Impact of Coated Phosphorus Fertilizers and Application Methods on Soil Fertility, Yield, and Ionic Regulation of Common Beans (Phaseolus vulgaris L.) Grown in Saline Soil
Abstract
1. Introduction
2. Materials and Methods
2.1. The Site of the Experiment
2.2. Superphosphate Coating Process
2.3. Design of Experiments
- Conventional application: Fertilizer was broadcast and then incorporated into the soil by plowing to a depth of 30 cm during field preparation.
- Surface application: Fertilizer was broadcast without incorporation into the soil.
- -
- T1: 360 kg/ha of uncoated superphosphate (conventional method);
- -
- T2: 480 kg/ha of uncoated superphosphate (conventional method) as a control;
- -
- T3: 360 kg/ha of coated superphosphate (conventional method);
- -
- T4: 480 kg/ha of coated superphosphate (conventional method);
- -
- T5: 360 kg/ha of coated superphosphate (surface method);
- -
- T6: 480 kg/ha of coated superphosphate (surface method).
2.4. Field Preparation and Planting
- -
- Pre-planting, 60 kg/ha of magnesium sulfate, 120 kg/ha of sulfur, and 50 kg/ha of potassium sulfate were applied.
- -
- Vegetative stage (21 days after seeding), 50 kg/ha of ammonium sulfate was applied.
- -
- Flowering stage (60 days after seeding), 75 kg/ha of potassium sulfate was applied.
2.5. Soil Testing and Sampling
2.6. Harvesting and Ionic Analysis
2.7. Statistical Analysis
3. Results
3.1. Soil Chemical Properties
3.2. Yield Performance
3.3. Seed Nutritional Quality
3.4. Ion Regulation
4. Discussion
4.1. Soil Chemical Properties and Nutrient Availability
4.2. Plant Growth and Yield Response
4.3. Nutritional Quality and Ion Regulation
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Neupane, B.S.; Olee, D.; Shrestha, D.S.; Kharel, G.P.; Koirala, N. Nutritional and phytochemicals analysis of high-altitude common bean (Phaseolus vulgaris L.) cultivars of Nepal. eFood 2024, 5, e182. [Google Scholar] [CrossRef]
- Uebersax, M.A.; Cichy, K.A.; Gomez, F.E.; Porch, T.G.; Heitholt, J.; Osorno, J.M.; Kamfwa, K.; Snapp, S.S.; Bales, S. Dry beans (Phaseolus vulgaris L.) as a vital component of sustainable agriculture and food security—A review. Legume Sci. 2023, 5, e155. [Google Scholar] [CrossRef]
- Mitran, T.; Meena, R.S.; Lal, R.; Layek, J.; Kumar, S.; Datta, R. Role of Soil Phosphorus on Legume Production. In Legumes for Soil Health and Sustainable Management; Meena, R., Das, A., Yadav, G., Lal, R., Eds.; Springer: Singapore, 2018; pp. 487–510. [Google Scholar] [CrossRef]
- Devkota, K.P.; Devkota, M.; Rezaei, M.; Oosterbaan, R. Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agric. Syst. 2022, 1, 103390. [Google Scholar] [CrossRef]
- Hagage, M.; Abdulaziz, A.M.; Elbeih, S.F.; Hewaidy, A.A. Monitoring soil salinization and waterlogging in the northeastern Nile Delta linked to shallow saline groundwater and irrigation water quality. Sci. Rep. 2024, 14, 27838. [Google Scholar] [CrossRef]
