A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges
Abstract
1. Introduction
2. Lactic Acid Bacteria in Sourdough: Diversity, Taxonomy, and Relevant Metabolism
2.1. Taxonomy and Diversity of Lactic Acid Bacteria in Sourdough
2.2. Relevant Metabolism and Acidification
- -
- -
- -
3. Nutritional Benefits of Sourdough
3.1. Impact of LAB-Mediated Sourdough Fermentation on Mineral Bioavailability: Mechanisms and Challenges
3.2. Sourdough Proteolysis by LAB: Enhancing Nutritional Quality and Modulating Gluten Immunogenicity
3.2.1. Nutritional Enhancement Through Sourdough Proteolysis
3.2.2. Gluten Detoxification Strategies
3.3. Sourdough LAB-Mediated Modification of Cereal Fibers: Pathways to Enhanced Prebiotic Potential
3.4. Effect of Sourdough Fermentation on the Glycemic Response
3.4.1. Impact on Starch Structure and Resistant Starch Formation
3.4.2. Role of Organic Acids and Dietary Fibers
3.4.3. Influencing Factors, Broader Implications
3.5. Modulation of Phytochemicals and Bioactive Compounds by Sourdough Fermentation: Mechanisms, Bioaccessibility, and Translational Challenges
3.5.1. Phenolic Compounds: Content, Profile, and Bioaccessibility
3.5.2. Bioactive Peptides, GABA, and Other Key Metabolites Modulated by Sourdough Fermentation
3.6. Impact of Sourdough Fermentation on Vitamin Content: Synthesis, Stability, and Nutritional Reality
3.7. Sourdough Fermentation for FODMAP Reduction: Mechanisms, Challenges, and Relevance to IBS
3.7.1. Mechanisms, Efficacy, and Influencing Factors in FODMAP Modulation
3.7.2. Clinical Relevance, Broader Implications, Challenges, and Future Directions
4. Conclusions, Challenges, and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Guo, H.; Wu, H.; Sajid, A.; Li, Z. Whole Grain Cereals: The Potential Roles of Functional Components in Human Health. Crit. Rev. Food Sci. Nutr. 2022, 62, 8388–8402. [Google Scholar] [CrossRef] [PubMed]
- Poole, N.; Donovan, J.; Erenstein, O. Continuing Cereals Research for Sustainable Health and Well-Being. Int. J. Agric. Sustain. 2022, 20, 693–704. [Google Scholar] [CrossRef]
- Gupta, O.P.; Singh, A.; Pandey, V.; Sendhil, R.; Khan, M.K.; Pandey, A.; Kumar, S.; Hamurcu, M.; Ram, S.; Singh, G. Critical Assessment of Wheat Biofortification for Iron and Zinc: A Comprehensive Review of Conceptualization, Trends, Approaches, Bioavailability, Health Impact, and Policy Framework. Front. Nutr. 2024, 10, 1310020. [Google Scholar] [CrossRef] [PubMed]
- Sahu, A.; Verma, R.; Gupta, U.; Kashyap, S.; Sanyal, I. An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: An Anti-Nutrient in Crop Plants. Mol. Biotechnol. 2024, 66, 11–25. [Google Scholar] [CrossRef]
- Thakur, A.; Sharma, V.; Thakur, A. An Overview of Anti-Nutritional Factors in Food. Int. J. Chem. Stud. 2019, 7, 2472–2479. [Google Scholar]
- Costantini, A.; Da Ros, A.; Nikoloudaki, O.; Montemurro, M.; Di Cagno, R.; Genot, B.; Gobbetti, M.; Rizzello, C.G. How Cereal Flours, Starters, Enzymes, and Process Parameters Affect the in Vitro Digestibility of Sourdough Bread. Food Res. Int. 2022, 159, 111614. [Google Scholar] [CrossRef]
- Gänzle, M.G. Enzymatic and Bacterial Conversions during Sourdough Fermentation. Food Microbiol. 2014, 37, 2–10. [Google Scholar] [CrossRef]
- Arora, R.; Chandel, A.K. Unlocking the Potential of Low FODMAPs Sourdough Technology for Management of Irritable Bowel Syndrome. Food Res. Int. 2023, 173, 113425. [Google Scholar] [CrossRef]
- Schmidt, M.; Raczyk, M. FODMAP Reduction Strategies for Nutritionally Valuable Baking Products: Current State and Future Challenges. Crit. Rev. Food Sci. Nutr. 2023, 64, 8036–8053. [Google Scholar] [CrossRef]
- Dong, Y.; Karboune, S. A Review of Bread Qualities and Current Strategies for Bread Bioprotection: Flavor, Sensory, Rheological, and Textural Attributes. Compr. Rev. Food Sci. 2021, 20, 1937–1981. [Google Scholar] [CrossRef]
- Gobbetti, M.; Rizzello, C.G.; Di Cagno, R.; De Angelis, M. How the Sourdough May Affect the Functional Features of Leavened Baked Goods. Food Microbiol. 2014, 37, 30–40. [Google Scholar] [CrossRef] [PubMed]
- De Vuyst, L.; Van Kerrebroeck, S.; Leroy, F. Microbial Ecology and Process Technology of Sourdough Fermentation. In Advances in Applied Microbiology; Sariaslani, S., Gadd, G.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2017; Volume 100, pp. 49–160. [Google Scholar]
- Arora, K.; Ameur, H.; Polo, A.; Di Cagno, R.; Rizzello, C.G.; Gobbetti, M. Thirty Years of Knowledge on Sourdough Fermentation: A Systematic Review. Trends Food Sci. Technol. 2021, 108, 71–83. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Di Cagno, R.; Calasso, M.; Archetti, G.; Rizzello, C.G. Novel Insights on the Functional/Nutritional Features of the Sourdough Fermentation. Int. J. Food Microbiol. 2019, 302, 103–113. [Google Scholar] [CrossRef] [PubMed]
- Mota-Gutierrez, J.; Franciosa, I.; Ruggirello, M.; Dolci, P. Technological, Functional and Safety Properties of Lactobacilli Isolates from Soft Wheat Sourdough and Their Potential Use as Antimould Cultures. World J. Microbiol. Biotechnol. 2021, 37, 146. [Google Scholar] [CrossRef]
- Yildirim, R.M.; Arici, M. Effect of the Fermentation Temperature on the Degradation of Phytic Acid in Whole-Wheat Sourdough Bread. LWT 2019, 112, 108224. [Google Scholar] [CrossRef]
- Loponen, J.; Gänzle, M.G. Use of Sourdough in Low FODMAP Baking. Foods 2018, 7, 96. [Google Scholar] [CrossRef]
- Di Cagno, R.; De Angelis, M.; Lavermicocca, P.; De Vincenzi, M.; Giovannini, C.; Faccia, M.; Gobbetti, M. Proteolysis by Sourdough Lactic Acid Bacteria: Effects on Wheat Flour Protein Fractions and Gliadin Peptides Involved in Human Cereal Intolerance. Appl. Environ. Microbiol. 2002, 68, 623–633. [Google Scholar] [CrossRef]
- Gabriele, M.; Cavallero, A.; Tomassi, E.; Arouna, N.; Árvay, J.; Longo, V.; Pucci, L. Assessment of Sourdough Fermentation Impact on the Antioxidant and Anti-Inflammatory Potential of Pearl Millet from Burkina Faso. Foods 2024, 13, 704. [Google Scholar] [CrossRef]
- D’Amico, V.; Gänzle, M.; Call, L.; Zwirzitz, B.; Grausgruber, H.; D’Amico, S.; Brouns, F. Does Sourdough Bread Provide Clinically Relevant Health Benefits? Front. Nutr. 2023, 10, 1230043. [Google Scholar] [CrossRef]
- De Vuyst, L.; Van Kerrebroeck, S.; Harth, H.; Huys, G.; Daniel, H.-M.; Weckx, S. Microbial Ecology of Sourdough Fermentations: Diverse or Uniform? Food Microbiol. 2014, 37, 11–29. [Google Scholar] [CrossRef]
- Alkay, Z.; Falah, F.; Cankurt, H.; Dertli, E. Exploring the Nutritional Impact of Sourdough Fermentation: Its Mechanisms and Functional Potential. Foods 2024, 13, 1732. [Google Scholar] [CrossRef]
- Miner-Williams, W.M.; Stevens, B.R.; Moughan, P.J. Are Intact Peptides Absorbed from the Healthy Gut in the Adult Human? Nutr. Res. Rev. 2014, 27, 308–329. [Google Scholar] [CrossRef]
- Zheng, J.; Wittouck, S.; Salvetti, E.; Franz, C.M.A.P.; Harris, H.M.B.; Mattarelli, P.; O’Toole, P.W.; Pot, B.; Vandamme, P.; Walter, J.; et al. A Taxonomic Note on the Genus Lactobacillus: Description of 23 Novel Genera, Emended Description of the Genus Lactobacillus Beijerinck 1901, and Union of Lactobacillaceae and Leuconostocaceae. Int. J. Syst. Evol. Microbiol. 2020, 70, 2782–2858. [Google Scholar] [CrossRef]
- Holzapfel, W.H.; Wood, B.J.B. (Eds.) Lactic Acid Bacteria: Biodiversity and Taxonomy; Wiley Blackwell: Hoboken, NJ, USA, 2014. [Google Scholar]
- Qiao, N.; Wittouck, S.; Mattarelli, P.; Zheng, J.; Lebeer, S.; Felis, G.E.; Gänzle, M.G. After the Storm—Perspectives on the Taxonomy of Lactobacillaceae. JDS Commun. 2022, 3, 222–227. [Google Scholar] [CrossRef]
- Li, W.; Wu, Q.; Kwok, L.; Zhang, H.; Gan, R.; Sun, Z. Population and Functional Genomics of Lactic Acid Bacteria, an Important Group of Food Microorganism: Current Knowledge, Challenges, and Perspectives. Food Front. 2024, 5, 3–23. [Google Scholar] [CrossRef]
- De Vuyst, L.; Comasio, A.; Kerrebroeck, S.V. Sourdough Production: Fermentation Strategies, Microbial Ecology, and Use of Non-Flour Ingredients. Crit. Rev. Food Sci. Nutr. 2023, 63, 2447–2479. [Google Scholar] [CrossRef] [PubMed]
- Ksiezarek, M.; Grosso, F.; Ribeiro, T.G.; Peixe, L. Genomic Diversity of Genus Limosilactobacillus. Microb. Genom. 2022, 8, 000847. [Google Scholar] [CrossRef] [PubMed]
