Photocatalytic Degradation of Methylene Blue by Surface-Modified SnO2/Se-Doped QDs
Abstract
1. Introduction
2. Materials and Methods
2.1. Synthesis of SnO2/Se-GLY QDs
2.2. Preparation of SnO2/Se-GLUT QDs
2.3. Characterization of SnO2/Se-GLY and SnO2/Se-GLUT QDs
2.4. Batch Adsorption/Photodegradation Experiments of Methylene Blue
2.5. Recycling Study of the SnO2/Se-GLY and SnO2/Se-GLUT QDs at Low Concentrations of Methylene Blue
3. Results
3.1. Synthesis and Functionalization of SnO2/Se QDs
3.2. SnO2/Se-GLY and SnO2/Se-GLUT Characterization
3.3. Adsorption and Photodegradation of Methylene Blue Using SnO2/Se-GLY and SnO2/Se-GLUT QDs
3.4. Adsorption Isotherm of Methylene Blue Using SnO2/Se-GLUT QDs
3.5. Kinetic Analysis of Methylene Blue Photodegradation Using SnO2/Se-GLY and SnO2/Se-GLUT QDs
3.6. Recycling Study of SnO2/Se-GLY and SnO2/Se-GLUT QDs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ling, L.; Zhang, Q.; Zhu, L.; Wang, C.-F.; Chen, S. Interfacial Synthesis of SnSe Quantum Dots for Sensitized Solar Cells. RSC Adv. 2015, 5, 2155–2158. [Google Scholar] [CrossRef]
- Karmaoui, M.; Jorge, A.B.; McMillan, P.F.; Aliev, A.E.; Pullar, R.C.; Labrincha, J.A.; Tobaldi, D.M. One-Step Synthesis, Structure, and Band Gap Properties of SnO2 Nanoparticles Made by a Low Temperature Nonaqueous Sol-Gel Technique. ACS Omega 2018, 3, 13227–13238. [Google Scholar] [CrossRef] [PubMed]
- Debataraja, A.; Zulhendri, D.W.; Yuliarto, B.; Nugraha; Hiskia; Sunendar, B. Investigation of Nanostructured SnO2 Synthesized with Polyol Technique for CO Gas Sensor Applications. Procedia Eng. 2017, 170, 60–64. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Ahmaruzzaman, M.; Sinha, T. A Novel Approach for the Synthesis of SnO2 Nanoparticles and Its Application as a Catalyst in the Reduction and Photodegradation of Organic Compounds. Spectrochim. Acta—Part A Mol. Biomol. Spectrosc. 2015, 136, 751–760. [Google Scholar] [CrossRef] [PubMed]
- Liao, L.; Jia, P.; Jin, Y.; Cai, F.; Zhang, Q. Effect of Shell-Dependent Variation on the Photocatalytic Activity of Flower-like Core-Shell SnSe@SnO2. Mater. Res. Bull. 2024, 177, 112856. [Google Scholar] [CrossRef]
- Said, M.; Rizki, W.T.; Asri, W.R.; Desnelli, D.; Rachmat, A.; Hariani, P.L. SnO2–Fe3O4 Nanocomposites for the Photodegradation of the Congo Red Dye. Heliyon 2022, 8, e09204. [Google Scholar] [CrossRef]
- Perumal, V.; Uthrakumar, R.; Chinnathambi, M.; Inmozhi, C.; Robert, R.; Rajasaravanan, M.E.; Raja, A.; Kaviyarasu, K. Electron-Hole Recombination Effect of SnO2—CuO Nanocomposite for Improving Methylene Blue Photocatalytic Activity in Wastewater Treatment under Visible Light. J. King Saud Univ.—Sci. 2023, 35, 102388. [Google Scholar] [CrossRef]
- Ramamoorthy, M.; Mani, D.; Karunanithi, M.; Mini, J.J.; Babu, A.; Mathivanan, D.; Ragupathy, S.; Ahn, Y.-H. Influence of Metal Doping and Non-Metal Loading on Photodegradation of Methylene Blue Using SnO2 Nanoparticles. J. Mol. Struct. 2023, 1286, 135564. [Google Scholar] [CrossRef]
