of performance indicators of reinforced concrete beams by distributed optical fibre sensing. Struct. Health Monit. 2021, 20, 3309–3326. [Google Scholar] [CrossRef]
- Tam, H.-y.; Lee, K.-k.; Liu, S.-y.; Cho, L.-h.; Cheng, K.-c. Intelligent optical fibre sensing networks facilitate shift to predictive maintenance in railway systems. In Proceedings of the 2018 International Conference on Intelligent Rail Transportation (ICIRT), Singapore, 12–14 December 2018; pp. 1–4. [Google Scholar]
- Wang, Y.; Yao, H.; Wang, J.; Xin, X. Distributed optical fiber sensing system for large infrastructure temperature monitoring. IEEE Internet Things J. 2021, 9, 3333–3345. [Google Scholar] [CrossRef]
- Khandel, O.; Soliman, M.; Floyd, R.W.; Murray, C.D. Performance assessment of prestressed concrete bridge girders using fiber optic sensors and artificial neural networks. Struct. Infrastruct. Eng. 2021, 17, 605–619. [Google Scholar] [CrossRef]
- Bai, Y.; Xing, J.; Xie, F.; Liu, S.; Li, J. Detection and identification of external intrusion signals from 33 km optical fiber sensing system based on deep learning. Opt. Fiber Technol. 2019, 53, 102060. [Google Scholar] [CrossRef]
- Li, S.; Peng, R.; Liu, Z. A surveillance system for urban buried pipeline subject to third-party threats based on fiber optic sensing and convolutional neural network. Struct. Health Monit. 2021, 20, 1704–1715. [Google Scholar] [CrossRef]
- Jayawickrema, M.; Kumar, A.; Herath, M.; Hettiarachchi, N.; Sooriyaarachchi, H.; Epaarachchi, J. Strain patterns of short span reinforced concrete beams under flexural loading: A comparison between distributed sensing and concrete damaged plasticity modelling. J. Intell. Mater. Syst. Struct. 2023, 34, 1123–1135. [Google Scholar] [CrossRef]
- Rodríguez, G.; Casas, J.R.; Villaba, S. Cracking assessment in concrete structures by distributed optical fiber. Smart Mater. Struct. 2015, 24, 035005. [Google Scholar] [CrossRef]
- Yessoufou, F.; Zhu, J. Classification and regression-based convolutional neural network and long short-term memory configuration for bridge damage identification using long-term monitoring vibration data. Struct. Health Monit. 2023, 22, 4027–4054. [Google Scholar] [CrossRef]
- Torzoni, M.; Rosafalco, L.; Manzoni, A.; Mariani, S.; Corigliano, A. SHM under varying environmental conditions: An approach based on model order reduction and deep learning. Comput. Struct. 2022, 266, 106790. [Google Scholar] [CrossRef]
- Jia, J.; Li, Y. Deep learning for structural health monitoring: Data, algorithms, applications, challenges, and trends. Sensors 2023, 23, 8824. [Google Scholar] [CrossRef] [PubMed]
- Cha, Y.J.; Ali, R.; Lewis, J.; Büyükӧztürk, O. Deep learning-based structural health monitoring. Autom. Constr. 2024, 161, 105328. [Google Scholar] [CrossRef]
- Rizvi, S.H.M.; Abbas, M. From data to insight, enhancing structural health monitoring using physics-informed machine learning and advanced data collection methods. Eng. Res. Express. 2023, 5, 032003. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Bolourani, A.; Bitaraf, M.; Tak, A.N. Structural health monitoring of harbor caissons using support vector machine and principal component analysis. Structures 2021, 33, 4501–4513. [Google Scholar] [CrossRef]
- Kumar, K.; Biswas, P.K.; Dhang, N. Time series-based SHM using PCA with application to ASCE benchmark structure. J. Civ. Struct. Health Monit. 2020, 10, 899–911. [Google Scholar] [CrossRef]
- Lv, M.Z.; Li, K.L.; Cai, J.Z.; Mao, J.; Gao, J.J.; Xu, H. Evaluation of landslide susceptibility based on SMOTE-Tomek sampling and machine learning algorithm. PLoS ONE 2025, 20, e0323487. [Google Scholar] [CrossRef]