- Korcz, E.; Varga, L. Exopolysaccharides from Lactic Acid Bacteria: Techno-Functional Application in the Food Industry. Trends Food Sci. Technol. 2021, 110, 375–384. [Google Scholar] [CrossRef]
- Reale, A.; Di Stasio, L.; Di Renzo, T.; De Caro, S.; Ferranti, P.; Picariello, G.; Addeo, F.; Mamone, G. Bacteria Do It Better! Proteomics Suggests the Molecular Basis for Improved Digestibility of Sourdough Products. Food Chem. 2021, 359, 129955. [Google Scholar] [CrossRef]
- Dikbaş, N.; Uçar, S.; Alım, Ş. Purification of Phytase Enzyme from Lactobacillus Brevis and Biochemical Properties. Biologia 2023, 78, 2583–2591. [Google Scholar] [CrossRef]
- Wei, Y.; Li, F.; Li, Q.; Qin, L.; Du, Z.; Li, Q.; Liu, G. Structural Characterization, Antioxidant Activities and Physicochemical Properties Analysis of a Galactose-Rich Exopolysaccharide Produced by Limosilactobacillus Fermentum YL-11. LWT 2024, 211, 116893. [Google Scholar] [CrossRef]
- Păcularu-Burada, B.; Georgescu, L.; Bahrim, G.E. Current Approaches in Sourdough Production with Valuable Characteristics for Technological and Functional Applications. Ann. Univ. Dunarea Jos Galati 2020, 44, 132–148. [Google Scholar] [CrossRef]
- Lu, Y.; Xing, S.; He, L.; Li, C.; Wang, X.; Zeng, X.; Dai, Y. Characterization, High-Density Fermentation, and the Production of a Directed Vat Set Starter of Lactobacilli Used in the Food Industry: A Review. Foods 2022, 11, 3063. [Google Scholar] [CrossRef]
- Jakaria Al-Mujahidy, S.M.; Kryukov, K.; Ikeo, K.; Saito, K.; Uddin, M.E.; Ibn Sina, A.A. Functional Genomic Analysis of the Isolated Potential Probiotic Lactobacillus Delbrueckii subsp. Indicus TY-11 and Its Comparison with Other Lactobacillus delbrueckii Strains. Microbiol. Spectr. 2024, 12, e0347023. [Google Scholar]
- Yilmaz, B.; Bangar, S.P.; Echegaray, N.; Suri, S.; Tomasevic, I.; Lorenzo, J.M.; Melekoglu, E.; Rocha, J.M.; Ozogul, F. The Impacts of Lactiplantibacillus Plantarum on the Functional Properties of Fermented Foods: A Review of Current Knowledge. Microorganisms 2022, 10, 826. [Google Scholar] [CrossRef] [PubMed]
- Akpoghelie, P.O.; Edo, G.I.; Ali, A.B.M.; Yousif, E.; Zainulabdeen, K.; Owheruo, J.O.; Isoje, E.F.; Igbuku, U.A.; Essaghah, A.E.A.; Makia, R.S.; et al. Lactic Acid Bacteria: Nature, Characterization, Mode of Action, Products and Applications. Process Biochem. 2025, 152, 1–28. [Google Scholar] [CrossRef]
- El Fechtali, T.; Reffai, Y.M.; Idbella, M. The Leavening Ability of Many Lactic Acid Bacteria Isolated from Spontaneous Sourdough. Emir. J. Food Agric. 2023, 35, 23–31. [Google Scholar] [CrossRef]
- Fekri, A.; Abedinzadeh, S.; Torbati, M.; Azadmard-Damirchi, S.; Savage, G.P. Considering Sourdough from a Biochemical, Organoleptic, and Nutritional Perspective. J. Food Compos. Anal. 2024, 125, 105853. [Google Scholar] [CrossRef]
- Corsetti, A.; Settanni, L. Lactobacilli in Sourdough Fermentation. Food Res. Int. 2007, 40, 539–558. [Google Scholar] [CrossRef]
- Akamine, I.T.; Mansoldo, F.R.P.; Cardoso, V.S.; de Souza Dias, E.P.; Vermelho, A.B. Hydrolase Activities of Sourdough Microorganisms. Fermentation 2023, 9, 703. [Google Scholar] [CrossRef]
- Gobbetti, M.; De Angelis, M.; Corsetti, A.; Di Cagno, R. Biochemistry and Physiology of Sourdough Lactic Acid Bacteria. Trends Food Sci. Technol. 2005, 16, 57–69. [Google Scholar] [CrossRef]
- De Vuyst, L.; Vrancken, G.; Ravyts, F.; Rimaux, T.; Weckx, S. Biodiversity, Ecological Determinants, and Metabolic Exploitation of Sourdough Microbiota. Food Microbiol. 2009, 26, 666–675. [Google Scholar] [CrossRef] [PubMed]
- Oshiro, M.; Tanaka, M.; Zendo, T.; Nakayama, J. Impact of pH on Succession of Sourdough Lactic Acid Bacteria Communities and Their Fermentation Properties. Biosci. Microbiota Food Health 2020, 39, 152–159. [Google Scholar] [CrossRef] [PubMed]
- Siepmann, F.B.; De Almeida, B.S.; Waszczynskyj, N.; Spier, M.R. Influence of Temperature and of Starter Culture on Biochemical Characteristics and the Aromatic Compounds Evolution on Type II Sourdough and Wheat Bread. LWT 2019, 108, 199–206. [Google Scholar] [CrossRef]
- De Angelis, M. Phytase Activity in Sourdough Lactic Acid Bacteria: Purification and Characterization of a Phytase from Lactobacillus Sanfranciscensis CB1. Int. J. Food Microbiol. 2003, 87, 259–270. [Google Scholar] [CrossRef]
- Poutanen, K.; Flander, L.; Katina, K. Sourdough and Cereal Fermentation in a Nutritional Perspective. Food Microbiol. 2009, 26, 693–699. [Google Scholar] [CrossRef]
- Johansson, D.P.; Gutiérrez, J.L.V.; Landberg, R.; Alminger, M.; Langton, M. Impact of Food Processing on Rye Product Properties and Their in Vitro Digestion. Eur. J. Nutr. 2018, 57, 1651–1666. [Google Scholar] [CrossRef]
- Islam, M.A.; Islam, S. Sourdough Bread Quality: Facts and Factors. Foods 2024, 13, 2132. [Google Scholar] [CrossRef]
- Garutti, M.; Nevola, G.; Mazzeo, R.; Cucciniello, L.; Totaro, F.; Bertuzzi, C.A.; Caccialanza, R.; Pedrazzoli, P.; Puglisi, F. The Impact of Cereal Grain Composition on the Health and Disease Outcomes. Front. Nutr. 2022, 9, 888974. [Google Scholar] [CrossRef]
- Allai, F.M.; Azad, Z.; Gul, K.; Dar, B.N. Wholegrains: A Review on the Amino Acid Profile, Mineral Content, Physicochemical, Bioactive Composition and Health Benefits. Int. J. Food Sci. Technol. 2022, 57, 1849–1865. [Google Scholar] [CrossRef]
- Samtiya, M.; Aluko, R.E.; Puniya, A.K.; Dhewa, T. Enhancing Micronutrients Bioavailability through Fermentation of Plant-Based Foods: A Concise Review. Fermentation 2021, 7, 63. [Google Scholar] [CrossRef]
- Coulibaly, A.; Kouakou, B.; Chen, J. Phytic Acid in Cereal Grains: Structure, Healthy or Harmful Ways to Reduce Phytic Acid in Cereal Grains and Their Effects on Nutritional Quality. Am. J. Plant Nutr. Fertil. Technol. 2011, 1, 1–22. [Google Scholar] [CrossRef]
- Nsabimana, S.; Ismail, T.; Lazarte, C.E. Enhancing Iron and Zinc Bioavailability in Maize (Zea mays) through Phytate Reduction: The Impact of Fermentation Alone and in Combination with Soaking and Germination. Front. Nutr. 2024, 11, 1478155. [Google Scholar] [CrossRef] [PubMed]
- Leenhardt, F.; Levrat-Verny, M.-A.; Chanliaud, E.; Rémésy, C. Moderate Decrease of pH by Sourdough Fermentation Is Sufficient To Reduce Phytate Content of Whole Wheat Flour through Endogenous Phytase Activity. J. Agric. Food Chem. 2005, 53, 98–102. [Google Scholar] [CrossRef] [PubMed]
- Ispirli, H.; Demirbaş, F.; Yüzer, M.O.; Dertli, E. Identification of Lactic Acid Bacteria from Spontaneous Rye Sourdough and Determination of Their Functional Characteristics. Food Biotechnol. 2018, 32, 222–235. [Google Scholar] [CrossRef]
- Çakır, E.; Arıcı, M.; Durak, M.Z. Biodiversity and Techno-Functional Properties of Lactic Acid Bacteria in Fermented Hull-Less Barley Sourdough. J. Biosci. Bioeng. 2020, 130, 450–456. [Google Scholar] [CrossRef]
- Nuobariene, L.; Cizeikiene, D.; Gradzeviciute, E.; Hansen, Å.S.; Rasmussen, S.K.; Juodeikiene, G.; Vogensen, F.K. Phytase-Active Lactic Acid Bacteria from Sourdoughs: Isolation and Identification. LWT 2015, 63, 766–772. [Google Scholar] [CrossRef]
- Mohammadi-Kouchesfahani, M.; Hamidi-Esfahani, Z.; Azizi, M.H. Isolation and Identification of Lactic Acid Bacteria with Phytase Activity from Sourdough. Food Sci. Nutr. 2019, 7, 3700–3708. [Google Scholar] [CrossRef]
- Lopez, H.W.; Krespine, V.; Guy, C.; Messager, A.; Demigne, C.; Remesy, C. Prolonged Fermentation of Whole Wheat Sourdough Reduces Phytate Level and Increases Soluble Magnesium. J. Agric. Food Chem. 2001, 49, 2657–2662. [Google Scholar] [CrossRef]
- Rodriguez-Ramiro, I.; Brearley, C.A.; Bruggraber, S.F.A.; Perfecto, A.; Shewry, P.; Fairweather-Tait, S. Assessment of Iron Bioavailability from Different Bread Making Processes Using an in Vitro Intestinal Cell Model. Food Chem. 2017, 228, 91–98. [Google Scholar] [CrossRef]
- Karaman, K.; Sagdic, O.; Durak, M.Z.; Toker, O.S.; Yilmaz, M.T. Use of Phytase Active Yeasts and Lactic Acid Bacteria Isolated from Sourdough in the Production of Whole Wheat Bread. LWT 2018, 91, 24–31. [Google Scholar] [CrossRef]
- Khodaii, Z.; Zadeh, M.N.; Kamali, J.; Natanzi, M.M. Enhanced Iron Absorption from Lactic Acid Fermented Bread (an In Vivo/Ex Vivo Study). Gene Rep. 2019, 15, 100389. [Google Scholar] [CrossRef]
- Brouns, F. Phytic Acid and Whole Grains for Health Controversy. Nutrients 2021, 14, 25. [Google Scholar] [CrossRef] [PubMed]
