Constitutive Changes in Nutrients and Phytochemicals in Kernels of Aluminium-Tolerant Maize (Zea mays L.)
Abstract
:1. Introduction
2. Results
2.1. Morphological Parameters and Proximate Composition
2.2. Phytochemical Composition
2.3. Antioxidant Activity
3. Discussion
4. Materials and Methods
4.1. Chemical and Reagents
4.2. Maize Germplasm
4.3. Determination of Morphological Parameters
4.4. Proximate Analysis
4.5. Extraction of Free and Bound Phenolic Acids
4.6. Determination of Total Phenolics
4.7. Antioxidant Capacity
4.8. Statistical Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- FAO. Crop Prospects and Food Situation. Available online: http://www.fao.org/giews/reports/crop-prospects/en/ (accessed on 15 September 2021).
- Barrera-Arellano, D.; Badan-Ribeiro, A.P.; Serna-Saldivar, S.O. Corn oil: Composition, processing and utilization. In Corn: Chemistry and Technology; Serna-Saldivar, S.O., Ed.; AACC-International: St. Paul, MN, USA, 2019; pp. 593–614. [Google Scholar]
- Rao, I.M.; Zeigler, R.S.; Vera, R.; Sarkarung, S. Selection and breeding for acid-soil tolerance in crops. Bioscience 1993, 43, 454–465. [Google Scholar] [CrossRef]
- Panda, S.K.; Baluska, F.; Matsumoto, H. Aluminium stress signalling in plants. Plant Signal Behav. 2009, 4, 592–597. [Google Scholar] [CrossRef] [Green Version]
- Maron, L.G.; Kirst, M.; Mao, C.; Milner, M.J.; Menossi, M.; Kochian, L.V. Transcriptional profiling of aluminum toxicity and tolerance responses in maize roots. New Phytol. 2008, 179, 116–128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matonyei, T.K.; Cheprot, R.K.; Liu, J.; Piñeros, M.A.; Shaff, J.E.; Gudu, S. Physiological and molecular analysis of aluminum tolerance in selected Kenyan maize lines. Plant Soil. 2014, 377, 357–367. [Google Scholar] [CrossRef]
- Poschenrieder, C.; Gunsé, B.; Corrales, I.; Barceló, J. A glance into aluminium toxicity and resistance in plants. Sci. Total Environ. 2008, 400, 356–368. [Google Scholar] [CrossRef]
- Von Uexküll, H.R.; Mutert, E. Global extent, development and economic impact of acid soils. Plant Soil. 1995, 171, 1–15. [Google Scholar] [CrossRef]
- Duque-Vargas, J.; Pandey, S.; Granados, G.; Ceballos, H.; Knapp, E. Inheritance of tolerance to soil acidity in tropical maize. Crop Sci. 1994, 34, 50–54. [Google Scholar] [CrossRef]
- Khan, A.A.; McNeilly, T. Variability in aluminium and manganese tolerance among maize accessions. Genet. Resour. Crop Evol. 1998, 45, 525–531. [Google Scholar] [CrossRef]