- Ramamoorthy, M.; Ragupathy, S.; Sakthi, D.; Arun, V.; Kannadasan, N. Enhanced Sunlight Photodegradation Activity of Methylene Blue Using Mn Doped SnO2 Loaded on Corn Cob Activated Carbon. Results Mater. 2020, 8, 100144. [Google Scholar] [CrossRef]
- Baig, N.; Kammakakam, I.; Falath, W. Nanomaterials: A Review of Synthesis Methods, Properties, Recent Progress, and Challenges. Mater. Adv. 2021, 2, 1821–1871. [Google Scholar] [CrossRef]
- Alamo-Nole, L.; Cruz-Hernandez, J. Effect of Functionalized CdSSe Quantum Dots in the CYP450 Activity of HEPG2 Cells. Micro 2023, 3, 391–403. [Google Scholar] [CrossRef]
- Zhou, M.; Chen, X.; Li, M.; Du, A. Widely Tunable and Anisotropic Charge Carrier Mobility in Monolayer Tin(Ii) Selenide Using Biaxial Strain: A First-Principles Study. J. Mater. Chem. C 2017, 5, 1247–1254. [Google Scholar] [CrossRef]
- Sadegh, H.; Shahryari-ghoshekandi, R.; Agarwal, S.; Tyagi, I.; Asif, M.; Gupta, V.K. Microwave-Assisted Removal of Malachite Green by Carboxylate Functionalized Multi-Walled Carbon Nanotubes: Kinetics and Equilibrium Study. J. Mol. Liq. 2015, 206, 151–158. [Google Scholar] [CrossRef]
- Huda, A.; Ichwani, R.; Handoko, C.T.; Yudono, B.; Bustan, M.D.; Gulo, F. Enhancing the Visible-Light Photoresponse of SnO and SnO2 through the Heterostructure Formation Using One-Step Hydrothermal Route. Mater. Lett. 2019, 238, 264–266. [Google Scholar] [CrossRef]
- Anitha, R.; Kumar, E.; Durai, S.C.V.; Vargheese, M. Microwave Assisted Solution Synthesis, Structural, Morphological, Optical, Electrical Properties of Tin Oxide (SnO2) Nanoparticles. J. Optoelectron. Adv. Mater. 2021, 23, 598–604. [Google Scholar]
- Khatun, M.H.; Amin, R.; Sarker, M.S.I.; Shikder, M.R.; Islam, S.; Shahjahan, M. Structural and Magnetic Properties of Fe and Ni Co-Doped SnO2 Nanoparticles Prepared by Co-Precipitation Method. Mater. Res. Express 2024, 11, 016102. [Google Scholar] [CrossRef]
- Liu, X.; Pan, L.; Chen, T.; Li, J.; Yu, K.; Sun, Z.; Sun, C. Visible Light Photocatalytic Degradation of Methylene Blue by SnO2 Quantum Dots Prepared via Microwave-Assisted Method. Catal. Sci. Technol. 2013, 3, 1805–1809. [Google Scholar] [CrossRef]
- Kaur, M.; Pahwa, C.; Sharma, R.; Jindal, S. Natural Sunlight Assisted Photocatalytic Removal of Methylene Blue and Crystal Violet Dyes Using Ni Doped Tin Oxide Nanostructures Synthesized via Chemical and Green Route. Appl. Phys. A 2024, 130, 333. [Google Scholar] [CrossRef]
- Alamo-Nole, L.; Bailon-Ruiz, S.; Luna-Pineda, T.; Perales-Perez, O.; Roman, F.R. Photocatalytic Activity of Quantum Dot–Magnetite Nanocomposites to Degrade Organic Dyes in the Aqueous Phase. J. Mater. Chem. A 2013, 1, 5509. [Google Scholar] [CrossRef]
- Osmari, T.A.; Gallon, R.; Schwaab, M.; Barbosa-Coutinho, E.; João Baptista Severo, J.; Pinto, J.C. Statistical Analysis of Linear and Non-Linear Regression for the Estimation of Adsorption Isotherm Parameters. Adsorpt. Sci. Technol. 2013, 31, 433–458. [Google Scholar] [CrossRef]