- Mbunge, E.; Sibiya, M.N.; Takavarasha, S.; Millham, R.C.; Chemhaka, G.; Muchemwa, B.; Dzinamarira, T. Implementation of ensemble machine learning classifiers to predict diarrhoea with SMOTEENN, SMOTE, and SMOTETomek class imbalance approaches. In Proceedings of the 2023 Conference on Information Communications Technology and Society (ICTAS), Durban, South Africa, 8–9 March 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1–6. [Google Scholar]
- Neves, A.C.; Gonzalez, I.; Leander, J.; Karoumi, R. Structural health monitoring of bridges: A model-free ANN-based approach to damage detection. J. Civ. Struct. Health Monit. 2017, 7, 689–702. [Google Scholar] [CrossRef]
- Yu, H.; Seno, A.H.; Sharif Khodaei, Z.; Aliabadi, M.F. Structural health monitoring impact classification method based on Bayesian neural network. Polymers 2022, 14, 3947. [Google Scholar] [CrossRef]
- Tibaduiza Burgos, D.A.; Gomez Vargas, R.C.; Pedraza, C.; Agis, D.; Pozo, F. Damage identification in structural health monitoring: A brief review from its implementation to the use of data-driven applications. Sensors 2020, 20, 733. [Google Scholar] [CrossRef] [PubMed]
- Saikia, P.; Baruah, R.D.; Singh, S.K.; Chaudhuri, P.K. Artificial Neural Networks in the domain of reservoir characterization: A review from shallow to deep models. Comput. Geosci. 2020, 135, 104357. [Google Scholar] [CrossRef]
- Mangalathu, S.; Heo, G.; Jeon, J.-S. Artificial neural network based multi-dimensional fragility development of skewed concrete bridge classes. Eng. Struct. 2018, 162, 166–176. [Google Scholar] [CrossRef]
- Xu, Y.; Bao, Y.; Chen, J.; Zuo, W.; Li, H. Surface fatigue crack identification in steel box girder of bridges by a deep fusion convolutional neural network based on consumer-grade camera images. Struct. Health Monit. 2019, 18, 653–674. [Google Scholar] [CrossRef]
- Ma, R.; Zhang, Z.; Dong, Y.; Pan, Y. Deep learning based vehicle detection and classification methodology using strain sensors under bridge deck. Sensors 2020, 20, 5051. [Google Scholar] [CrossRef]
- Rizzo, F.; Caracoglia, L. Artificial Neural Network model to predict the flutter velocity of suspension bridges. Comput. Struct. 2020, 233, 106236. [Google Scholar] [CrossRef]
- Wang, D.; Zhang, Y.; Pan, Y.; Peng, B.; Liu, H.; Ma, R. An automated inspection method for the steel box girder bottom of long-span bridges based on deep learning. IEEE Access 2020, 8, 94010–94023. [Google Scholar] [CrossRef]
- Aktas, M.; Sumer, Y.; Agcakoca, E.; Yaman, Z. Nonlinear finite element modeling of composite bridge girders strengthened with HM-CFRP laminates. Arab. J. Sci. Eng. 2016, 41, 3783–3791. [Google Scholar] [CrossRef]
- Theiner, Y.; Hofstetter, G. Numerical prediction of crack propagation and crack widths in concrete structures. Eng. Struct. 2009, 31, 1832–1840. [Google Scholar] [CrossRef]
- Sato, Y.; Naganuma, K. Discrete-like crack simulation by smeared crack-based FEM for reinforced concrete. Earthq. Eng. Struct. Dyn. 2007, 36, 2137–2152. [Google Scholar] [CrossRef]
- Rimkus, A.; Cervenka, V.; Gribniak, V.; Cervenka, J. Uncertainty of the smeared crack model applied to RC beams. Eng. Fract. Mech. 2020, 233, 107088. [Google Scholar] [CrossRef]
- Genikomsou, A.S.; Polak, M.A. Damaged plasticity modelling of concrete in finite element analysis of reinforced concrete slabs. In Proceedings of the 9th International Conference on Fracture Mechanics of Concrete and Concrete Structures, Berkeley, CA, USA, 29 May–1 June 2016. [Google Scholar]
- Tao, Y.; Chen, J.-F. Concrete damage plasticity model for modeling FRP-to-concrete bond behavior. J. Compos. Constr. 2015, 19, 04014026. [Google Scholar] [CrossRef]
- Hafezolghorani, M.; Hejazi, F.; Vaghei, R.; Jaafar, M.S.B.; Karimzade, K. Simplified damage plasticity model for concrete. Struct. Eng. Int. 2017, 27, 68–78. [Google Scholar] [CrossRef]
- Simulia. Abaqus 6.14 Analysis User’s Guide. 2014. Available online: http://62.108.178.35:2080/v6.14/books/usb/default.htm (accessed on 29 June 2025).