- Hoppe, M.; Ross, A.B.; Svelander, C.; Sandberg, A.-S.; Hulthén, L. Low-Phytate Wholegrain Bread Instead of High-Phytate Wholegrain Bread in a Total Diet Context Did Not Improve Iron Status of Healthy Swedish Females: A 12-Week, Randomized, Parallel-Design Intervention Study. Eur. J. Nutr. 2019, 58, 853–864. [Google Scholar] [CrossRef]
- Kwon, J.-G.; Park, S.-H.; Kwak, J.-E.; Cho, J.H.; Kim, G.; Lee, D.; Kim, D.H.; Kim, H.B.; Lee, J.-H. Mouse Feeding Study and Microbiome Analysis of Sourdough Bread for Evaluation of Its Health Effects. Front. Microbiol. 2022, 13, 952021. [Google Scholar] [CrossRef]
- Tuppia, C.M.; Rezaei, M.N.; Machuron, F.; Duysburgh, C.; Ghyselinck, J.; Marzorati, M.; Koper, J.E.B.; Monnet, C.; Bosco, N. In Vitro Human Gastrointestinal Digestibility and Colonic Fermentation of Wheat Sourdough and Yeast Breads. Foods 2024, 13, 3014. [Google Scholar] [CrossRef]
- Aslam, M.F.; Arafsha, S.M.; Berry, S.E.; Bajka, B.; Ellis, P.R.; Latunde-Dada, G.O.; Sharp, P.A. Micronization of Wholewheat Flour Increases Iron Bioavailability from Hydrothermally Processed Wheat Flour Dough. Food Res. Int. 2024, 197, 115149. [Google Scholar] [CrossRef]
- Gil-Cardoso, K.; Saldaña, G.; Luengo, E.; Pastor, J.; Virto, R.; Alcaide-Hidalgo, J.M.; Del Bas, J.M.; Arola, L.; Caimari, A. Consumption of Sourdough Breads Improves Postprandial Glucose Response and Produces Sourdough-Specific Effects on Biochemical and Inflammatory Parameters and Mineral Absorption. J. Agric. Food Chem. 2021, 69, 3044–3059. [Google Scholar] [CrossRef]
- Milman, N.T. A Review of Nutrients and Compounds, Which Promote or Inhibit Intestinal Iron Absorption: Making a Platform for Dietary Measures That Can Reduce Iron Uptake in Patients with Genetic Haemochromatosis. J. Nutr. Metab. 2020, 2020, 7373498. [Google Scholar] [CrossRef]
- Sulaiman, N.; Givens, D.I.; Anitha, S. A Narrative Review: In-Vitro Methods for Assessing Bio-Accessibility/Bioavailability of Iron in Plant-Based Foods. Front. Sustain. Food Syst. 2021, 5, 727533. [Google Scholar] [CrossRef]
- Günal-Köroğlu, D.; Karabulut, G.; Ozkan, G.; Yılmaz, H.; Gültekin-Subaşı, B.; Capanoglu, E. Allergenicity of Alternative Proteins: Reduction Mechanisms and Processing Strategies. J. Agric. Food Chem. 2025, 73, 7522–7546. [Google Scholar] [CrossRef]
- Ogilvie, O.J.; Gerrard, J.A.; Roberts, S.; Sutton, K.H.; Larsen, N.; Domigan, L.J. A Case Study of the Response of Immunogenic Gluten Peptides to Sourdough Proteolysis. Nutrients 2021, 13, 1906. [Google Scholar] [CrossRef]
- Magalhães, A.E.R.; Gasparetto, B.D.R.; Neves, M.I.L.; Steel, C.J.; Cunha, R.L. Technological Aspects of the Bakery Industry Affecting Gluten Structure, Digestibility, and Immunogenicity. ACS Food Sci. Technol. 2025, 5, 1222–1238. [Google Scholar] [CrossRef]
- Fu, W.; Wang, S.; Xue, W. Mechanism of Carbohydrate and Protein Conversion during Sourdough Fermentation: An Analysis Based on Representative Chinese Sourdough Microbiota. Int. J. Food Microbiol. 2024, 410, 110487. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, C.G.; Portincasa, P.; Montemurro, M.; Di Palo, D.M.; Lorusso, M.P.; De Angelis, M.; Bonfrate, L.; Genot, B.; Gobbetti, M. Sourdough Fermented Breads Are More Digestible than Those Started with Baker’s Yeast Alone: An In Vivo Challenge Dissecting Distinct Gastrointestinal Responses. Nutrients 2019, 11, 2954. [Google Scholar] [CrossRef] [PubMed]
- Sá, A.G.A.; House, J.D. Protein Quality of Cereals: Digestibility Determination and Processing Impacts. J. Cereal Sci. 2024, 117, 103892. [Google Scholar] [CrossRef]
- Dunaevsky, Y.E.; Tereshchenkova, V.F.; Belozersky, M.A.; Filippova, I.Y.; Oppert, B.; Elpidina, E.N. Effective Degradation of Gluten and Its Fragments by Gluten-Specific Peptidases: A Review on Application for the Treatment of Patients with Gluten Sensitivity. Pharmaceutics 2021, 13, 1603. [Google Scholar] [CrossRef]
- Fraberger, V.; Ammer, C.; Domig, K.J. Functional Properties and Sustainability Improvement of Sourdough Bread by Lactic Acid Bacteria. Microorganisms 2020, 8, 1895. [Google Scholar] [CrossRef]
- Banu, Z.; Somraj, B.; Geetha, A.; Khan, A.A.; Srinu, B.; Vamshi, J.; Karunakar, J.; Saidaiah, P. A Comprehensive Review of Biochemical, Functional, and Dietary Implications of Gluten. Ann. Phytomed. 2024, 13, 196–208. [Google Scholar] [CrossRef]
- Mazzola, A.M.; Zammarchi, I.; Valerii, M.C.; Spisni, E.; Saracino, I.M.; Lanzarotto, F.; Ricci, C. Gluten-Free Diet and Other Celiac Disease Therapies: Current Understanding and Emerging Strategies. Nutrients 2024, 16, 1006. [Google Scholar] [CrossRef]
- De Angelis, M.; Cassone, A.; Rizzello, C.G.; Gagliardi, F.; Minervini, F.; Calasso, M.; Di Cagno, R.; Francavilla, R.; Gobbetti, M. Mechanism of Degradation of Immunogenic Gluten Epitopes from Triticum Turgidum L. Var. Durum by Sourdough Lactobacilli and Fungal Proteases. Appl. Environ. Microbiol. 2010, 76, 508–518. [Google Scholar] [CrossRef]
- El Mecherfi, K.-E.; Lupi, R.; Cherkaoui, M.; Albuquerque, M.A.C.; Todorov, S.D.; Tranquet, O.; Klingebiel, C.; Rogniaux, H.; Denery-Papini, S.; Onno, B.; et al. Fermentation of Gluten by Lactococcus Lactis LLGKC18 Reduces Its Antigenicity and Allergenicity. Probiotics Antimicrob. Proteins 2022, 14, 779–791. [Google Scholar] [CrossRef] [PubMed]
- Leszczyńska, J.; Szczepankowska, A.K.; Majak, I.; Mańkowska, D.; Smolińska, B.; Ścieszka, S.; Diowksz, A.; Cukrowska, B.; Aleksandrzak-Piekarczyk, T. Reducing Immunoreactivity of Gluten Peptides by Probiotic Lactic Acid Bacteria for Dietary Management of Gluten-Related Diseases. Nutrients 2024, 16, 976. [Google Scholar] [CrossRef] [PubMed]
- Vacca, M.; Celano, G.; Nikoloudaki, O.; Speckmann, B.; Calabrese, F.M.; Gobbetti, M.; De Angelis, M. Metabolic Characterization of Selected Probiotic Consortia during Gluten and Wheat Bread Simulated Digestion. Food Sci. Hum. Wellness 2025, 14, 92500333. [Google Scholar] [CrossRef]
- Greco, L.; Gobbetti, M.; Auricchio, R.; Di Mase, R.; Landolfo, F.; Paparo, F.; Di Cagno, R.; De Angelis, M.; Rizzello, C.G.; Cassone, A.; et al. Safety for Patients With Celiac Disease of Baked Goods Made of Wheat Flour Hydrolyzed During Food Processing. Clin. Gastroenterol. Hepatol. 2011, 9, 24–29. [Google Scholar] [CrossRef]
- De Graaf, M.C.; Timmers, E.; Bonekamp, B.; Van Rooy, G.; Witteman, B.J.; Shewry, P.R.; Lovegrove, A.; America, A.H.; Gilissen, L.J.; Keszthelyi, D.; et al. Two Randomized Crossover Multicenter Studies Investigating Gastrointestinal Symptoms after Bread Consumption in Individuals with Noncoeliac Wheat Sensitivity: Do Wheat Species and Fermentation Type Matter? Am. J. Clin. Nutr. 2024, 119, 896–907. [Google Scholar] [CrossRef]
- Muskovics, G.; Farkas, A.; Bugyi, Z.; Tömösközi, S. Changes of Gluten Protein Composition during Sourdough Fermentation in Rye Flour. Cereal Chem. 2024, 101, 1354–1363. [Google Scholar] [CrossRef]
- Zhou, Y.; Jin, W.; Duan, M.; She, X.; Zhu, S.; Zhou, X.; Song, J.; Zhu, D. Effects of Exogenous Strain Fermentation on Protein Structure and Allergenicity of Tartary Buckwheat (Fagopyrum Tataricum (L.) Gaertn.). Food Biosci. 2023, 53, 102541. [Google Scholar] [CrossRef]
- Mazzarella, G.; Salvati, V.M.; Iaquinto, G.; Stefanile, R.; Capobianco, F.; Luongo, D.; Bergamo, P.; Maurano, F.; Giardullo, N.; Malamisura, B.; et al. Reintroduction of Gluten Following Flour Transamidation in Adult Celiac Patients: A Randomized, Controlled Clinical Study. Clin. Dev. Immunol. 2012, 2012, 329150. [Google Scholar] [CrossRef]
- Gill, S.K.; Rossi, M.; Bajka, B.; Whelan, K. Dietary Fibre in Gastrointestinal Health and Disease. Nat. Rev. Gastroenterol. Hepatol. 2021, 18, 101–116. [Google Scholar] [CrossRef]
- Hamaker, B.R.; Tuncil, Y.E. A Perspective on the Complexity of Dietary Fiber Structures and Their Potential Effect on the Gut Microbiota. J. Mol. Biol. 2014, 426, 3838–3850. [Google Scholar] [CrossRef]
- Shewry, P.R.; America, A.H.P.; Lovegrove, A.; Wood, A.J.; Plummer, A.; Evans, J.; van den Broeck, H.C.; Gilissen, L.; Mumm, R.; Ward, J.L.; et al. Comparative Compositions of Metabolites and Dietary Fibre Components in Doughs and Breads Produced from Bread Wheat, Emmer and Spelt and Using Yeast and Sourdough Processes. Food Chem. 2022, 374, 131710. [Google Scholar] [CrossRef] [PubMed]