- Aboelsoud, H.M.; AbdelRahman, M.A.; Kheir, A.M.; Eid, M.S.; Ammar, K.A.; Khalifa, T.H.; Scopa, A. Quantitative Estimation of Saline-Soil Amelioration Using Remote-Sensing Indices in Arid Land for Better Management. Land 2022, 11, 1041. [Google Scholar] [CrossRef]
- Raggi, L.; Caproni, L.; Ciancaleoni, S.; D’Amato, R.; Businelli, D.; Negri, V. Investigating the genetic basis of salt-tolerance in common bean: A genome-wide association study at the early vegetative stage. Sci. Rep. 2024, 14, 5315. [Google Scholar] [CrossRef]
- Khalifa, T.; Abdel-Kader, N.I.; Elbagory, M.; Ahmed, M.E.; Saber, E.A.; Omara, A.E.; Mahdy, R.M. Investigating the influence of eco-friendly approaches on saline soil traits and growth of common bean plants (Phaseolus vulgaris L.). PeerJ 2024, 12, e17828. [Google Scholar] [CrossRef]
- Borromeo, I.; Domenici, F.; Giordani, C.; Del Gallo, M.; Forni, C. Enhancing Bean (Phaseolus vulgaris L.) Resilience: Unveiling the Role of Halopriming against Saltwater Stress. Seeds 2024, 3, 228–250. [Google Scholar] [CrossRef]
- Tarolli, P.; Luo, J.; Park, E.; Barcaccia, G.; Masin, R. Soil salinization in agriculture: Mitigation and adaptation strategies combining nature-based solutions and bioengineering. iScience 2024, 27, 108830. [Google Scholar] [CrossRef]
- Khan, F.; Siddique, A.B.; Shabala, S.; Zhou, M.; Zhao, C. Phosphorus Plays Key Roles in Regulating Plants’ Physiological Responses to Abiotic Stresses. Plants 2023, 12, 2861. [Google Scholar] [CrossRef]
- Dey, G.; Banerjee, P.; Sharma, R.K.; Maity, J.P.; Etesami, H.; Shaw, A.K.; Huang, Y.-H.; Huang, H.-B.; Chen, C.-Y. Management of Phosphorus in Salinity-Stressed Agriculture for Sustainable Crop Production by Salt-Tolerant Phosphate-Solubilizing Bacteria—A Review. Agronomy 2021, 11, 1552. [Google Scholar] [CrossRef]
- Loudari, A.; Latique, S.; Mayane, A.; Colinet, G.; Oukarroum, A. Polyphosphate fertilizer impacts the enzymatic and non-enzymatic antioxidant capacity of wheat plants grown under salinity. Sci. Rep. 2023, 13, 11212. [Google Scholar] [CrossRef]
- Belouchrani, A.S.; Latati, M.; Ounane, S.M.; Drouiche, N.; Lounici, H. Study of the Interaction Salinity: Phosphorus Fertilization on Sorghum. J. Plant Growth Regul. 2020, 39, 1205–1210. [Google Scholar] [CrossRef]
- Bargaz, A.; Nassar, R.M.A.; Rady, M.M.; Gaballah, M.S.; Thompson, S.M.; Brestic, M.; Schmidhalter, U.; Abdelhamid, M.T. Improved salinity tolerance by phosphorus fertilizer in two Phaseolus vulgaris recombinant inbred lines contrasting in their P-efficiency. J. Agron. Crop Sci. 2016, 202, 497–507. [Google Scholar] [CrossRef]
