Preparation and Characterization of Tiamulin-Loaded Niosomes for Oral Bioavailability Enhancement in Mycoplasma-Infected Broilers
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Preparation of Tiamulin-Loaded Niosomes (TLN)
2.3. Characterization of TLN
2.3.1. Transmission Electron Microscopy (TEM)
2.3.2. Particle Size, Size Distribution, and Zeta Potential
2.3.3. Differential Scanning Calorimetry (DSC)
2.3.4. Entrapment Efficiency (EE%)
2.3.5. In Vitro Release
2.4. Determination of Mycoplasma gallisepticum Strain Sensitivity
2.4.1. Mycoplasma gallisepticum Strain
2.4.2. The Growth Media
2.4.3. Determination of Minimum Inhibitory Concentration (MIC) Against Mycoplasma
2.5. In Vivo Studies
2.5.1. Experimental Birds
2.5.2. Induction of Mycoplasma gallisepticum Intratracheal Infection
2.5.3. Serum Plate Agglutination
2.5.4. Serum Plate Agglutination (SPA) Test
2.5.5. Oral Administration of Free Tiamulin or TLN to Mycoplasma gallisepticum-Infected Broilers
2.5.6. Oral Administration of Free Tiamulin or TLN to Clinically Healthy Broilers
2.5.7. Determination of Tiamulin Concentration in Plasma
2.6. Statistical Analysis
3. Results and Discussion
3.1. In Vitro Characterization of TLN
3.2. In Vitro Antimicoplasmal Activity
3.3. Pharmacokinetic Profile of Orally Administered Niosomal Tiamulin in Mycoplasma-Infected Broilers
3.4. Effect of Mycoplasma Infection on the Absorption and Elimination of Orally Administered Niosomal Tiamulin
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bottinelli, M.; Gastaldelli, M.; Picchi, M.; Dall’Ora, A.; Borges, L.C.; Ramirez, A.S.; Matucci, A.; Catania, S. The Monitoring of Mycoplasma gallisepticum Minimum Inhibitory Concentrations during the Last Decade (2010–2020) Seems to Reveal a Comeback of Susceptibility to Macrolides, Tiamulin, and Lincomycin. Antibiotics 2022, 11, 1021. [Google Scholar] [CrossRef] [PubMed]
- de Jong, A.; Youala, M.; Klein, U.; El Garch, F.; Simjee, S.; Moyaert, H.; Rose, M.; Gautier-Bouchardon, A.V.; Catania, S.; Ganapathy, K.; et al. Minimal inhibitory concentration of seven antimicrobials to Mycoplasma gallisepticum and Mycoplasma synoviae isolates from six European countries. Avian Pathol 2021, 50, 161–173. [Google Scholar] [CrossRef] [PubMed]
- Beylefeld, A.; Wambulawaye, P.; Bwala, D.G.; Gouws, J.J.; Lukhele, O.M.; Wandrag, D.B.R.; Abolnik, C. Evidence for Multidrug Resistance in Nonpathogenic Mycoplasma Species Isolated from South African Poultry. Appl. Environ. Microbiol. 2018, 84, e01660-18. [Google Scholar] [CrossRef] [PubMed]
- Emam, M.; Hashem, Y.M.; El-Hariri, M.; El-Jakee, J. Detection and antibiotic resistance of Mycoplasma gallisepticum and Mycoplasma synoviae among chicken flocks in Egypt. Vet. World 2020, 13, 1410–1416. [Google Scholar] [CrossRef] [PubMed]
- Pereyre, S.; Tardy, F. Integrating the Human and Animal Sides of Mycoplasmas Resistance to Antimicrobials. Antibiotics 2021, 10, 1216. [Google Scholar] [CrossRef]