- Weckx, P.; Alonso, V.G.; Vaneeckhaute, E.; Duerinkcx, K.; De Vuyst, L.; Breynaert, E. High Temperature 1H DOSY NMR Reveals Sourdough Fermentation of Wheat Flour Alters the Molecular Structure of Water-Extractable Arabinoxylans. Food Hydrocoll. 2025, 166, 111332. [Google Scholar] [CrossRef]
- De Vero, L.; Iosca, G.; Gullo, M.; Pulvirenti, A. Functional and Healthy Features of Conventional and Non-Conventional Sourdoughs. Appl. Sci. 2021, 11, 3694. [Google Scholar] [CrossRef]
- Dong, Y.; Ronholm, J.; Fliss, I.; Karboune, S. Screening of Lactic Acid Bacteria Strains for Potential Sourdough and Bread Applications: Enzyme Expression and Exopolysaccharide Production. Probiotics Antimicrob. Proteins 2024, in press. [CrossRef]
- Rudjito, R.C.; Jiménez-Quero, A.; Muñoz, M.D.C.C.; Kuil, T.; Olsson, L.; Stringer, M.A.; Krogh, K.B.R.M.; Eklöf, J.; Vilaplana, F. Arabinoxylan Source and Xylanase Specificity Influence the Production of Oligosaccharides with Prebiotic Potential. Carbohydr. Polym. 2023, 320, 121233. [Google Scholar] [CrossRef]
- Polo, A.; Albiac, M.A.; Da Ros, A.; Ardèvol, V.N.; Nikoloudaki, O.; Verté, F.; Di Cagno, R.; Gobbetti, M. The Effect of Hydrolyzed and Fermented Arabinoxylan-Oligo Saccharides (AXOS) Intake on the Middle-Term Gut Microbiome Modulation and Its Metabolic Answer. Nutrients 2023, 15, 590. [Google Scholar] [CrossRef]
- Arena, M.P.; Russo, P.; Spano, G.; Capozzi, V. From Microbial Ecology to Innovative Applications in Food Quality Improvements: The Case of Sourdough as a Model Matrix. J 2020, 3, 9–19. [Google Scholar] [CrossRef]
- Hooshdar, P. A Review on Production of Exopolysaccharide and Biofilm in Probiotics Like Lactobacilli and Methods of Analysis. Biointerface Res. Appl. Chem. 2020, 10, 6058–6075. [Google Scholar] [CrossRef]
- Perri, G.; Coda, R.; Rizzello, C.G.; Celano, G.; Ampollini, M.; Gobbetti, M.; De Angelis, M.; Calasso, M. Sourdough Fermentation of Whole and Sprouted Lentil Flours: In Situ Formation of Dextran and Effects on the Nutritional, Texture and Sensory Characteristics of White Bread. Food Chem. 2021, 355, 129638. [Google Scholar] [CrossRef]
- Xu, M.; Li, Z.; Zhao, X.; Li, W. Prebiotic Properties of Exopolysaccharides from Lactobacillus Helveticus LZ-R-5 and L. Pentosus LZ-R-17 Evaluated by In Vitro Simulated Digestion and Fermentation. Foods 2022, 11, 2501. [Google Scholar] [CrossRef]
- Korcz, E.; Kerényi, Z.; Varga, L. Dietary Fibers, Prebiotics, and Exopolysaccharides Produced by Lactic Acid Bacteria: Potential Health Benefits with Special Regard to Cholesterol-Lowering Effects. Food Funct. 2018, 9, 3057–3068. [Google Scholar] [CrossRef]
- Patel, S.; Majumder, A.; Goyal, A. Potentials of Exopolysaccharides from Lactic Acid Bacteria. Indian J. Microbiol. 2012, 52, 3–12. [Google Scholar] [CrossRef]
- Bounaix, M.-S.; Gabriel, V.; Morel, S.; Robert, H.; Rabier, P.; Remaud-Siméon, M.; Gabriel, B.; Fontagné-Faucher, C. Biodiversity of Exopolysaccharides Produced from Sucrose by Sourdough Lactic Acid Bacteria. J. Agric. Food Chem. 2009, 57, 10889–10897. [Google Scholar] [CrossRef] [PubMed]
- Wangpaiboon, K.; Padungros, P.; Nakapong, S.; Charoenwongpaiboon, T.; Rejzek, M.; Field, R.A.; Pichyangkura, R. An α-1,6-and α-1,3-Linked Glucan Produced by Leuconostoc Citreum ABK-1 Alternansucrase with Nanoparticle and Film-Forming Properties. Sci. Rep. 2018, 8, 8340. [Google Scholar] [CrossRef] [PubMed]
- Badel, S.; Bernardi, T.; Michaud, P. New Perspectives for Lactobacilli Exopolysaccharides. Biotechnol. Adv. 2011, 29, 54–66. [Google Scholar] [CrossRef] [PubMed]
- Mensink, M.A.; Frijlink, H.W.; Van Der Voort Maarschalk, K.; Hinrichs, W.L.J. Inulin, a Flexible Oligosaccharide I: Review of Its Physicochemical Characteristics. Carbohydr. Polym. 2015, 130, 405–419. [Google Scholar] [CrossRef]
- Galle, S.; Schwab, C.; Dal Bello, F.; Coffey, A.; Gänzle, M.G.; Arendt, E.K. Influence of In-Situ Synthesized Exopolysaccharides on the Quality of Gluten-Free Sorghum Sourdough Bread. Int. J. Food Microbiol. 2012, 155, 105–112. [Google Scholar] [CrossRef]
- Angelin, J.; Kavitha, M. Exopolysaccharides from Probiotic Bacteria and Their Health Potential. Int. J. Biol. Macromol. 2020, 162, 853–865. [Google Scholar] [CrossRef]
- Hidalgo-Cantabrana, C.; López, P.; Gueimonde, M.; de los Reyes-Gavilán, C.G.; Suárez, A.; Margolles, A.; Ruas-Madiedo, P. Immune Modulation Capability of Exopolysaccharides Synthesised by Lactic Acid Bacteria and Bifidobacteria. Probiotics Antimicrob. Proteins 2012, 4, 227–237. [Google Scholar] [CrossRef]
- Bo, S.; Seletto, M.; Choc, A.; Ponzo, V.; Lezo, A.; Demagistris, A.; Evangelista, A.; Ciccone, G.; Bertolino, M.; Cassader, M.; et al. The Acute Impact of the Intake of Four Types of Bread on Satiety and Blood Concentrations of Glucose, Insulin, Free Fatty Acids, Triglyceride and Acylated Ghrelin. A Randomized Controlled Cross-over Trial. Food Res. Int. 2017, 92, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Lange, E.; Pałkowska-Goździk, E.; Kęszycka, P. The Influence of Various Types of Functional Bread on Postprandial Glycemia in Healthy Adults. Appl. Sci. 2024, 14, 11900. [Google Scholar] [CrossRef]
- Wolter, A.; Hager, A.-S.; Zannini, E.; Arendt, E.K. Influence of Sourdough on in Vitro Starch Digestibility and Predicted Glycemic Indices of Gluten-Free Breads. Food Funct. 2014, 5, 564. [Google Scholar] [CrossRef] [PubMed]
- Scazzina, F.; Del Rio, D.; Pellegrini, N.; Brighenti, F. Sourdough Bread: Starch Digestibility and Postprandial Glycemic Response. J. Cereal Sci. 2009, 49, 419–421. [Google Scholar] [CrossRef]
- Buddrick, O.; Jones, O.A.H.; Hughes, J.G.; Kong, I.; Small, D.M. The Effect of Fermentation and Addition of Vegetable Oil on Resistant Starch Formation in Wholegrain Breads. Food Chem. 2015, 180, 181–185. [Google Scholar] [CrossRef]
- De Angelis, M.; Rizzello, C.G.; Alfonsi, G.; Arnault, P.; Cappelle, S.; Di Cagno, R.; Gobbetti, M. Use of Sourdough Lactobacilli and Oat Fibre to Decrease the Glycaemic Index of White Wheat Bread. Br. J. Nutr. 2007, 98, 1196–1205. [Google Scholar] [CrossRef]
- Shumoy, H.; Van Bockstaele, F.; Devecioglu, D.; Raes, K. Effect of Sourdough Addition and Storage Time on in Vitro Starch Digestibility and Estimated Glycemic Index of Tef Bread. Food Chem. 2018, 264, 34–40. [Google Scholar] [CrossRef]
- Lau, S.W.; Chong, A.Q.; Chin, N.L.; Talib, R.A.; Basha, R.K. Sourdough Microbiome Comparison and Benefits. Microorganisms 2021, 9, 1355. [Google Scholar] [CrossRef]
- Najjar, A.M.; Parsons, P.M.; Duncan, A.M.; Robinson, L.E.; Yada, R.Y.; Graham, T.E. The Acute Impact of Ingestion of Breads of Varying Composition on Blood Glucose, Insulin and Incretins Following First and Second Meals. Br. J. Nutr. 2009, 101, 391–398. [Google Scholar] [CrossRef]
- Salleh, S.N.; Fairus, A.A.H.; Zahary, M.N.; Bhaskar Raj, N.; Mhd Jalil, A.M. Unravelling the Effects of Soluble Dietary Fibre Supplementation on Energy Intake and Perceived Satiety in Healthy Adults: Evidence from Systematic Review and Meta-Analysis of Randomised-Controlled Trials. Foods 2019, 8, 15. [Google Scholar] [CrossRef]
- Giuntini, E.B.; Sardá, F.A.H.; De Menezes, E.W. The Effects of Soluble Dietary Fibers on Glycemic Response: An Overview and Futures Perspectives. Foods 2022, 11, 3934. [Google Scholar] [CrossRef]
- Canani, R.B. Potential Beneficial Effects of Butyrate in Intestinal and Extraintestinal Diseases. WJG 2011, 17, 1519. [Google Scholar] [CrossRef] [PubMed]
- Ribet, L.; Dessalles, R.; Lesens, C.; Brusselaers, N.; Durand-Dubief, M. Nutritional Benefits of Sourdoughs: A Systematic Review. Adv. Nutr. 2023, 14, 22–29. [Google Scholar] [CrossRef] [PubMed]
- Demirkesen-Bicak, H.; Arici, M.; Yaman, M.; Karasu, S.; Sagdic, O. Effect of Different Fermentation Condition on Estimated Glycemic Index, In Vitro Starch Digestibility, and Textural and Sensory Properties of Sourdough Bread. Foods 2021, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Zamaratskaia, G.; Johansson, D.P.; Junqueira, M.A.; Deissler, L.; Langton, M.; Hellström, P.M.; Landberg, R. Impact of Sourdough Fermentation on Appetite and Postprandial Metabolic Responses—A Randomised Cross-over Trial with Whole Grain Rye Crispbread. Br. J. Nutr. 2017, 118, 686–697. [Google Scholar] [CrossRef]
- Gobbetti, M.; Gänzle, M. (Eds.) Handbook on Sourdough Biotechnology; Springer International Publishing: Cham, Switzerland, 2023. [Google Scholar]