- Lee, S.-H.; Abolmaali, A.; Shin, K.-J.; Lee, H.-D. ABAQUS modeling for post-tensioned reinforced concrete beams. J. Build. Eng. 2020, 30, 101273. [Google Scholar] [CrossRef]
- Béton, C.E.-I.d. CEB-FIP Model Code 1990: Design Code; Thomas Telford Publishing: London, UK, 1993. [Google Scholar]
- Bhartiya, R.; Sahoo, D.R.; Verma, A. Modified damaged plasticity and variable confinement modelling of rectangular CFT columns. J. Constr. Steel Res. 2021, 176, 106426. [Google Scholar] [CrossRef]
- Qingfu, L.; Wei, G.; Yihang, K. Parameter calculation and verification of concrete plastic damage model of ABAQUS. IOP Conf. Ser. Mater. Sci. Eng. 2020, 794, 012036. [Google Scholar] [CrossRef]
- Milligan, G.J.; Polak, M.A.; Zurell, C. Finite element analysis of punching shear behaviour of concrete slabs supported on rectangular columns. Eng. Struct. 2020, 224, 111189. [Google Scholar] [CrossRef]
- Reflectometer, Optical Backscatter. Optical Backscatter Reflectometer 4600 User Guide; Reflectometer, Optical Backscatter: Roanoke, VA, USA, 2013. [Google Scholar]
- Barrias, A.; Casas, J.R.; Villalba, S. Embedded distributed optical fiber sensors in reinforced concrete structures—A case study. Sensors 2018, 18, 980. [Google Scholar] [CrossRef]
- Barrias, A.; Casas, J.R.; Villalba, S. Distributed optical fibre sensors in concrete structures: Performance of bonding adhesives and influence of spatial resolution. Struct. Control Health Monit. 2019, 26, e2310. [Google Scholar] [CrossRef]
Material | Type | Young’s Modulus (MPa) | Poisson’s Ratio |
---|---|---|---|
Concrete | Isotropic | 27,106 | 0.2 |
Steel | Isotropic | 200,000 | 0.3 |
Beam No. | Dilation Angle | Eccentricity | fb0/fc0 | K | Viscosity Parameter |
---|---|---|---|---|---|
R20C30 | 43° | 0.1 | 1.16 | 0.667 | 0 |
Rebar Size (mm) | Dilation Angle (°) | Steps | Number of Data Points per Each Sensor (No of Dilation Angles × Steps) |
---|---|---|---|
12 | 31° to 45° (15 angles) | 2500 | 37,500 |
16 | 37,500 | ||
20 | 37,500 | ||
Total no. of data for each sensor | 112,500 | ||
Total number of data used to train the model (Bottom sensor + Side sensor) | 225,000 |
Load (kN) | R12C30 | R16C30 | R20C30 | |||
---|---|---|---|---|---|---|
Bottom Sensor | Side Sensor | Bottom Sensor | Side Sensor | Bottom Sensor | Side Sensor | |
10 | SSQ > 0.15 | SSQ > 0.15 | SSQ > 0.15 | SSQ > 0.15 | SSQ > 0.15 | |
20 | ||||||
30 | SSQ ≤ 0.15 | |||||
40 | SSQ ≤ 0.15 | |||||
50 | SSQ ≤ 0.15 | SSQ ≤ 0.15 | ||||
60 | ||||||
70 | SSQ ≤ 0.15 |
Model Training (Rebar Strain Limits) | Model Performance | |||
---|---|---|---|---|
Training Accuracy (%) | Validation Accuracy (%) | Precision | Recall | |
10% | 99.64 | 99.63 | 0.9971 | 0.9965 |
20% | 99.76 | 99.77 | 0.9983 | 0.9965 |
30% | 99.73 | 99.70 | 0.9966 | 0.9971 |