- Ngoune, T.L.; Mutengwa, C.S.; Ngonkeu, E.L.M.; Gracen, V. Breeding maize for tolerance to acidic soils: A review. Agronomy 2018, 8, 84. [Google Scholar] [CrossRef] [Green Version]
- Kochian, L.V.; Hoekenga, O.A.; Magalhaes, J.V.; Piñeros, M.A. Maize Al tolerance. In Handbook of Maize: Its Biology; Bennetzen, J.L., Hake, S.C., Eds.; Springer: New York, NY, USA, 2009; pp. 367–380. [Google Scholar]
- Nuss, E.T.; Tanumihardjo, S.A. Maize: A paramount staple crop in the context of global nutrition. Compr. Rev. Food Sci. Food Saf. 2010, 9, 417–436. [Google Scholar] [CrossRef] [PubMed]
- García-Lara, S.; Chuck-hernandez, C.; Serna-Saldivar, S.O. Development and structure of the corn kernel. In Corn: Chemistry and Technology; Serna-Saldivar, S.O., Ed.; AACC-International: St. Paul, MN, USA, 2019; pp. 147–163. [Google Scholar]
- Veloso, M.; Leão De Castro, M.; Mendonça, A.L.; Santos, G.G.; Silva, M.S. Corn germ with pericarp in relation to whole corn: Nutrient contents, food and protein efficiency, and protein digestibility-corrected amino acid score. Food Sci. Technol. 2011, 31, 264–269. [Google Scholar]
- Ofei-Manu, P.; Wagatsuma, T.; Ishikawa, S.; Tawaraya, K. The plasma membrane strength of the root-tip cells and root phenolic compounds are correlated with Al tolerance in several common woody plants. Soil Sci. Plant Nutr. 2001, 47, 359–375. [Google Scholar] [CrossRef]
- Tolrà, R.P.; Poschenrieder, C.; Luppi, B.; Barceló, J. Aluminium-induced changes in the profiles of both organic acids and phenolic substances underlie Al tolerance in Rumex acetosa L. Environ. Exp. Bot. 2005, 54, 231–238. [Google Scholar] [CrossRef]
- Ryan, P.; Delhaize, P.; Jones, D. Function and mechanism of organic anion exudation from plant roots. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001, 52, 527–560. [Google Scholar] [CrossRef] [PubMed]
- Kidd, P.S.; Llugany, M.; Poschenrieder, C.; Gunsé, B.; Barceló, J. The role of root exudates in aluminium resistance and silicon-induced amelioration of aluminium toxicity in three varieties of maize (Zea mays L.). J. Exp. Bot. 2001, 52, 1339–1352. [Google Scholar] [PubMed]
- Kochian, L.V.; Hoekenga, O.A.; Piñeros, M.A. How do crop plants tolerate acid soils? Mechanisms of aluminum tolerance and phosphorous efficiency. Annu. Rev. Plant Biol. 2004, 55, 459–493. [Google Scholar] [CrossRef]