- Wiuff, C.; Zappala, R.M.; Regoes, R.R.; Garner, K.N.; Baquero, F.; Levin, B.R. Phenotypic tolerance: Antibiotic enrichment of noninherited resistance in bacterial populations. Antimicrob. Agents Chemother. 2005, 49, 1483–1494. [Google Scholar] [CrossRef]
- Fridman, O.; Goldberg, A.; Ronin, I.; Shoresh, N.; Balaban, N.Q. Optimization of lag time underlies antibiotic tolerance in evolved bacterial populations. Nature 2014, 513, 418–421. [Google Scholar] [CrossRef]
- van Staa, T.P.; Palin, V.; Li, Y.; Welfare, W.; Felton, T.W.; Dark, P.; Ashcroft, D.M. The effectiveness of frequent antibiotic use in reducing the risk of infection-related hospital admissions: Results from two large population-based cohorts. BMC Med. 2020, 18, 40. [Google Scholar] [CrossRef]
- Abreu, R.; Semedo-Lemsaddek, T.; Cunha, E.; Tavares, L.; Oliveira, M. Antimicrobial Drug Resistance in Poultry Production: Current Status and Innovative Strategies for Bacterial Control. Microorganisms 2023, 11, 953. [Google Scholar] [CrossRef]
- Pinto-Alphandary, H.; Andremont, A.; Couvreur, P. Targeted delivery of antibiotics using liposomes and nanoparticles: Research and applications. Int. J. Antimicrob. Agents 2000, 13, 155–168. [Google Scholar] [CrossRef]
- Rathnayake, K.; Patel, U.; Pham, C.; McAlpin, A.; Budisalich, T.; Jayawardena, S.N. Targeted delivery of antibiotic therapy to inhibit Pseudomonas aeruginosa using lipid-coated mesoporous silica core–shell nanoassembly. ACS Appl. Bio Mater. 2020, 3, 6708–6721. [Google Scholar] [CrossRef] [PubMed]
- Toti, U.S.; Guru, B.R.; Hali, M.; McPharlin, C.M.; Wykes, S.M.; Panyam, J.; Whittum-Hudson, J.A. Targeted delivery of antibiotics to intracellular chlamydial infections using PLGA nanoparticles. Biomaterials 2011, 32, 6606–6613. [Google Scholar] [CrossRef] [PubMed]
- Hassan, H.A.F.M.; Haider, M.; Fahmy, S.A. From antigen uptake to immune modulation: The multifaceted potential of peptide nanofibers as vaccine nanocarriers. Mater. Adv. 2024, 5, 4112–4130. [Google Scholar] [CrossRef]
- Sedky, N.K.; Mahdy, N.K.; Abdel-kader, N.M.; Abdelhady, M.M.M.; Maged, M.; Allam, A.L.; Alfaifi, M.Y.; Shamma, S.N.; Hassan, H.A.F.M.; Fahmy, S.A. Facile sonochemically-assisted bioengineering of titanium dioxide nanoparticles and deciphering their potential in treating breast and lung cancers: Biological, molecular, and computational-based investigations. RSC Adv. 2024, 14, 8583–8601. [Google Scholar] [CrossRef]
- Fahmy, S.A.; Sedky, N.K.; Hassan, H.A.F.M.; Abdel-Kader, N.M.; Mahdy, N.K.; Amin, M.U.; Preis, E.; Bakowsky, U. Synergistic Enhancement of Carboplatin Efficacy through pH-Sensitive Nanoparticles Formulated Using Naturally Derived Boswellia Extract for Colorectal Cancer Therapy. Pharmaceutics 2024, 16, 1282. [Google Scholar] [CrossRef]
- Sedky, N.K.; Abdel-Kader, N.M.; Issa, M.Y.; Abdelhady, M.M.M.; Shamma, S.N.; Bakowsky, U.; Fahmy, S.A. Co-Delivery of Ylang Ylang Oil of Cananga odorata and Oxaliplatin Using Intelligent pH-Sensitive Lipid-Based Nanovesicles for the Effective Treatment of Triple-Negative Breast Cancer. Int. J. Mol. Sci. 2023, 24, 8392. [Google Scholar] [CrossRef]