- Mohamed, H.I.; El-Sayed, A.A.; Rady, M.M.; Caruso, G.; Sekara, A.; Abdelhamid, M.T. Coupling effects of phosphorus fertilization source and rate on growth and ion accumulation of common bean under salinity stress. PeerJ 2021, 9, e11463. [Google Scholar] [CrossRef] [PubMed]
- Du, E.; Terrer, C.; Pellegrini, A.F.A.; Ahlström, A.; Lissa, C.J.; Zhao, X.; Xia, N.; Wu, X.; Jackson, R.B. Global patterns of terrestrial nitrogen and phosphorus limitation. Nat. Geosci. 2020, 13, 221–226. [Google Scholar] [CrossRef]
- Jahan, N.; Mahmud, U.; Khan, M.Z. Sustainable plant-soil phosphorus management in agricultural systems: Challenges, environmental impacts and innovative solutions. Discov. Soil 2025, 2, 13. [Google Scholar] [CrossRef]
- El-Naqma, K.; El-Awady, R.; Ramadan, M.; El-Sherpiny, M. Improving Soil Phosphorus Availability and Its Influence on Faba Bean performance: Exploring Mineral, Bio and Organic Fertilization with Foliar application of Iron and Zinc. Egypt. J. Soil Sci. 2024, 64, 619–630. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, L.; Cardoso, J.A.; Zhu, S.; Liu, G.; Rao, I.M.; Lin, Y. Improving phosphorus acquisition efficiency through modification of root growth responses to phosphate starvation in legumes. Front. Plant Sci. 2023, 14, 1094157. [Google Scholar] [CrossRef]
- McBeath, T.M.; Facelli, E.; Peirce, C.A.E.; Arachchige, V.K.; McLaughlin, M.J.; McBeath, T.M.; Facelli, E.; Peirce, C.A.E.; Arachchige, V.K.; McLaughlin, M.J. Assessment of Foliar-Applied Phosphorus Fertiliser Formulations to Enhance Phosphorus Nutrition and Grain Production in Wheat. Crop Pasture Sci. 2020, 71, 795–806. [Google Scholar] [CrossRef]
- Basavegowda, N.; Baek, K.H. Current and Future Perspectives on the Use of Nanofertilizers for Sustainable Agriculture: The Case of Phosphorus Nanofertilizer. 3 Biotech 2021, 11, 357. [Google Scholar] [CrossRef] [PubMed]
- Hu, M.; Le, Y.; Sardans, J.; Yan, R.; Zhong, Y.; Sun, D.; Tong, C.; Peñuelas, J. Moderate Salinity Improves the Availability of Soil P by Regulating P-Cycling Microbial Communities in Coastal Wetlands. Glob. Change Biol. 2023, 29, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Teixeira, R.d.S.; Ribeiro da Silva, I.; Nogueira de Sousa, R.; Márcio Mattiello, E.; Barros Soares, E.M. Organic Acid Coated-Slow-Release Phosphorus Fertilizers Improve P Availability and Maize Growth in a Tropical Soil. J. Soil Sci. Plant Nutr. 2016, 16, 1097–1112. [Google Scholar] [CrossRef]
- Fertahi, S.; Bertrand, I.; Ilsouk, M.; Oukarroum, A.; Amjoud, M.B.; Zeroual, Y.; Barakat, A. New Generation of Controlled Release Phosphorus Fertilizers Based on Biological Macromolecules: Effect of Formulation Properties on Phosphorus Release. Int. J. Biol. Macromol. 2020, 143, 153–162. [Google Scholar] [CrossRef]
- Weeks, J.J.; Hettiarachchi, G.M. A review of the latest in phosphorus fertilizer technology: Possibilities and pragmatism. J. Environ. Qual. 2019, 48, 1300–1313. [Google Scholar] [CrossRef]