- Giannakoula, A.; Moustakas, M.; Syros, T.; Yupsanis, T. Aluminium stress induces up-regulation of an efficient antioxidant system in the Al-tolerant maize line but not in the Al-sensitive line. Environ. Exp. Bot. 2010, 67, 487–494. [Google Scholar] [CrossRef]
- Ribeiro, C.; Cambraia, J.; Peixoto, P.H.P.; Meira, É.; Fonseca, D., Jr. Antioxidant system response induced by aluminium in two rice cultivars. Braz. J. Plant Physiol. 2012, 24, 107–116. [Google Scholar] [CrossRef] [Green Version]
- Du, H.; Huang, Y.; Qu, M.; Li, Y.; Hu, X.; Yang, W. A maize ZmAT6 gene confers aluminium tolerance via reactive oxygen species scavenging. Front. Plant Sci. 2020, 11, 1016–1021. [Google Scholar] [CrossRef]
- Yan, L.; Riaz, M.; Liu, J.; Yu, M.; Cuncang, J. The aluminum tolerance and detoxification mechanisms in plants; recent advances and prospects. Crit. Rev. Environ. Sci. Technol. 2021, 1–37. [Google Scholar] [CrossRef]
- Boscolo, P.R.S.; Menossi, M.; Jorge, R.A. Aluminium-induced oxidative stress in maize. Phytochemistry 2003, 62, 181–189. [Google Scholar] [CrossRef]
- Xu, L.M.; Liu, C.; Cui, B.M.; Wang, N.; Zhao, Z.; Zhou, L.-N.; Huang, K.-F.; Ding, J.-Z.; Du, H.-M.; Jiang, W.; et al. Transcriptomic responses to aluminium (Al) stress in maize. J. Integr. Agric. 2018, 17, 1946–1958. [Google Scholar] [CrossRef] [Green Version]
- Tolrà, R.; Barceló, J.; Poschenrieder, C. Constitutive and aluminium-induced patterns of phenolic compounds in two maize varieties differing in aluminium tolerance. J. Inorg. Biochem. 2009, 103, 1486–1490. [Google Scholar] [CrossRef]
- Mapiemfu-Lamaré, D.; Ndindeng, S.A.; Ngome, A.F.; Thé, C.; Tsoata, E.; Zonkeng, C.; Mfopou, M.C.; Bihnchang, L.; Etame, F. Early Criterion to Screen Maize Varieties for Their Tolerance to Aluminium Toxic Soil. Int. J. Agric. For. 2012, 2, 161–165. [Google Scholar] [CrossRef] [Green Version]
- Narro, L.A.; Arcos, A.L. Genetics of aluminium-induced callose formation in maize roots, a selection trait for aluminium resistance. Crop Sci. 2010, 50, 1848–1853. [Google Scholar] [CrossRef]
- García-Lara, S.; Bergvinson, D.J. Phytochemical and nutraceutical changes during recurrent selection for storage pest resistance in tropical maize. Crop Sci. 2014, 54, 2423–2432. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists. Approved Methods of the American Association of Cereal Chemists, 10th ed.; AACC: St. Paul, MN, USA, 2000; p. 450. [Google Scholar]