- Hassan, H.A.F.M.; Sedky, N.K.; Nafie, M.S.; Mahdy, N.K.; Fawzy, I.M.; Fayed, T.W.; Preis, E.; Bakowsky, U.; Fahmy, S.A. Sustainable Nanomedicine: Enhancement of Asplatin’s Cytotoxicity In Vitro and In Vivo Using Green-Synthesized Zinc Oxide Nanoparticles Formed via Microwave-Assisted and Gambogic Acid-Mediated Processes. Molecules 2024, 29, 5327. [Google Scholar] [CrossRef]
- Fawzy, M.P.; Hassan, H.A.F.M.; Sedky, N.K.; Nafie, M.S.; Youness, R.A.; Fahmy, S.A. Revolutionizing cancer therapy: Nanoformulation of miRNA-34—Enhancing delivery and efficacy for various cancer immunotherapies: A review. Nanoscale Adv. 2024, 6, 5220–5257. [Google Scholar] [CrossRef]
- Hassan, H.A.F.M.; Smyth, L.; Rubio, N.; Ratnasothy, K.; Wang, J.T.W.; Bansal, S.S.; Summers, H.D.; Diebold, S.S.; Lombardi, G.; Al-Jamal, K.T. Carbon nanotubes’ surface chemistry determines their potency as vaccine nanocarriers in vitro and in vivo. J. Control. Release 2016, 225, 205–216. [Google Scholar] [CrossRef]
- Haider, M.; Jagal, J.; Alghamdi, M.A.; Haider, Y.; Hassan, H.A.F.M.; Najm, M.B.; Jayakuma, M.N.; Ezzat, H.; Greish, K. Erlotinib and curcumin-loaded nanoparticles embedded in thermosensitive chitosan hydrogels for enhanced treatment of head and neck cancer. Int. J. Pharm. 2024, 666, 124825. [Google Scholar] [CrossRef]
- Ch, M.H.; Targhi, A.A.; Shamsi, F.; Heidari, F.; Moghadam, Z.S.; Mirzaie, A.; Behdad, R.; Moghtaderi, M.; Akbarzadeh, I. Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa. J. Biomed. Mater. Res. Part A 2021, 109, 966–980. [Google Scholar]
- Mirzaie, A.; Peirovi, N.; Akbarzadeh, I.; Moghtaderi, M.; Heidari, F.; Yeganeh, F.E.; Noorbazargan, H.; Mirzazadeh, S.; Bakhtiari, R. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorganic Chem. 2020, 103, 104231. [Google Scholar] [CrossRef] [PubMed]
- Ghafelehbashi, R.; Akbarzadeh, I.; Yaraki, M.T.; Lajevardi, A.; Fatemizadeh, M.; Saremi, L.H. Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes. Int. J. Pharm. 2019, 569, 118580. [Google Scholar] [CrossRef] [PubMed]
- Mehrarya, M.; Gharehchelou, B.; Poodeh, S.H.; Jamshidifar, E.; Karimifard, S.; Far, B.F.; Akbarzadeh, I.; Seifalian, A. Niosomal formulation for antibacterial applications. J. Drug Target. 2022, 30, 476–493. [Google Scholar] [CrossRef] [PubMed]
- Jain, A.P.; Sharma, P.; Pandey, P.; Gupta, R.; Roshan, S.; Garg, A.; Sahu, A.; Jain, A. Niosome a novel approach for drug delivery system: An overview. Asian J. Pharm. Sci. Res. 2013, 3, 18–30. [Google Scholar]
- Fahmy, S.A.; Sedky, N.K.; Ramzy, A.; Abdelhady, M.M.M.; Alabrahim, O.A.A.; Shamma, S.N.; Azzazy, H.M.E.-S. Green extraction of essential oils from Pistacia lentiscus resins: Encapsulation into Niosomes showed improved preferential cytotoxic and apoptotic effects against breast and ovarian cancer cells. J. Drug Deliv. Sci. Technol. 2023, 87, 104820. [Google Scholar] [CrossRef]
- Bendas, E.R.; Abdullah, H.; El-Komy, M.H.; Kassem, M.A. Hydroxychloroquine niosomes: A new trend in topical management of oral lichen planus. Int. J. Pharm. 2013, 458, 287–295. [Google Scholar] [CrossRef]