- Romão, B.; Falcomer, A.L.; Palos, G.; Cavalcante, S.; Botelho, R.B.A.; Nakano, E.Y.; Raposo, A.; Shakeel, F.; Alshehri, S.; Mahdi, W.A.; et al. Glycemic Index of Gluten-Free Bread and Their Main Ingredients: A Systematic Review and Meta-Analysis. Foods 2021, 10, 506. [Google Scholar] [CrossRef]
- Colussi, R.; Singh, J.; Kaur, L.; Zavareze, E.D.R.; Dias, A.R.G.; Stewart, R.B.; Singh, H. Microstructural Characteristics and Gastro-Small Intestinal Digestion in Vitro of Potato Starch: Effects of Refrigerated Storage and Reheating in Microwave. Food Chem. 2017, 226, 171–178. [Google Scholar] [CrossRef]
- Cañas, S.; Perez-Moral, N.; Edwards, C.H. Effect of Cooking, 24 h Cold Storage, Microwave Reheating, and Particle Size on in Vitro Starch Digestibility of Dry and Fresh Pasta. Food Funct. 2020, 11, 6265–6272. [Google Scholar] [CrossRef]
- Han, J.; Wu, J.; Liu, X.; Shi, J.; Xu, J. Physiological Effects of Resistant Starch and Its Applications in Food: A Review. Food Prod. Process. Nutr. 2023, 5, 48. [Google Scholar] [CrossRef]
- Fernández-Peláez, J.; Paesani, C.; Gómez, M. Sourdough Technology as a Tool for the Development of Healthier Grain-Based Products: An Update. Agronomy 2020, 10, 1962. [Google Scholar] [CrossRef]
- Smith, C.; Van Haute, M.J.; Rose, D.J. Processing Has Differential Effects on Microbiota-Accessible Carbohydrates in Whole Grains during In Vitro Fermentation. Appl. Environ. Microbiol. 2020, 86, e01705-20. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, L. Impact of Sourdough Fermentation on Nutrient Transformations in Cereal-Based Foods: Mechanisms, Practical Applications, and Health Implications. Grain Oil Sci. Technol. 2024, 7, 124–132. [Google Scholar] [CrossRef]
- Tomassi, E.; Arouna, N.; Brasca, M.; Silvetti, T.; De Pascale, S.; Troise, A.D.; Scaloni, A.; Pucci, L. Fermentation of Whole-Wheat Using Different Combinations of Lactic Acid Bacteria and Yeast: Impact on In Vitro and Ex Vivo Antioxidant Activity. Foods 2025, 14, 421. [Google Scholar] [CrossRef]
- Verni, M.; Verardo, V.; Rizzello, C. How Fermentation Affects the Antioxidant Properties of Cereals and Legumes. Foods 2019, 8, 362. [Google Scholar] [CrossRef] [PubMed]
- Vurro, F.; Santamaria, M.; Summo, C.; Pasqualone, A.; Rosell, C.M. Exploring the Functional Potential of Pea-Based Sourdough in Traditional Durum Wheat Focaccia: Role in Enhancing Bioactive Compounds, in Vitro Antioxidant Activity, in Vitro Digestibility and Aroma. J. Funct. Foods 2024, 123, 106607. [Google Scholar] [CrossRef]
- Sobhanian, S.A.; Saremnezhad, S.; Soltani, M. Development of Functional Sourdough Bread Using and Germinated Brown Rice: Evaluation of Phenolic Compounds, Antioxidant Capacity, Gamma-Amino Butyric Acid (GABA) Content, and Sensory Characteristics. Food Sci. Nutr. 2025, 13, e70047. [Google Scholar] [CrossRef] [PubMed]
- Luti, S.; Mazzoli, L.; Ramazzotti, M.; Galli, V.; Venturi, M.; Marino, G.; Lehmann, M.; Guerrini, S.; Granchi, L.; Paoli, P.; et al. Antioxidant and Anti-Inflammatory Properties of Sourdoughs Containing Selected Lactobacilli Strains Are Retained in Breads. Food Chem. 2020, 322, 126710. [Google Scholar] [CrossRef]
- Banu, I.; Neagu, C.; Aprodu, I. Effect of Milling and Sourdough Fermentation on Bioactive Compounds of Selected Multigrain Blends. Rom. Biotechnol. Lett. 2021, 26, 3022–3030. [Google Scholar] [CrossRef]
- Icer, M.A.; Sarikaya, B.; Kocyigit, E.; Atabilen, B.; Çelik, M.N.; Capasso, R.; Ağagündüz, D.; Budán, F. Contributions of Gamma-Aminobutyric Acid (GABA) Produced by Lactic Acid Bacteria on Food Quality and Human Health: Current Applications and Future Prospects. Foods 2024, 13, 2437. [Google Scholar] [CrossRef]
- Martin, K.R. Polyphenols as Dietary Supplements: A Double-Edged Sword. Nutr. Diet. Suppl. 2010, 2, 1–12. [Google Scholar] [CrossRef]
- Hackman, R.M.; Polagruto, J.A.; Zhu, Q.Y.; Sun, B.; Fujii, H.; Keen, C.L. Flavanols: Digestion, Absorption and Bioactivity. Phytochem. Rev. 2007, 7, 195–208. [Google Scholar] [CrossRef]
- Fang, L.; Wang, W.; Dou, Z.; Chen, J.; Meng, Y.; Cai, L.; Li, Y. Effects of Mixed Fermentation of Different Lactic Acid Bacteria and Yeast on Phytic Acid Degradation and Flavor Compounds in Sourdough. LWT 2023, 174, 114438. [Google Scholar] [CrossRef]
- Penidez, S.H.S.; Manini, M.A.V.; Gerez, C.L.; Rollan, G.C. Consortia of Lactic Acid Bacteria Strains Increase the Antioxidant Activity and Bioactive Compounds of Quinoa Sourdough-Based Biscuits. World J. Microbiol. Biotechnol. 2023, 39, 95. [Google Scholar] [CrossRef]
- Šimurina, O.; Filipčev, B.; Kiprovski, B.; Nježić, Z.; Hajnal, E.J.; Đalović, I. Retention of Phytochemical Compounds and Antioxidative Activity in Traditional Baked Dish “Proja” Made from Pigmented Maize. Foods 2024, 13, 2799. [Google Scholar] [CrossRef] [PubMed]
- Irakli, M.; Mygdalia, A.; Chatzopoulou, P.; Katsantonis, D. Impact of the Combination of Sourdough Fermentation and Hop Extract Addition on Baking Properties, Antioxidant Capacity and Phenolics Bioaccessibility of Rice Bran-Enhanced Bread. Food Chem. 2019, 285, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Gabriele, M.; Arouna, N.; Árvay, J.; Longo, V.; Pucci, L. Sourdough Fermentation Improves the Antioxidant, Antihypertensive, and Anti-Inflammatory Properties of Triticum Dicoccum. Int. J. Mol. Sci. 2023, 24, 6283. [Google Scholar] [CrossRef]
- Çağındı, Ö.; Köse, E.; İnce, C. Ekşi Maya Fermantasyonu ile Üretilen Ekmeklerdeki Biyoaktif Bileşenlerin In Vitro Biyoerişilebilirliği ve Sağlık Üzerine Etkileri. Turk. JAF Sci. Tech. 2021, 9, 1686–1694. [Google Scholar] [CrossRef]
- Galli, V.; Mazzoli, L.; Luti, S.; Venturi, M.; Guerrini, S.; Paoli, P.; Vincenzini, M.; Granchi, L.; Pazzagli, L. Effect of Selected Strains of Lactobacilli on the Antioxidant and Anti-Inflammatory Properties of Sourdough. Int. J. Food Microbiol. 2018, 286, 55–65. [Google Scholar] [CrossRef]
- Luti, S.; Galli, V.; Venturi, M.; Granchi, L.; Paoli, P.; Pazzagli, L. Bioactive Properties of Breads Made with Sourdough of Hull-Less Barley or Conventional and Pigmented Wheat Flours. Appl. Sci. 2021, 11, 3291. [Google Scholar] [CrossRef]
- García-Mora, P.; Martín-Martínez, M.; Bonache, M.A.; González-Múniz, R.; Peñas, E.; Frias, J.; Martinez-Villaluenga, C. Identification, Functional Gastrointestinal Stability and Molecular Docking Studies of Lentil Peptides with Dual Antioxidant and Angiotensin I Converting Enzyme Inhibitory Activities. Food Chem. 2017, 221, 464–472. [Google Scholar] [CrossRef]
- Omoba, O.S.; Isah, L.R. Influence of Sourdough Fermentation on Amino Acids Composition, Phenolic Profile, and Antioxidant Properties of Sorghum Biscuits. Prev. Nutr. Food 2018, 23, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Rizzello, C.G.; Nionelli, L.; Coda, R.; Gobbetti, M. Synthesis of the Cancer Preventive Peptide Lunasin by Lactic Acid Bacteria During Sourdough Fermentation. Nutr. Cancer 2012, 64, 111–120. [Google Scholar] [CrossRef] [PubMed]
- Walther, B.; Schmid, A. Effect of Fermentation on Vitamin Content in Food. In Fermented Foods in Health and Disease Prevention; Frias, J., Martinez-Villaluenga, C., Peñas, E., Eds.; Elsevier/Academic Press: London, UK, 2017; pp. 131–157. [Google Scholar]
- Lim, E.J.; Abd Rahim, M.H. Fermentation for Enhanced Biosynthesis and Bioavailability of Micronutrients, Prebiotics, Bioactive Peptides and Functional Fatty Acids in Food Products. Int. J. Adv. Res. Food Sci. Agric. Technol. 2025, 4, 9–27. [Google Scholar]
- Wang, Y.; Xie, C.; Pulkkinen, M.; Edelmann, M.; Chamlagain, B.; Coda, R.; Sandell, M.; Piironen, V.; Maina, N.H.; Katina, K. In Situ Production of Vitamin B12 and Dextran in Soya Flour and Rice Bran: A Tool to Improve Flavour and Texture of B12-Fortified Bread. LWT 2022, 161, 1134077. [Google Scholar] [CrossRef]
- Wang, Y.; Wu, J.; Lv, M.; Shao, Z.; Hungwe, M.; Wang, J.; Bai, X.; Xie, J.; Wang, Y.; Geng, W. Metabolism Characteristics of Lactic Acid Bacteria and the Expanding Applications in Food Industry. Front. Bioeng. Biotechnol. 2021, 9, 612285. [Google Scholar] [CrossRef]
- Edelmann, M.; Chamlagain, B.; Santin, M.; Kariluoto, S.; Piironen, V. Stability of Added and in Situ-Produced Vitamin B12 in Breadmaking. Food Chem. 2016, 204, 21–281. [Google Scholar] [CrossRef]