Genotype | Type | Morphological Properties | Anatomical Proportions (%) | Kernel Dimensions (mm) | ||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Color | Tex | FI | 1000 K | Pericarp | Endosperm | Germ | Tip | Width | Long | Thickness | ||||||||||||||||||||
CLA161 | T | YW | 1.2 | 35 | ± | 5 | 192.8 | ± | 0.2 | 5.5 | ± | 0.2 | 78.3 | ± | 0.1 | 13.9 | ± | 0.3 | 2.2 | ± | 0.1 | 7.9 | ± | 0.5 | 7.7 | ± | 0.3 | 4.4 | ± | 0.4 |
CLA309 | T | YW | 0.5 | 0 | ± | 0 | 195.7 | ± | 1.4 | 7.6 | ± | 0.2 | 77.5 | ± | 1.1 | 11.7 | ± | 0.9 | 3.1 | ± | 0.4 | 7.4 | ± | 0.4 | 8.5 | ± | 0.4 | 4.2 | ± | 0.4 |
CLA37 | T | YW | 2.3 | 10 | ± | 2 | 229.0 | ± | 0.3 | 5.4 | ± | 0.1 | 79.8 | ± | 0.6 | 11.7 | ± | 0.3 | 3.0 | ± | 0.3 | 7.8 | ± | 0.2 | 9.4 | ± | 0.6 | 4.4 | ± | 0.3 |
CML-483 | T | WH | 2.7 | 0 | ± | 0 | 289.9 | ± | 6.5 | 4.2 | ± | 0.0 | 84.6 | ± | 0.3 | 9.2 | ± | 0.1 | 2.0 | ± | 0.3 | 8.8 | ± | 0.2 | 9.1 | ± | 0.3 | 4.8 | ± | 0.1 |
CLA307 | T | YW | 2.2 | 20 | ± | 2 | 229.2 | ± | 8.0 | 5.7 | ± | 0.0 | 83.2 | ± | 0.3 | 9.4 | ± | 0.4 | 1.7 | ± | 0.3 | 8.8 | ± | 0.2 | 8.5 | ± | 0.4 | 4.8 | ± | 0.4 |
CLA41 | T | YW | 2.6 | 65 | ± | 5 | 195.2 | ± | 1.9 | 5.7 | ± | 0.1 | 82.8 | ± | 0.2 | 7.9 | ± | 0.3 | 3.6 | ± | 0.2 | 9.1 | ± | 0.4 | 9.0 | ± | 0.4 | 3.8 | ± | 0.2 |
CLA44 | T | YW | 3.0 | 10 | ± | 0 | 204.5 | ± | 1.1 | 5.9 | ± | 0.3 | 80.4 | ± | 0.7 | 10.6 | ± | 0.8 | 3.1 | ± | 0.3 | 7.3 | ± | 0.3 | 7.9 | ± | 0.4 | 5.0 | ± | 0.5 |
CLA18 | T | YW | 2.8 | 20 | ± | 5 | 203.9 | ± | 3.4 | 4.0 | ± | 0.1 | 84.4 | ± | 0.6 | 8.5 | ± | 0.5 | 3.1 | ± | 0.2 | 8.4 | ± | 0.5 | 9.1 | ± | 0.3 | 4.7 | ± | 0.2 |
CLA81 | T | YW | 2.2 | 15 | ± | 5 | 216.6 | ± | 2.5 | 5.7 | ± | 0.0 | 82.3 | ± | 0.6 | 10.1 | ± | 0.8 | 1.9 | ± | 0.2 | 8.2 | ± | 0.3 | 9.4 | ± | 0.2 | 4.3 | ± | 0.3 |
CLA84 | T | YW | 2.2 | 25 | ± | 5 | 227.2 | ± | 1.7 | 5.8 | ± | 0.2 | 81.4 | ± | 0.6 | 9.3 | ± | 0.3 | 3.5 | ± | 0.2 | 8.9 | ± | 0.3 | 10.6 | ± | 0.5 | 4.3 | ± | 0.4 |
DTPWC9 | S | WH | 3.4 | 15 | ± | 5 | 234.8 | ± | 2.4 | 3.9 | ± | 0.1 | 83.5 | ± | 0.1 | 9.9 | ± | 0.2 | 2.8 | ± | 0.2 | 8.1 | ± | 0.3 | 8.5 | ± | 0.3 | 5.0 | ± | 0.5 |
LaPosta | S | WH | 2.5 | 60 | ± | 5 | 263.7 | ± | 3.5 | 5.9 | ± | 0.1 | 84.2 | ± | 0.9 | 6.6 | ± | 0.4 | 3.3 | ± | 0.7 | 8.7 | ± | 0.4 | 10.6 | ± | 0.2 | 4.7 | ± | 0.3 |
CML311B | S | WH | 2.7 | 60 | ± | 6 | 132.8 | ± | 0.7 | 4.2 | ± | 0.1 | 87.2 | ± | 0.8 | 5.4 | ± | 0.2 | 3.2 | ± | 0.5 | 7.7 | ± | 0.4 | 7.0 | ± | 0.4 | 4.5 | ± | 0.4 |