- Abhijit, S.; Dipak, R.; Samar, C.; Trisha, R.; Pravash, C.; Siddhartha, S.; Avijit, G. Polymer coated novel controlled release rock phosphate formulations for improving phosphorus use efficiency by wheat in an Inceptisol. Soil Tillage Res. 2018, 180, 48–62. [Google Scholar] [CrossRef]
- Chen, Q.; Qu, Z.; Li, Z.; Zhang, Z.; Ma, G.; Liu, Z.; Wang, Y.; Wu, L.; Fang, F.L.; Wei, Z.; et al. Coated Diammonium Phosphate Combined with Humic Acid Improves Soil Phosphorus Availability and Photosynthesis and the Yield of Maize. Front. Plant Sci. 2021, 12, 759929. [Google Scholar] [CrossRef]
- Pansu, M.; Gautheyrou, J. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 2006; p. 993. [Google Scholar] [CrossRef]
- Gee, G.W.; Or, D. Particle-size analysis. In Methods of Soil Analysis, Part 4—Physical Methods; Dane, J.H., Topp, G.C., Eds.; Soil Science Society of America: Madison, WI, USA, 2002; pp. 255–293. [Google Scholar] [CrossRef]
- Motsara, M.R.; Roy, R.N. Guide to Laboratory Establishment for Plant Nutrient Analysis; Food and Agriculture Organization of the United Nations: Rome, Italy, 2008; pp. 80–90. [Google Scholar]
- Wang, S.; Zheng, W.; Ren, J.; Zhang, C. Selectivity of various types of salt-resistant plants for K+ over Na+. J. Arid Environ. 2002, 52, 457–472. [Google Scholar] [CrossRef]
- Huang, J.; Liu, L.; Liu, J.; Zhang, W.; Wang, S.; Ye, Q.; Mo, J.; Zheng, M. Seven years phosphorus addition has no effect on soil acidity in two tropical plantations. For. Ecol. Manag. 2023, 532, 120822. [Google Scholar] [CrossRef]
- Fertahi, S.; Pistocchi, C.; Daudin, G.; Amjoud, M.B.; Oukarroum, A.; Zeroual, Y.; Barakat, A.; Bertrand, I. Experimental dissolution of biopolymer-coated phosphorus fertilizers applied to a soil surface: Impact on soil pH and P dynamics. Ann. Agric. Sci. 2022, 67, 189–195. [Google Scholar] [CrossRef]
- Işik, M.; Aldoğan, S.; Sönmez, M.; Ilhan, S.; Ortaş, I. Effect of increasing phosphorus doses application on some physical, chemical and biological properties of soil, under long-term experiment conditions. Int. J. Agric. Appl. Sci. 2023, 4, 143–149. [Google Scholar] [CrossRef]
- Zhang, Z.; Ma, Y.; Tian, Y.; Liu, P.; Zhang, M.; Liu, Z.; Zhu, X.; Wang, C.; Zhuang, Y.; Zhang, W.; et al. Co-Application of Coated Phosphate Fertilizer and Humic Acid for Wheat Production and Soil Nutrient Transport. Agronomy 2024, 14, 1621. [Google Scholar] [CrossRef]
- Mehnaz, K.R.; Keitel, C.; Dijkstra, F.A. Phosphorus availability and plants alter soil nitrogen retention and loss. Sci. Total Environ. 2019, 671, 786–794. [Google Scholar] [CrossRef]
- Li, W.; Yang, M.; Hao, Z.; Wang, X.; Shi, Y. Synergistic phosphate fertilizer effects on soil nutrient and microbial diversity in wheat. Agron. J. 2023, 115, 2071–2082. [Google Scholar] [CrossRef]