- Pourbaba, R.; Abdulkhani, A.; Rashidi, A.; Ashori, A. Lignin Nanoparticles as a Highly Efficient Adsorbent for the Removal of Methylene Blue from Aqueous Media. Sci. Rep. 2024, 14, 9039. [Google Scholar] [CrossRef] [PubMed]
- Aldabagh, I.S.; Saad, D.N.; Ahmed, E.I. Removal of Methylene Blue from Aqueous Solution by Green Synthesized Silicon Dioxide Nanoparticles Using Sunflower Husk. Chem. Eng. J. Adv. 2024, 18, 100608. [Google Scholar] [CrossRef]
- Khairnar, S.D.; Shirsath, D.S.; Patil, P.S.; Shrivastava, V.S. Adsorptive and Photocatalytic Removal of Carcinogenic Methylene Blue Dye by SnO2 Nanorods: An Equilibrium, Kinetic and Thermodynamics Exploration. SN Appl. Sci. 2020, 2, 822. [Google Scholar] [CrossRef]
- Borjigin, T.; Schmitt, M.; Morlet-Savary, F.; Xiao, P.; Lalevée, J. Low-Cost and Recyclable Photocatalysts: Metal Oxide/Polymer Composites Applied in the Catalytic Breakdown of Dyes. Photochem 2022, 2, 733–751. [Google Scholar] [CrossRef]
- Mondol, B.; Sarker, A.; Shareque, A.M.; Dey, S.C.; Islam, M.T.; Das, A.K.; Shamsuddin, S.M.; Molla, M.A.I.; Sarker, M. Preparation of Activated Carbon/TiO2 Nanohybrids for Photodegradation of Reactive Red-35 Dye Using Sunlight. Photochem 2021, 1, 54–66. [Google Scholar] [CrossRef]
- Khan, S.; Khan, A.; Ali, N.; Ahmad, S.; Ahmad, W.; Malik, S.; Ali, N.; Khan, H.; Shah, S.; Bilal, M. Degradation of Congo Red Dye Using Ternary Metal Selenide-Chitosan Microspheres as Robust and Reusable Catalysts. Environ. Technol. Innov. 2021, 22, 101402. [Google Scholar] [CrossRef]
QDs | Langmuir Isotherm Parameters | Freundlich Isotherm Parameters | ||||
---|---|---|---|---|---|---|
KL (1/mg) | qm (mg/g) | R2 | KF (1/mg) | 1/n | R2 | |
SnO2/Se-GLUT | 0.285 | 94.3 | 0.997 | 17.0 | 0.608 | 0.926 |
QDs (MB Concentration) | First-Order Kinetic Model | Second-Order Kinetic Model | ||
---|---|---|---|---|
R2 | K | R2 | K | |
SnO2/Se-GLY (5 and 10 µM) | 0.96 ± 0.06 | 2.65 ± 1.11 | 0.91 ± 0.05 | 2.71 ± 1.31 |
SnO2/Se-GLY (50 and 100 µM) | 0.95 ± 0.07 | 0.92 ± 0.13 | 0.85 ± 0.14 | 0.39 ± 0.09 |
SnO2/Se-GLUT (5 and 10 µM) | - | - | - | - |
SnO2/Se-GLUT (50 and 100 µM) | 0.98 ± 0.02 | 0.47 ± 0.21 | 0.90 ± 0.04 | 0.24 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamo-Nole, L.; Bailon-Ruiz, S.J. Photocatalytic Degradation of Methylene Blue by Surface-Modified SnO2/Se-Doped QDs. Micro 2024, 4, 721-733. https://doi.org/10.3390/micro4040044
Alamo-Nole L, Bailon-Ruiz SJ. Photocatalytic Degradation of Methylene Blue by Surface-Modified SnO2/Se-Doped QDs. Micro. 2024; 4(4):721-733. https://doi.org/10.3390/micro4040044
Chicago/Turabian StyleAlamo-Nole, Luis, and Sonia J. Bailon-Ruiz. 2024. "Photocatalytic Degradation of Methylene Blue by Surface-Modified SnO2/Se-Doped QDs" Micro 4, no. 4: 721-733. https://doi.org/10.3390/micro4040044
APA StyleAlamo-Nole, L., & Bailon-Ruiz, S. J. (2024). Photocatalytic Degradation of Methylene Blue by Surface-Modified SnO2/Se-Doped QDs. Micro, 4(4), 721-733. https://doi.org/10.3390/micro4040044