- Moghassemi, S.; Hadjizadeh, A. Nano-niosomes as nanoscale drug delivery systems: An illustrated review. J. Control. Release 2014, 185, 22–36. [Google Scholar] [CrossRef]
- Al Jayoush, A.R.; Hassan, H.A.F.M.; Asiri, H.; Jafar, M.; Saeed, R.; Harati, R.; Haider, M. Niosomes for nose-to-brain delivery: A non-invasive versatile carrier system for drug delivery in neurodegenerative diseases. J. Drug Deliv. Sci. Technol. 2023, 89, 105007. [Google Scholar] [CrossRef]
- Canton, R.; Morosini, M.I. Emergence and spread of antibiotic resistance following exposure to antibiotics. FEMS Microbiol. Rev. 2011, 35, 977–991. [Google Scholar] [CrossRef]
- Abonashey, S.G.; Hassan, H.A.F.M.; Shalaby, M.A.; Fouad, A.G.; Mobarez, E.; El-Banna, H.A. Formulation, pharmacokinetics, and antibacterial activity of florfenicol-loaded niosome. Drug Deliv. Transl. Res. 2024, 14, 1077–1092. [Google Scholar] [CrossRef] [PubMed]
- Guinedi, A.S.; Mortada, N.D.; Mansour, S.; Hathout, R.M. Preparation and evaluation of reverse-phase evaporation and multilamellar niosomes as ophthalmic carriers of acetazolamide. Int. J. Pharm. 2005, 306, 71–82. [Google Scholar] [CrossRef] [PubMed]
- El-Ela, F.I.A.; Gamal, A.; Elbanna, H.A.; ElBanna, A.H.; Salem, H.F.; Tulbah, A.S. In Vitro and In Vivo Evaluation of the Effectiveness and Safety of Amygdalin as a Cancer Therapy. Pharmaceuticals 2022, 15, 1306. [Google Scholar] [CrossRef] [PubMed]
- AbuBakr, A.H.; Hassan, H.; Abdalla, A.; Khowessah, O.M.; Abdelbary, G.A. Therapeutic potential of cationic bilosomes in the treatment of carrageenan-induced rat arthritis via fluticasone propionate gel. Int. J. Pharm. 2023, 635, 122776. [Google Scholar] [CrossRef]
- Shaker, D.S.; Shaker, M.A.; Hanafy, M.S. Cellular uptake, cytotoxicity and in-vivo evaluation of Tamoxifen citrate loaded niosomes. Int. J. Pharm. 2015, 493, 285–294. [Google Scholar] [CrossRef]
- Chen, H.C.; Cheng, S.H.; Tsai, Y.H.; Hwang, D.F. Determination of tiamulin residue in pork and chicken by solid phase extraction and HPLC. J. Food Drug Anal. 2006, 14, 80–83. [Google Scholar] [CrossRef]
- Salem, H.F.; Kharshoum, R.M.; El-Ela, F.I.A.; Abdellatif, K.R.A. Evaluation and optimization of pH-responsive niosomes as a carrier for efficient treatment of breast cancer. Drug Deliv. Transl. Res. 2018, 8, 633–644. [Google Scholar] [CrossRef]
- Gamal, A.; Saeed, H.; Sayed, O.M.; Kharshoum, R.M.; Salem, H.F. Proniosomal Microcarriers: Impact of Constituents on the Physicochemical Properties of Proniosomes as a New Approach to Enhance Inhalation Efficiency of Dry Powder Inhalers. AAPS PharmSciTech 2020, 21, 156. [Google Scholar] [CrossRef]
- Yoder, H.W., Jr. A historical account of the diagnosis and characterization of strains of Mycoplasma gallisepticum of low virulence. Avian. Dis. 1986, 30, 510–518. [Google Scholar] [CrossRef]
- Frey, M.L.; Anderson, D.P.; Hanson, R.P. Airsacculitis relation to mycoplasmas in turkeys free of Mycoplasma gallisepticum. Avian. Dis. 1968, 12, 693–699. [Google Scholar] [CrossRef]