- Liukkonen, K.-H.; Katina, K.; Wilhelmsson, A.; Myllymaki, O.; Lampi, A.-M.; Kariluoto, S.; Piironen, V.; Heinonen, S.-M.; Nurmi, T.; Adlercreutz, H.; et al. Process-Induced Changes on Bioactive Compounds in Whole Grain Rye. Proc. Nutr. Soc. 2003, 62, 117–122. [Google Scholar] [CrossRef]
- Chamlagain, B.; Deptula, P.; Edelmann, M.; Kariluoto, S.; Grattepanche, F.; Lacroix, C.; Varmanen, P.; Piironen, V. Effect of the Lower Ligand Precursors on Vitamin B12 Production by Food-Grade Propionibacteria. LWT 2016, 72, 117–124. [Google Scholar] [CrossRef]
- Soares, M.G.; Bevilaqua, G.C.; Marcondes Tassi, É.M.; Schmidt, V.C.R. Fermented Foods and Beverages: A Potential in Situ Vitamin B12 Biofortification—A Literature Review. Int. J. Food Sci. Nutr. 2023, 74, 655–667. [Google Scholar] [CrossRef]
- Reissig, G.N.; Oliveira, T.F.D.C.; Bragança, G.C.M.; Rodrigues, R.D.S.; Barbosa, F.D.F. Fermented Vegetables and Fruits as Vitamin B12 Sources: An Overview. Int. Food Res. J. 2023, 30, 1093–1104. [Google Scholar] [CrossRef]
- Konstantinidis, D.; Pereira, F.; Geissen, E.; Grkovska, K.; Kafkia, E.; Jouhten, P.; Kim, Y.; Devendran, S.; Zimmermann, M.; Patil, K.R. Adaptive Laboratory Evolution of Microbial Co-cultures for Improved Metabolite Secretion. Mol. Syst. Biol. 2021, 17, e10189. [Google Scholar] [CrossRef]
- Paramithiotis, S.; Bosnea, L.; Mataragas, M. Health Promoting Features of Sourdough Lactic Acid Bacteria. In Sourdough: Fundamentals and Applications; Paramithiotis, S., Nychas, G.-J.E., Eds.; Springer: Cham, Switzerland, 2024; pp. 379–394. [Google Scholar]
- Sybesma, W. Multivitamin Production in Lactococcus Lactis Using Metabolic Engineering. Metab. Eng. 2004, 6, 109–115. [Google Scholar] [CrossRef] [PubMed]
- Wegkamp, A.; Van Oorschot, W.; De Vos, W.M.; Smid, E.J. Characterization of the Role of para-Aminobenzoic Acid Biosynthesis in Folate Production by Lactococcus lactis. Appl. Environ. Microbiol. 2007, 73, 2673–2681. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, M.; Sciurba, E. Determination of FODMAP Contents of Common Wheat and Rye Breads and the Effects of Processing on the Final Contents. Eur. Food Res. Technol. 2021, 247, 395–410. [Google Scholar] [CrossRef]
- Goyal, O.; Batta, S.; Nohria, S.; Kishore, H.; Goyal, P.; Sehgal, R.; Sood, A. Low Fermentable Oligosaccharide, Disaccharide, Monosaccharide, and Polyol Diet in Patients with Diarrhea-predominant Irritable Bowel Syndrome: A Prospective, Randomized Trial. J. Gastroenterol. Hepatol. 2021, 36, 2107–2115. [Google Scholar] [CrossRef] [PubMed]
- Borowska, M.; Ispiryan, L.; Neylon, E.; Sahin, A.W.; Murphy, C.P.; Zannini, E.; Arendt, E.K.; Coffey, A. Screening and Application of Novel Homofermentative Lactic Acid Bacteria Results in Low-FODMAP Whole-Wheat Bread. Fermentation 2023, 9, 336. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; Minervini, F.; Filannino, P.; Sardaro, M.L.S.; Gatti, M.; Lindner, J.D.D. Effects of Sourdough on FODMAPs in Bread and Potential Outcomes on Irritable Bowel Syndrome Patients and Healthy Subjects. Front. Microbiol. 2018, 9, 1972. [Google Scholar] [CrossRef]
- Boakye, P.G.; Kougblenou, I.; Murai, T.; Okyere, A.Y.; Anderson, J.; Bajgain, P.; Philipp, B.; LaPlante, B.; Schlecht, S.; Vogel, C.; et al. Impact of Sourdough Fermentation on FODMAPs and Amylase-Trypsin Inhibitor Levels in Wheat Dough. J. Cereal Sci. 2022, 108, 103574. [Google Scholar] [CrossRef]
- Wittwer, A.E.; Li, J.A.; Howell, K. Applying Deconstructed Sourdough Communities and Fermentation Parameters to Low-FODMAP Wheat Bread Production. bioRxiv 2024. [Google Scholar] [CrossRef]
- Menezes, L.A.A.; De Marco, I.; Dos Santos, N.N.O.; Nunes, C.C.; Cartabiano, C.E.L.; Molognoni, L.; Pereira, G.V.D.M.; Daguer, H.; De Dea Lindner, J. Reducing FODMAPs and Improving Bread Quality Using Type II Sourdough with Selected Starter Cultures. Int. J. Food Sci. Nutr. 2021, 72, 912–922. [Google Scholar] [CrossRef]
- Pejcz, E.; Lachowicz-Wiśniewska, S.; Nowicka, P.; Wojciechowicz-Budzisz, A.; Harasym, J. Enhancing Antioxidant Activity and Modulating FODMAPs Levels in Inoculated Sourdough Rye Bread. LWT 2024, 197, 115905. [Google Scholar] [CrossRef]
- Kulathunga, J.; Whitney, K.; Simsek, S. Impact of Starter Culture on Biochemical Properties of Sourdough Bread Related to Composition and Macronutrient Digestibility. Food Biosci. 2023, 53, 102640. [Google Scholar] [CrossRef]
- Li, Q.; Loponen, J.; Gänzle, M.G. Characterization of the Extracellular Fructanase FruA in Lactobacillus crispatus and Its Contribution to Fructan Hydrolysis in Breadmaking. J. Agric. Food Chem. 2020, 68, 8637–8647. [Google Scholar] [CrossRef] [PubMed]
- Menezes, L.A.A.; Molognoni, L.; De Sá Ploêncio, L.A.; Costa, F.B.M.; Daguer, H.; Dea Lindner, J.D. Use of Sourdough Fermentation to Reducing FODMAPs in Breads. Eur. Food Res. Technol. 2019, 245, 1183–1195. [Google Scholar] [CrossRef]
- Longin, C.F.H.; Beck, H.; Gütler, A.; Gütler, H.; Heilig, W.; Zimmermann, J.; Bischoff, S.C.; Würschum, T. Influence of Wheat Variety and Dough Preparation on FODMAP Content in Yeast-Leavened Wheat Breads. J. Cereal Sci. 2020, 95, 1030211. [Google Scholar] [CrossRef]
- Ziegler, J.U.; Steiner, D.; Longin, C.F.H.; Würschum, T.; Schweiggert, R.M.; Carle, R. Wheat and the Irritable Bowel Syndrome–FODMAP Levels of Modern and Ancient Species and Their Retention during Bread Making. J. Funct. Foods 2016, 25, 257–2669. [Google Scholar] [CrossRef]
- Costabile, A.; Santarelli, S.; Claus, S.P.; Sanderson, J.; Hudspith, B.N.; Brostoff, J.; Ward, J.L.; Lovegrove, A.; Shewry, P.R.; Jones, H.E.; et al. Effect of Breadmaking Process on In Vitro Gut Microbiota Parameters in Irritable Bowel Syndrome. PLoS ONE 2014, 9, e111225. [Google Scholar] [CrossRef]
- Pirkola, L.; Laatikainen, R.; Loponen, J.; Hongisto, S.-M.; Hillilä, M.; Nuora, A.; Yang, B.; Linderborg, K.M.; Freese, R. Low-FODMAP vs Regular Rye Bread in Irritable Bowel Syndrome: Randomized SmartPill® Study. World J. Gastroenterol. 2018, 24, 1259–12689. [Google Scholar] [CrossRef]
- Laatikainen, R.; Koskenpato, J.; Hongisto, S.-M.; Loponen, J.; Poussa, T.; Huang, X.; Sontag-Strohm, T.; Salmenkari, H.; Korpela, R. Pilot Study: Comparison of Sourdough Wheat Bread and Yeast-Fermented Wheat Bread in Individuals with Wheat Sensitivity and Irritable Bowel Syndrome. Nutrients 2017, 9, 1215. [Google Scholar] [CrossRef]
- Wilson, B.; Rossi, M.; Kanno, T.; Parkes, G.C.; Anderson, S.; Mason, A.J.; Irving, P.M.; Lomer, M.C.; Whelan, K. β-Galactooligosaccharide in Conjunction With Low FODMAP Diet Improves Irritable Bowel Syndrome Symptoms but Reduces Fecal Bifidobacteria. Am. J. Gastroenterol. 2020, 115, 906–915. [Google Scholar] [CrossRef]
- Koc, F.; Arendt, E.; Coffey, A.; Ross, R.P.; Stanton, C. Impact of Low FODMAP Sourdough Bread on Gut Microbiota Using an in Vitro Colonic Fermentation Model. Front. Microbiol. 2024, 15, 1496022. [Google Scholar] [CrossRef]
- Costantini, A.; Verni, M.; Mastrolonardo, F.; Rizzello, C.G.; Di Cagno, R.; Gobbetti, M.; Breedveld, M.; Bruggink, S.; Lefever, K.; Polo, A. Sourdough “Biga” Fermentation Improves the Digestibility of Pizza Pinsa Romana: An Investigation through a Simulated Static In Vitro Model. Nutrients 2023, 15, 2958. [Google Scholar] [CrossRef] [PubMed]
- Costa, C.M.; De Carvalho, N.M.; De Oliveira, D.L.; Madureira, A.R. A Critical Review on In Vitro and Ex Vivo Models of the Intestinal Epithelium of Humans and Monogastric Animals. Gastrointest. Disord. 2024, 6, 337–358. [Google Scholar] [CrossRef]
- Tanhaeian, A.; Mirzaii, M.; Pirkhezranian, Z.; Sekhavati, M.H. Generation of an Engineered Food-Grade Lactococcus Lactis Strain for Production of an Antimicrobial Peptide: In Vitro and in Silico Evaluation. BMC Biotechnol. 2020, 20, 19. [Google Scholar] [CrossRef] [PubMed]
- Alam, S.A.; Pentikäinen, S.; Närväinen, J.; Katina, K.; Poutanen, K.; Sozer, N. The Effect of Structure and Texture on the Breakdown Pattern during Mastication and Impacts on in Vitro Starch Digestibility of High Fibre Rye Extrudates. Food Funct. 2019, 10, 1958–1973. [Google Scholar] [CrossRef]
- Santos-Sánchez, G.; Miralles, B.; Brodkorb, A.; Dupont, D.; Egger, L.; Recio, I. Current Advances for in Vitro Protein Digestibility. Front. Nutr. 2024, 11, 1404538. [Google Scholar] [CrossRef]
- Krul, E.S.; Sá, A.G.A.; Goldberg, E.M.; House, J.D. In Vitro Protein Digestibility to Replace in Vivo Digestibility for Purposes of Nutrient Content Claim Substantiation in North America’s Context. Front. Nutr. 2024, 11, 1390146. [Google Scholar] [CrossRef]