- Chen, Q.; Qu, Z.; Zhang, Z.; Ma, G.; Zhu, M.; Dan, J.; Wang, J.; Zhang, S.; Ding, X.; Zhang, M.; et al. Coated diammonium phosphate combined with Paecilomyces variotii extracts improves root architecture, enhances spring low temperature tolerance, and increases wheat yield. Soil Tillage Res. 2023, 227, 105613. [Google Scholar] [CrossRef]
- Bouras, H.; Choukr-Allah, R.; Amouaouch, Y.; Bouaziz, A.; Devkota, K.P.; El Mouttaqi, A.; Bouazzama, B.; Hirich, A. How Does Quinoa (Chenopodium quinoa Willd.) Respond to Phosphorus Fertilization and Irrigation Water Salinity? Plants 2022, 11, 216. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Mu, C.; Zheng, H.; Lu, S.; Zhang, H.; Zhang, X.; Liu, X. Exogenous Pi Supplementation Improved the Salt Tolerance of Maize (Zea mays L.) by Promoting Na+ Exclusion. Sci. Rep. 2018, 8, 16203. [Google Scholar] [CrossRef]
Season | Month | Temperature Max. (°C) 1 | Temperature Min. (°C) 1 | Relative Humidity (%) 1 | Precipitation (mm/Day) |
---|---|---|---|---|---|
2023 | October | 37.53 | 17.74 | 60.72 | 0.02 |
November | 35.42 | 11.64 | 60.79 | 0.15 | |
December | 28.96 | 9.28 | 73.3 | 1.12 | |
January | 24.45 | 7.4 | 72.89 | 0.64 | |
2024 | October | 37.47 | 15.83 | 56.63 | 0.00 |
November | 29.94 | 12.21 | 61.06 | 0.14 | |
December | 25.61 | 6.27 | 65.54 | 0.03 | |
January | 27.36 | 5.35 | 67.07 | 0.35 |
Season | pH 1 | EC (dS/m) 1 | O.M (%) 1 | Ava. N (mg/kg) | Ava. P (mg/kg) | Ava. K (mg/kg) |
---|---|---|---|---|---|---|
2023 | 8.16 | 7.22 | 1.30 | 17.60 | 9.50 | 243.9 |
2024 | 8.20 | 7.07 | 1.40 | 22.50 | 9.70 | 269.4 |
Season | Coarse sand (%) | Fine sand (%) | Silt (%) | Clay (%) | Texture 1 | |
2023 | 3.5 | 15.80 | 31.00 | 49.00 | Clayey | |
2024 | 3.52 | 15.28 | 32.55 | 48.65 | Clayey |
Treatments * | pH | ECe (dS/m) | Ava. N (mg/kg) | Ava. P (mg/kg) | Ava. K (mg/kg) |
---|---|---|---|---|---|
2023 | |||||
T1 | 8.26 a * | 7.03 b | 24.70 d | 09.27 d | 253.95 c |
T2 | 8.29 a | 7.14 ab | 31.57 bc | 13.53 abc | 310.14 ab |
T3 | 8.27 a | 7.08 ab | 31.14 bc | 12.97 bc | 294.93 b |
T4 | 8.30 a | 7.18 a | 34.95 a | 16.04 a | 322.44 a |
T5 | 8.27 a | 7.06 b | 30.06 c | 12.32 c | 290.25 b |
T6 | 8.30 a | 7.16 a | 33.69 ab | 15.64 abc | 318.13 a |
p value | ns | * | ** | ** | * |
CV (%) | 292.26 | 90.6 | 8.67 | 5.26 | 12.01 |
Treatments * | 2024 | ||||
T1 | 8.29 a | 6.84 b | 26.08 d | 09.56 c | 275.29 c |
T2 | 8.32 a | 6.97 a | 34.87 bc | 13.69 b | 325.41 ab |
T3 | 8.30 a | 6.90 ab | 34.57 bc | 13.48 b | 318.20 b |
T4 | 8.34 a | 7.03 a | 37.57 a | 16.74 a | 333.71 a |
T5 | 8.29 a | 6.87 b | 34.25 c | 12.97 b | 312.15 b |
T6 | 8.33 a | 7.00 a | 36.82 ab | 16.02 a | 328.73 a |
p value | ns | * | ** | ** | * |
CV (%) | 268.84 | 72.65 | 8.32 | 5.38 | 14.87 |
Treatments * | Shoot Dry Weight (ton/ha) | Root Dry Weight (ton/ha) | Seed Yield (ton/ha) |