- Tanner, A.C.; Wu, C.C. Adaptation of the Sensititre broth microdilution technique to antimicrobial susceptibility testing of Mycoplasma gallisepticum. Avian. Dis. 1992, 36, 714–717. [Google Scholar] [CrossRef] [PubMed]
- Gharaibeh, S.; Hailat, A. Mycoplasma gallisepticum experimental infection and tissue distribution in chickens, sparrows and pigeons. Avian Pathol 2011, 40, 349–354. [Google Scholar] [CrossRef] [PubMed]
- Marouf, S.; Moussa, I.M.; Salem, H.; Sedeik, M.; Elbestawy, A.; Hemeg, H.A.; Dawoud, T.M.; Mubarak, A.S.; Mahmoud, H.; Alsubki, R.A.; et al. A picture of Mycoplasma gallisepticum and Mycoplasma synoviae in poultry in Egypt: Phenotypic and genotypic characterization. J. King Saud Univ.-Sci. 2020, 32, 2263–2268. [Google Scholar] [CrossRef]
- Avakian, A.P.; Kleven, S.H.; Glisson, J.R. Evaluation of the specificity and sensitivity of two commercial enzyme-linked immunosorbent assay kits, the serum plate agglutination test, and the hemagglutination-inhibition test for antibodies formed in response to Mycoplasma gallisepticum. Avian. Dis. 1988, 32, 262–272. [Google Scholar] [CrossRef]
- Amer, M.; Hanafei, A.; El-Bayomi, K.; Zohair, G. Comparative study on the efficacy of some antiMycoplasma drugs on the performance of commercial broiler flocks from infected breeders. Glob. Vet. 2009, 3, 69–74. [Google Scholar]
- Shang, R.; Zhang, C.; Yi, Y.; Liu, Y.; Pu, W. Determination of a New Pleuromutilin Derivative in Broiler Chicken Plasma by RP-HPLC-UV and Its Application to a Pharmacokinetic Study. J. Chromatogr. Sci. 2018, 56, 604–610. [Google Scholar] [CrossRef]
- Elazab, S.T.; Elshater, N.S.; Hashem, Y.H.; Park, S.C.; Hsu, W.H. Tissue Residues and Pharmacokinetic/Pharmacodynamic Modeling of Tiamulin Against Mycoplasma anatis in Ducks. Front. Vet. Sci. 2020, 7, 603950. [Google Scholar] [CrossRef]
- Cao, C.; Liu, Y.; Zhang, G.; Dong, J.; Xu, N.; Zhou, S.; Yang, Y.; Yang, Q.; Ai, X. Temperature-Dependent Residue Depletion Regularities of Tiamulin in Nile Tilapia (Oreochromis niloticus) Following Multiple Oral Administrations. Front. Vet. Sci. 2021, 8, 679657. [Google Scholar] [CrossRef]
- Balakrishnan, P.; Shanmugam, S.; Lee, W.S.; Lee, W.M.; Kim, J.O.; Oh, D.H.; Kim, D.-D.; Kim, J.S.; Yoo, B.K.; Choi, H.-G. Formulation and in vitro assessment of minoxidil niosomes for enhanced skin delivery. Int. J. Pharm. 2009, 377, 1–8. [Google Scholar] [CrossRef]
- Chen, S.; Hanning, S.; Falconer, J.; Locke, M.; Wen, J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur. J. Pharm. Biopharm. 2019, 144, 18–39. [Google Scholar] [CrossRef]
- Kumar, G.P.; Rajeshwarrao, P. Nonionic surfactant vesicular systems for effective drug delivery—An overview. Acta Pharm. Sin. B 2011, 1, 208–219. [Google Scholar] [CrossRef]
- Hao, Y.; Zhao, F.; Li, N.; Yang, Y.; Li, K.A. Studies on a high encapsulation of colchicine by a niosome system. Int. J. Pharm. 2002, 244, 73–80. [Google Scholar] [CrossRef] [PubMed]
- Bernsdorff, C.; Wolf, A.; Winter, R.; Gratton, E. Effect of hydrostatic pressure on water penetration and rotational dynamics in phospholipid-cholesterol bilayers. Biophys. J. 1997, 72, 1264. [Google Scholar] [CrossRef] [PubMed]