- Naji-Tabasi, S.; Shahidi-Noghabi, M.; Hosseininezhad, M. Improving the Quality of Traditional Iranian Bread by Using Sourdough and Optimizing the Fermentation Conditions. SN Appl. Sci. 2022, 4, 148. [Google Scholar] [CrossRef]
- Di Biase, M.; Le Marc, Y.; Bavaro, A.R.; Lonigro, S.L.; Verni, M.; Postollec, F.; Valerio, F. Modeling of Growth and Organic Acid Kinetics and Evolution of the Protein Profile and Amino Acid Content during Lactiplantibacillus Plantarum ITM21B Fermentation in Liquid Sourdough. Foods 2022, 11, 3942. [Google Scholar] [CrossRef]
Genus | Example Species | Key Relevant Function(s)/Trait(s) | Key Reference(s) |
---|---|---|---|
Pediococcus | P. pentosaceus | EPS production (alpha-glucan/Reuteran) | [30] |
Lactiplantibacillus | Lp. plantarum (e.g., A16, A25, B11, B15) | Phytase activity/antifungal activity | [15] |
Lacticaseibacillus | Ls. rhamnosus (e.g., RW-9595M, GG) | High EPS production (RW-9595M); potential probiotic activity | [30] |
Fructilactobacillus | Fr. sanfranciscensis SB52 | Proteolytic activity targets soluble proteins (e.g., β-amylase) | [31] |
Levilactobacillus | Lv. brevis (e.g., A6) | proteolytic activity A6; phytase activity MW831027 | [31,32] |
Limosilactobacillus | Lm. Fermentum YL-11/Lm. reuteri | EPS production (galactose-rich; antioxidant, texturizing properties, bioactive and flavor peptide generation (e.g., kokumi/umami) | [22,28,29,30,33] |
Leuconostoc | Lc. mesenteroides (e.g., subsp. mesenteroides SJRP55) | High EPS yield (dextran); dough properties, prebiotic potential. | [30,34] |
Weissella | W. cibaria/W. confusa (e.g., MG1, Ck15, OF126) | High EPS yield (dextran); bread properties | [30,34] |
Companilactobacillus | Co. alimentarius G4/Co. paralimentarius | High peptide count, targets β-amylase/ATIs; Pentose fermentation → Faster acidification and increased acetic acid | [28,31] |
Study Type/Model | Key Intervention/Comparison | Mineral(s) Studied | Main Outcome re: Mineral Bioavailability/Bioaccessibility/Status | Key Message/Implication/Reported Limitation | References |
---|---|---|---|---|---|
In vitro Caco-2 cells | Wheat sourdough (low phytate) vs. yeast/CBP bread | Iron (Fe) | No increase in Fe uptake despite phytate degradation (unless supplemental Fe added). | Phytate removal alone may be insufficient to drive absorption in this specific model. | [62] |
Human intervention (healthy women) | Low-phytate sourdough rye bread vs. high-phytate rye bread (total diet context) | Iron (Fe) (status biomarkers) | Significant decrease in Fe status indicators (serum ferritin, total body Fe). | The outcome was likely caused by the displacement of other dietary iron sources by the intervention bread in a free-living context. | [66] |
In vitro digestion model | Sourdough vs. yeast breads (white and whole grain) | Fe, Zn, Mg, Ca (bioaccessibility) | Comparable mineral bioaccessibility between sourdough and yeast breads. | The effect of flour composition may outweigh the fermentation-driven phytate reduction on bioaccessibility. | [68] |
In vitro digestion and Caco-2 cells | Micronized vs. standard whole-wheat flour dough | Iron (Fe) (bioaccessibility and bioavailability) | Increased Fe bioavailability (Caco-2 uptake) despite unchanged in vitro bioaccessibility. | Highlights limitations of bioaccessibility measures; bioavailability can improve via other mechanisms. | [69] |
Animal model (mice) | Sourdough bread vs. yeast bread vs. control diet | Mg, Fe, Ca (status) | Non-significant trends in mineral status. | Proposed gut microbiota competition for iron (Fe) might offset absorption benefits | [67] |
Animal model (rats) | Multigrain bread fermented with different sourdough starters (SF, Ca, Re) with distinct microbial compositions vs. white bread. | Fe, Cu, Zn (apparent absorption) | Significantly decreased Fe, Cu, and/or Zn absorption with starters Ca and Re, but not with starter SF. | Strain-dependent negative effects exist; factors beyond phytate critically modulate absorption. | [70] |
LAB | Homopolysaccharides (HoPS) | References |
---|---|---|
Leuconostoc mesenteroides | Dextran | [30,105,106] |
Leuconostoc citreum | Dextran | [30,106,107] |
Lacticaseibacillus casei | Dextran | [30] |
Latilactobacillus sakei | Dextran | [30,108] |
Limosilactobacillus reuteri | Dextran, Reuteran, Inulin, Levan | [30,106,109] |
Weissella (cibaria, confusa) | Dextran | [30,103,106,110] |
Limosilactobacillus frumenti | Levan | [30] |
Fructilactobacillus sanfranciscensis | Levan | [30,103,106] |
Fermentation Type (Duration, Temp) | LAB Strain(s) | Flour Type (in Final Product) | GI Impact/% GI Reduction | Comments/Key Findings |
---|---|---|---|---|
Sourdough starter refreshed for 10 days (14 °C). Final dough raised 4–5 h (28 °C). |
| Various wheat flours (Commercial, Organic, Einkorn) | Lower postprandial glucose and insulin AUCs | Human study. Significant reduction in insulin responses across all tested wheat flours. Significant reduction in glucose responses for organic and einkorn flours only. Einkorn flour bread showed the most favorable metabolic responses [113]. |
Sourdough starter used. (No specific duration or temp provided in paper) | (Not specified in paper) | 1. Whole-grain flour (mean of various types, likely rye, oats, buckwheat) | Mean GI: 50.50 (significantly lower than refined flour: 60.50) | Human study. Focus on “functional breads.” 65% of tested breads were low GI (<55). Sourdough, whole-grain flour, and oilseeds contribute to GI reduction [114]. |
2. Wheat/spelt and other flours (oat, buckwheat, rice, or mixed) | Wheat/spelt mean GI: 60.6 Other mean GI: 56.0 | Human study. Part of the functional bread study. Rye breads generally had a lower GI compared to wheat/spelt [114]. | ||
Sourdough fermentation with added oat fibre (~8.7% of flour weight) | Lp. plantarum P1; Lv. brevis P2 | WF/WMF (50:50) + Oat Fibre | GI: 53.7 (vs. 72 for yeast control bread made with 100% white flour) | Human study. Sourdough fermentation combined with oat fibre significantly reduced the GI of bread [118]. |
Type-2 Sourdough (24 h at 30 °C) | Lp. plantarum ELB75, Lv. brevis ELB99, Saccharomyces cerevisiae TGM55 | Whole wheat flour | Control eGI: 76.93 Sourdough eGI: 54.05 (~29.7 Reduction) | In vitro study (Estimated GI). Type-2 fermentation at 30 °C provided the greatest reduction in eGI [126]. |
Multi-stage fermentation using an in-house starter (40 h for starter preparation). | Living LABs and Yeasts (Specific strains not specified) | Whole-grain rye flour | Glucose iAUC: No significant difference between the three bread types Insulin iAUC: Unfermented Rye bread gave the lowest response. Sourdough bread showed no improvement vs. yeast wheat control. | Human study. Sourdough fermentation did not improve glucose response. Unfermented rye bread showed the most favorable insulin response. The study suggests that sourdough fermentation in these conditions might lead to ‘less favourable’ metabolic responses compared to the unfermented version [127]. |
Sourdough fermentation (process details not mentioned) | (Not explicitly mentioned in paper) | White and whole-wheat flour | Both sourdough breads (white and whole-wheat) showed a statistically significant reduction in glucose iAUC compared to their yeast-leavened counterparts (p < 0.001). | Human study. Both white and whole-wheat sourdough breads showed significantly lower glycemic responses and higher resistant starch compared to yeast-leavened counterparts. The study concluded that the fermentation method (sourdough effect) was the primary factor for the reduction [116]. |
Bioactive Compound Class | Primary Modulation Mechanism | Reported Biological Activity (In Vitro/Ex Vivo) | Key Translational Challenge | Key Reference(s) |
---|---|---|---|---|
Phenolic Compounds |
|
|
| [136,137,138,139] |
Bioactive Peptides |
|
|
Managing biological variability (strain-specificity).Addressing poor systemic bioavailability. Limited generalizability due to high strain and substrate specificity. Incomplete understanding of the precise mechanisms of action. | [137,140] |
Vitamins (B-group) |
|
|
| [137,141] |
GABA (γ-Aminobutyric acid) |
|
|
| [139,142] |
Anti-nutrients (Phytate, RFOs) |
|
|
| [135,138] |