---|---|---|---|
2023 | |||
T1 | 0.641 c * | 0.078 c | 1.120 c |
T2 | 0.832 b | 0.096 b | 1.273 b |
T3 | 0.810 b | 0.095 b | 1.262 b |
T4 | 1.051 a | 0.116 a | 1.447 a |
T5 | 0.794 b | 0.097 b | 1.233 b |
T6 | 1.006 a | 0.112 a | 1.400 a |
p value * | ** | ** | ** |
CV (%) | 5.73 | 7.38 | 10.81 |
Treatments * | 2024 | ||
T1 | 0.718 c | 0.087 d | 1.143 d |
T2 | 0.887 b | 0.104 bc | 1.370 bc |
T3 | 0.860 b | 0.102 bcd | 1.287 c |
T4 | 1.107 a | 0.121 a | 1.557 a |
T5 | 0.842 b | 0.100 cd | 1.133 d |
T6 | 1.043 a | 0.117 ab | 1.450 ab |
p value * | ** | ** | ** |
CV (%) | 6.48 | 8.32 | 7.96 |
Treatments * | Protein % | P% | K% | Ca% | Na% |
---|---|---|---|---|---|
2023 | |||||
T1 | 20.23 c | 0.65 c | 1.29 c | 1.64 c | 0.099 a |
T2 | 22.56 b | 0.76 b | 1.42 b | 1.79 b | 0.080 b |
T3 | 22.33 b | 0.74 b | 1.40 b | 1.76 b | 0.083 b |
T4 | 24.04 a | 0.84 a | 1.55 a | 2.08 a | 0.062 c |
T5 | 22.10 b | 0.73 b | 1.39 b | 1.74 b | 0.085 a |
T6 | 23.81 a | 0.81 a | 1.53 a | 2.06 a | 0.065 c |
p value * | ** | ** | ** | ** | ** |
CV (%) | 16.70 | 10.31 | 15.07 | 10.08 | 5.70 |
Treatments * | 2024 | ||||
T1 | 19.94 c | 0.68 d | 1.32 c | 1.67 c | 0.097 a |
T2 | 22.19 b | 0.81 bc | 1.45 b | 1.80 b | 0.075 b |
T3 | 22.10 b | 0.80 bc | 1.43 b | 1.78 b | 0.080 b |
T4 | 23.42 a | 0.91 a | 1.66 a | 2.13 a | 0.053 c |
T5 | 21.85 b | 0.78 c | 1.41 b | 1.77 b | 0.082 a |
T6 | 23.23 a | 0.89 ab | 1.61 a | 2.09 a | 0.054 c |
p value * | ** | ** | ** | ** | ** |
CV (%) | 18.10 | 9.42 | 12.04 | 9.90 | 4.35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
El-Shabasy, S.A.; Khalifa, T.H.; El-Zehery, T.M.; Omara, A.E.-D. Impact of Coated Phosphorus Fertilizers and Application Methods on Soil Fertility, Yield, and Ionic Regulation of Common Beans (Phaseolus vulgaris L.) Grown in Saline Soil. Crops 2025, 5, 68. https://doi.org/10.3390/crops5050068
El-Shabasy SA, Khalifa TH, El-Zehery TM, Omara AE-D. Impact of Coated Phosphorus Fertilizers and Application Methods on Soil Fertility, Yield, and Ionic Regulation of Common Beans (Phaseolus vulgaris L.) Grown in Saline Soil. Crops. 2025; 5(5):68. https://doi.org/10.3390/crops5050068
Chicago/Turabian StyleEl-Shabasy, Sara A., Tamer H. Khalifa, Tarek M. El-Zehery, and Alaa El-Dein Omara. 2025. "Impact of Coated Phosphorus Fertilizers and Application Methods on Soil Fertility, Yield, and Ionic Regulation of Common Beans (Phaseolus vulgaris L.) Grown in Saline Soil" Crops 5, no. 5: 68. https://doi.org/10.3390/crops5050068
APA StyleEl-Shabasy, S. A., Khalifa, T. H., El-Zehery, T. M., & Omara, A. E.-D. (2025). Impact of Coated Phosphorus Fertilizers and Application Methods on Soil Fertility, Yield, and Ionic Regulation of Common Beans (Phaseolus vulgaris L.) Grown in Saline Soil. Crops, 5(5), 68. https://doi.org/10.3390/crops5050068