- El-Laithy, H.M.; Shoukry, O.; Mahran, L.G. Novel sugar esters proniosomes for transdermal delivery of vinpocetine: Preclinical and clinical studies. Eur. J. Pharm. Biopharm. 2011, 77, 43–55. [Google Scholar] [CrossRef]
- Kirby, C.; Clarke, J.; Gregoriadis, G. Effect of the cholesterol content of small unilamellar liposomes on their stability in vivo and in vitro. Biochem. J. 1980, 186, 591–598. [Google Scholar] [CrossRef]
- Biswal, S.; Murthy, P.; Sahu, J.; Sahoo, P.; Amir, F. Vesicles of non-ionic surfactants (niosomes) and drug delivery potential. Int. J. Pharm. Sci. Nanotechnol. 2008, 1, 1–8. [Google Scholar] [CrossRef]
- Nasseri, B. Effect of cholesterol and temperature on the elastic properties of niosomal membranes. Int. J. Pharm. 2005, 300, 95–101. [Google Scholar] [CrossRef]
- Nasseri, B.; Florence, A.T. Microtubules formed by capillary extrusion and fusion of surfactant vesicles. Int. J. Pharm. 2003, 266, 91–98. [Google Scholar] [CrossRef]
- Marın, M.T.; Margarit, M.V.; Salcedo, G.E. Characterization and solubility study of solid dispersions of flunarizine and polyvinylpyrrolidone. Il Farm. 2002, 57, 723–727. [Google Scholar] [CrossRef]
- Mohsen, A.M.; AbouSamra, M.M.; ElShebiney, S.A. Enhanced oral bioavailability and sustained delivery of glimepiride via niosomal encapsulation: In-vitro characterization and in-vivo evaluation. Drug Dev. Ind. Pharm. 2017, 43, 1254–1264. [Google Scholar] [CrossRef]
- Sezgin-Bayindir, Z.; Onay-Besikci, A.; Vural, N.; Yuksel, N. Niosomes encapsulating paclitaxel for oral bioavailability enhancement: Preparation, characterization, pharmacokinetics and biodistribution. J. Microencapsul. 2013, 30, 796–804. [Google Scholar] [CrossRef] [PubMed]
- Yaghoobian, M.; Haeri, A.; Bolourchian, N.; Shahhosseni, S.; Dadashzadeh, S. The Impact of Surfactant Composition and Surface Charge of Niosomes on the Oral Absorption of Repaglinide as a BCS II Model Drug. Int. J. Nanomed. 2020, 15, 8767–8781. [Google Scholar] [CrossRef] [PubMed]
- Rege, B.D.; Kao, J.P.; Polli, J.E. Effects of nonionic surfactants on membrane transporters in Caco-2 cell monolayers. Eur. J. Pharm. Sci. 2002, 16, 237–246. [Google Scholar] [CrossRef] [PubMed]
- Colorado, D.; Fernandez, M.; Orozco, J.; Lopera, Y.; Muñoz, D.L.; Acín, S.; Balcazar, N. Metabolic Activity of Anthocyanin Extracts Loaded into Non-ionic Niosomes in Diet-Induced Obese Mice. Pharm. Res. 2020, 37, 152. [Google Scholar] [CrossRef]
- Manasa, R.; Shivananjappa, M. Role of Nanotechnology-Based Materials in Drug Delivery. In Advances in Novel Formulations for Drug Delivery; Wiley: Hoboken, NJ, USA, 2023; pp. 279–307. [Google Scholar]
- Arzani, G.; Haeri, A.; Daeihamed, M.; Bakhtiari-Kaboutaraki, H.; Dadashzadeh, S. Niosomal carriers enhance oral bioavailability of carvedilol: Effects of bile salt-enriched vesicles and carrier surface charge. Int. J. Nanomed. 2015, 10, 4797–4813. [Google Scholar]