40% | 99.23 | 99.24 | 0.9934 | 0.9916 |
50% | 99.17 | 99.14 | 0.9947 | 0.9874 |
60% | 99.11 | 99.10 | 0.9912 | 0.9904 |
70% | 98.94 | 98.84 | 0.9821 | 0.9951 |
80% | 98.88 | 98.83 | 0.9806 | 0.9968 |
90% | 98.75 | 98.66 | 0.9800 | 0.9953 |
Class | Rebar Tension State |
---|---|
Class 0 | Rebar is strained within 0–250 µε |
Class 1 | Rebar is strained within 251–500 µε |
Class 2 | Rebar is strained within 501–750 µε |
Class 3 | Rebar is strained within 751–1000 µε |
Class 4 | Rebar is strained within 1001–1250 µε |
Class 5 | Rebar is strained within 1251–1500 µε |
Class 6 | Rebar is strained within 1501–1750 µε |
Class 7 | Rebar is strained within 1751–2000 µε |
Class 8 | Rebar is strained within 2001–2250 µε |
Colour | Description |
---|---|
Correct prediction | |
Incorrect prediction |
Load (kN) | Maximum Experimental Rebar Strain (µε) in Input Dataset | Rebar Tension State Prediction | |
---|---|---|---|
Bottom Sensor | Side Sensor | ||
10 | 80 | Class 0 | Class 0 |
20 | 776 | Class 3 | Class 3 |
Load (kN) | Maximum Experimental Rebar Strain (µε) In Input Dataset | Rebar Tension State Prediction | |
---|---|---|---|
Bottom Sensor | Side Sensor | ||
10 | 74 | Class 0 | Class 0 |
20 | 267 | Class 1 | Class 1 |
30 | 645 | Class 2 | Class 2 |
40 | 994 | SSQ < 0.15 | Class 3 |
Load (kN) | Maximum Experimental Rebar Strain (µε) in Input Dataset | Rebar Tension State Prediction | |
---|---|---|---|
Bottom Sensor | Side Sensor | ||
10 | 71 | Class 0 | Class 0 |
20 | 185 | Class 0 | Class 0 |
30 | 438 | Class 1 | Class 1 |
40 | 638 | Class 2 | Class 2 |
50 | 823 | SSQ < 0.15 | Class 3 |
60 | 992 | Class 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jayawickrema, M.; Herath, M.; Hettiarachchi, N.; Sooriyaarachchi, H.; Banerjee, S.; Epaarachchi, J.; Prusty, B.G. A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams. Metrology 2025, 5, 40. https://doi.org/10.3390/metrology5030040
Jayawickrema M, Herath M, Hettiarachchi N, Sooriyaarachchi H, Banerjee S, Epaarachchi J, Prusty BG. A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams. Metrology. 2025; 5(3):40. https://doi.org/10.3390/metrology5030040
Chicago/Turabian StyleJayawickrema, Minol, Madhubhashitha Herath, Nandita Hettiarachchi, Harsha Sooriyaarachchi, Sourish Banerjee, Jayantha Epaarachchi, and B. Gangadhara Prusty. 2025. "A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams" Metrology 5, no. 3: 40. https://doi.org/10.3390/metrology5030040
APA StyleJayawickrema, M., Herath, M., Hettiarachchi, N., Sooriyaarachchi, H., Banerjee, S., Epaarachchi, J., & Prusty, B. G. (2025). A Distributed Sensing- and Supervised Deep Learning-Based Novel Approach for Long-Term Structural Health Assessment of Reinforced Concrete Beams. Metrology, 5(3), 40. https://doi.org/10.3390/metrology5030040