Vitamin | Model/Substrate | Typical Effect | Mechanism and Key Factors | Comments/Key Findings | Reference |
---|---|---|---|---|---|
Active Vitamin B12 (Cobalamin) | In vitro (whey-based medium) | Increase (up to 4-fold) | Mechanism: enhanced biosynthesis of limiting precursor (DMBI). Factors: precursor supplementation, bacterial strain, timing. | Supplementation with safe precursors (RF + NAM) yielded comparable or superior B12 levels compared to direct precursor (DMBI) addition in most strains. | [161] |
Vitamin B12 (Stability Study) | In vitro (wheat bread vs. sourdough rye bread) | Decrease (loss of 22–44%) | Mechanism: thermal degradation during baking. Factors: B12 form (CNCbl most stable), baking process, duration, pH | Sourdough process (longer baking, low pH) caused greater B12 loss compared to wheat bread processes. | [159] |
Active Vitamin B12 | In vitro and sensory (composite bread with fermented soya flour/rice bran) | Increase (3.0–4.9 µg/100 g in bread); high stability (~4% loss). | Mechanism: in situ biosynthesis by P. freudenreichii. Factors: starter culture combination, fermentation matrix. | Simultaneous production of B12 (for nutrition) and dextran (for improving texture and masking off-flavors). | [162] |
Vitamin B12 | Review article (various plant-based matrices) | Increase (significant) | Mechanism: in situ biosynthesis. Factors: microorganism selection (propionibacterium, LAB), matrix, conditions. | In situ fermentation is a promising, sustainable “Green Chemistry” approach to fortify plant-based foods with B12. | [163] |
Primarily Vitamin B12 | Review article (fermented vegetables, fruits, cereals and legumes) | Increase (significant amounts) | Mechanism: in situ biosynthesis. Factors: microorganism selection (propionibacterium), food matrix, post-fermentation processing. | Concludes fermented plants are viable B12 sources but highlights a major data gap regarding bioavailability. | [164] |
Folic acid, Pantothenic acid | In vitro (multigrain sourdoughs: wheat, rye, barley) | Folic acid: Decrease (slight). | For Folic Acid loss: microbial consumption. Factors: flour composition, fermentation type (spontaneous vs. with starter culture). | While fermentation caused a slight decrease in folic acid, it led to increased antioxidant activity. Higher levels of pantothenic acid were also observed post-fermentation. | [141] |
Vitamin E (all 8 vitamers) | In vitro (whole-meal wheat and rye bread with/without red palm oil) | Decrease (up to 90% loss); increased with oil addition. | Mechanism: loss via oxidation; retention via antioxidants from added oil. Factors: oil incorporation, fermentation type. | Breadmaking itself can destroy up to 90% of native vitamin E; fortification protects against these losses. | [117] |
Various (Folate, K, B2, B12, etc.) | Review article (various matrices, incl. sourdough) | Variable: generally, folate, K, B2 increase; B12 often decreases. | Mechanism: balance between microbial synthesis and consumption. Factors: microorganism strain (primary factor). | The effect is highly strain-specific (e.g., some strains produce folate while others consume it). Wise strain selection is key to bio-fortification. | [156] |
Riboflavin (B2), Folate (B9) | In vitro (ALE in defined medium); phenotype stability tested in milk | Increase (up to 10-fold for B2, 3-fold for B9) | Mechanism: adaptive laboratory evolution (ALE) of a LAB-yeast co-culture. Factors: selective pressure from obligatory mutualism. | Key innovation: A non-GMO method to enhance vitamin secretion. Evolved strains retained high-yield properties in milk. | [165] |
FODMAP Component | Fermentation Type/Key Condition(s) and Comparison | Observed Change (% Reduction/Increase) | Statistical Significance | Reference(s) |
---|---|---|---|---|
Fructans | SD (Rye or Wheat starter), Whole HRSW flour, 12 h@ ~26 °C (vs. Flour) | ~60% Reduction | p < 0.05 | [177] |
Fructans | Yeast Control (Rye/Wheat) | ~50% Reduction | NR | [178] |
Fructans | SD (Lm. reuteri, no FruA), Rye/Wheat, 16 h@37 °C | ~65–75% Reduction | p < 0.05 (vs. Control) | [178] |
Fructans | SD (L. crispatus, FruA+), Rye/Wheat, 16 h@37 °C | >90% Reduction | p < 0.05 (vs. Others) | [178] |
Mannitol | SD (Lm. reuteri, no FruA), Rye/Wheat, 16 h@37 °C | Increased/Accumulated | p < 0.05 (vs. Lc/Yeast) | [178] |
Mannitol | SD (L. crispatus, FruA+), Rye/Wheat, 16 h@37 °C | Lower levels (vs. Lm. reuteri) | p < 0.05 | [178] |
Fructans | SD (Type I Spont., Wheat, 10 + 2 h proof) vs. Yeast Control | Sig. Lower levels (e.g., 0.19–0.29 vs. 0.40–0.49 g/100 g) | p < 0.05 | [179] |
Polyols | SD (Type I Spont., Wheat, 10 + 2 h proof) vs. Yeast Control | Sig. Increased levels (e.g., ~0.5–1.0 vs. ~0.05mg/100 g) | p < 0.05 | [179] |
GOS | SD (Type I Spont., Wheat) vs. Yeast Control (Final Bread) | No Significant Difference | NS | [179] |
Fructans | Yeast (Short/Long Ferm.), Whole Wheat (various cultivars) (vs. Flour) | >65% Reduction (Average) | N/A | [180] |
Fructans | Yeast (Wheat/Spelt), 1 h proof@30 °C (vs. Flour) | NS change (Fructan decrease was offset by fructose increase.) | NS | [181] |
Mannitol | Yeast (Wheat/Spelt), various proof times | Trace amounts only | N/A | [181] |
Fructans | SD Type II (Selected LAB consortia), White Wheat (vs. Yeast Control) | ~70–93% Reduction (Low-FODMAP levels achieved) | p < 0.05 | [175] |
Polyols | SD Type II (Selected LAB consortia), White Wheat (vs. Yeast Control) | Sig. Increased (but low absolute levels, ~14–32 mg/100 g) | p < 0.05 | [175] |
Fructans | SD + Yeast vs. Yeast only (Refined Wheat, 60 min proof) | Reduced (e.g., ~340 → ~240 mg/100 g DM) | p < 0.05 | [169] |
Mannitol | SD + Yeast vs. Yeast only (Whole Wheat) | Massively Increased (e.g., ~30 → ~515 mg/100 g DM) | p < 0.05 | [169] |
Mannitol | SD + Yeast (Rye—Refined or Whole) | Very High levels remaining (e.g., ~900–1500 mg/100 g DM) | N/A | [169] |
Fructans | SD + Yeast (Rye—Refined or Whole) | High levels remaining (e.g., ~1700–1950 mg/100 g DM) | N/A | [169] |
Fructans | SD Type II (Selected Homoferm. LAB + Yeast), WW Flour (vs. Yeast Control) | ~69–73% Red. vs. Flour (Sig. lower than Yeast); Low-FODMAP levels | p < 0.05 | [171] |
GOS | SD Type II (Homoferm. LAB + Yeast), WW Flour (vs. Yeast Control) | Sig. lower than Yeast Control; ~50–60% Red. vs. Flou | p < 0.05 | [171] |
Polyols (Mannitol + Sorbitol) | SD Type II (Homoferm. LAB + Yeast), WW Flour (vs. Yeast Control) | Remained Very Low (<0.06% DM); Sig. lower than Yeast Control | p < 0.05 | [171] |
Experimental Model | Strengths | Limitations | Translational Value |
---|---|---|---|
In Vitro Models | Low to Moderate. Acts as a powerful and essential pre-clinical screening platform to understand mechanisms, optimize formulations (e.g., select specific phytase-producing LAB strains), and generate targeted hypotheses before undertaking expensive and ethically complex animal or human trials | ||
Animal (In Vivo) Models |
| Moderate to High. Serves as a crucial intermediate step to validate systemic bioavailability and safety before moving to human trials, but its relevance is decreasing due to ethical concerns and the development of more sophisticated in vitro alternatives | |
Human (In Vivo) Models |
|
| High Provides the only definitive evidence required for substantiating health claims and changing dietary guidelines. However, due to their complexity and cost, they are best employed to confirm strong hypotheses that have already been well-supported by robust in vitro and, where appropriate, animal studies |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reffai, Y.M.; Fechtali, T. A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges. Appl. Microbiol. 2025, 5, 74. https://doi.org/10.3390/applmicrobiol5030074
Reffai YM, Fechtali T. A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges. Applied Microbiology. 2025; 5(3):74. https://doi.org/10.3390/applmicrobiol5030074
Chicago/Turabian StyleReffai, Youssef Mimoune, and Taoufiq Fechtali. 2025. "A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges" Applied Microbiology 5, no. 3: 74. https://doi.org/10.3390/applmicrobiol5030074
APA StyleReffai, Y. M., & Fechtali, T. (2025). A Critical Review on the Role of Lactic Acid Bacteria in Sourdough Nutritional Quality: Mechanisms, Potential, and Challenges. Applied Microbiology, 5(3), 74. https://doi.org/10.3390/applmicrobiol5030074