- Zhang, Y.; Gan, Y.; Wang, J.; Feng, Z.; Zhong, Z.; Bao, H.; Xiong, Q.; Wang, R. Dysbiosis of Gut Microbiota and Intestinal Barrier Dysfunction in Pigs with Pulmonary Inflammation Induced by Mycoplasma hyorhinis Infection. mSystems 2022, 7, e0028222. [Google Scholar] [CrossRef]
- Sun, F.; Yang, S.; Zhang, H.; Zhou, J.; Li, Y.; Zhang, J.; Jin, Y.; Wang, Z.; Li, Y.; Shen, J.; et al. Comprehensive Analysis of Tiamulin Metabolites in Various Species of Farm Animals Using Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole/Time-of-Flight. J. Agric. Food Chem. 2017, 65, 199–207. [Google Scholar] [CrossRef]
- Sun, F.; Zhang, H.; Gonzales, G.B.; Zhou, J.; Li, Y.; Zhang, J.; Jin, Y.; Wang, Z.; Li, Y.; Cao, X.; et al. Unraveling the Metabolic Routes of Retapamulin: Insights into Drug Development of Pleuromutilins. Antimicrob. Agents Chemother. 2018, 62, e02388-17. [Google Scholar] [CrossRef]
- Murayama, A.; Abukawa, D.; Watanabe, K.; Umebayashi, H.; Inagaki, T.; Miura, K.; Takeyama, J. Severe liver dysfunction in patients with Mycoplasma pneumoniae infection. Pediatr. Int. 2010, 52, e105–e107. [Google Scholar] [CrossRef]
- Poddighe, D. Mycoplasma pneumoniae-related hepatitis in children. Microb. Pathog. 2020, 139, 103863. [Google Scholar] [CrossRef]
- Feitosa, R.C.; Geraldes, D.C.; Beraldo-de-Araujo, V.L.; Costa, J.S.R.; Oliveira-Nascimento, L. Pharmacokinetic Aspects of Nanoparticle-in-Matrix Drug Delivery Systems for Oral/Buccal Delivery. Front. Pharmacol. 2019, 10, 1057. [Google Scholar] [CrossRef] [PubMed]
MIC of Tiamulin 1 (µg/mL) | ||
---|---|---|
Bacterial Strain | Free Tiamulin | TLN |
MG S 6 strain (ATCC 1961) | 0.0312 ± 0.0 | 0.0312 ± 0.0 |
MG field isolate strain (EIS-C3-09) | 0.0624 ± 0.0 | 0.0624 ± 0.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abonashey, S.G.; Fouad, A.G.; Hassan, H.A.F.M.; El-Banna, A.H.; Shalaby, M.A.; Mobarez, E.; Fahmy, S.A.; El-Banna, H.A. Preparation and Characterization of Tiamulin-Loaded Niosomes for Oral Bioavailability Enhancement in Mycoplasma-Infected Broilers. Micro 2024, 4, 734-750. https://doi.org/10.3390/micro4040045
Abonashey SG, Fouad AG, Hassan HAFM, El-Banna AH, Shalaby MA, Mobarez E, Fahmy SA, El-Banna HA. Preparation and Characterization of Tiamulin-Loaded Niosomes for Oral Bioavailability Enhancement in Mycoplasma-Infected Broilers. Micro. 2024; 4(4):734-750. https://doi.org/10.3390/micro4040045
Chicago/Turabian StyleAbonashey, Shimaa G., Amr Gamal Fouad, Hatem A. F. M. Hassan, Ahmed H. El-Banna, Mostafa A. Shalaby, Elham Mobarez, Sherif Ashraf Fahmy, and Hossny A. El-Banna. 2024. "Preparation and Characterization of Tiamulin-Loaded Niosomes for Oral Bioavailability Enhancement in Mycoplasma-Infected Broilers" Micro 4, no. 4: 734-750. https://doi.org/10.3390/micro4040045
APA StyleAbonashey, S. G., Fouad, A. G., Hassan, H. A. F. M., El-Banna, A. H., Shalaby, M. A., Mobarez, E., Fahmy, S. A., & El-Banna, H. A. (2024). Preparation and Characterization of Tiamulin-Loaded Niosomes for Oral Bioavailability Enhancement in Mycoplasma-Infected Broilers. Micro, 4(4), 734-750. https://doi.org/10.3390/micro4040045