CLA35 | S | YW | 2.5 | 55 | ± | 5 | 157.1 | ± | 2.7 | 6.2 | ± | 0.2 | 81.2 | ± | 0.2 | 7.1 | ± | 0.1 | 5.4 | ± | 0.5 | 7.5 | ± | 0.4 | 8.6 | ± | 0.7 | 3.8 | ± | 0.4 |
P390aC3 | S | YW | 2.1 | 0 | ± | 0 | 309.0 | ± | 5.2 | 5.2 | ± | 0.2 | 85.4 | ± | 0.4 | 6.3 | ± | 0.4 | 3.2 | ± | 1.0 | 9.0 | ± | 0.2 | 9.9 | ± | 0.1 | 4.8 | ± | 0.5 |
DTPWC9 | S | WH | 2.3 | 60 | ± | 5 | 186.8 | ± | 2.7 | 4.5 | ± | 0.2 | 90.1 | ± | 0.6 | 4.9 | ± | 0.4 | 0.5 | ± | 0.2 | 8.1 | ± | 0.7 | 9.3 | ± | 0.2 | 3.8 | ± | 0.1 |
Mean | T | 2.2 | 20 | ± | 3 | 218.4 | ± | 2.7 | 5.6 | ± | 0.1 | 81.5 | ± | 0.5 | 10.2 | ± | 0.5 | 2.7 | ± | 0.2 | 8.3 | ± | 0.3 | 8.9 | ± | 0.4 | 4.5 | ± | 0.3 | |
S | 2.6 | 42 | ± | 5 | 214.0 | ± | 2.9 | 5.0 | ± | 0.2 | 85.2 | ± | 0.5 | 6.7 | ± | 0.3 | 3.1 | ± | 0.5 | 8.2 | ± | 0.4 | 9.0 | ± | 0.3 | 4.4 | ± | 0.4 | ||
Tukey-Test | ns | * | ns | ns | * | * | ns | ns | ns | ns |
Genotype | Type | Protein (%) | Oil (%) | Starch (%) | Fiber (%) | Ash (%) | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Per | End | Ger | Tot | Per | End | Ger | Tot | Per | End | Ger | Tot | Per | End | Ger | Tot | Per | End | Ger | Tot | ||
CLA161 | T | 0.2 | 7.6 | 3.8 | 11.6 | 0.1 | 1.9 | 3.7 | 5.6 | 0.1 | 60.0 | 0.5 | 60.5 | 0.3 | 0.9 | 0.7 | 1.9 | 0.1 | 1.0 | 0.1 | 1.1 |
CLA309 | T | 0.2 | 8.7 | 2.6 | 11.6 | 0.1 | 2.0 | 2.7 | 4.7 | 0.1 | 57.6 | 2.2 | 59.8 | 0.5 | 1.0 | 0.4 | 1.9 | 0.1 | 0.9 | 0.1 | 1.1 |
CLA37 | T | 0.0 | 9.0 | 2.4 | 11.4 | 0.1 | 2.0 | 3.2 | 5.2 | 0.1 | 58.2 | 2.1 | 60.2 | 0.3 | 0.9 | 0.3 | 1.6 | 0.1 | 0.9 | 0.0 | 1.0 |
CML-483 | T | 0.0 | 9.1 | 2.5 | 11.6 | 0.0 | 1.8 | 2.6 | 4.5 | 0.0 | 61.5 | 0.6 | 62.2 | 0.3 | 0.9 | 0.5 | 1.7 | 0.1 | 1.0 | 0.0 | 1.1 |
CLA307 | T | 0.2 | 9.1 | 2.9 | 12.3 | 0.1 | 2.2 | 2.8 | 5.1 | 0.1 | 63.3 | 1.5 | 64.8 | 0.3 | 1.0 | 0.4 | 1.7 | 0.1 | 1.2 | 0.0 | 1.4 |
CLA41 | T | 0.1 | 11.3 | 2.3 | 13.6 | 0.1 | 1.9 | 1.8 | 3.6 | 0.1 | 62.0 | 1.5 | 63.4 | 0.4 | 1.6 | 0.4 | 2.4 | 0.1 | 1.3 | 0.1 | 1.4 |
CLA44 | T | 0.3 | 10.6 | 3.7 | 14.6 | 0.1 | 2.2 | 3.7 | 5.9 | 0.1 | 59.5 | 0.0 | 59.5 | 0.4 | 1.4 | 0.5 | 2.3 | 0.1 | 1.1 | 0.1 | 1.2 |
CLA18 | T | 0.1 | 9.5 | 1.9 | 11.6 | 0.1 | 2.0 | 2.2 | 4.2 | 0.1 | 58.9 | 1.6 | 60.5 | 0.2 | 1.3 | 0.3 | 1.8 | 0.1 | 1.0 | 0.0 | 1.1 |
CLA81 | T | 0.1 | 11.3 | 3.2 | 14.6 | 0.1 | 1.9 | 3.3 | 5.2 | 0.1 | 61.3 | 0.0 | 61.2 | 0.4 | 1.4 | 0.6 | 2.4 | 0.1 | 1.1 | 0.0 | 1.3 |
CLA84 | T | 0.1 | 10.7 | 3.2 | 14.0 | 0.1 | 2.8 | 3.5 | 6.3 | 0.1 | 60.9 | 0.0 | 61.0 | 0.5 | 1.3 | 0.6 | 2.3 | 0.1 | 1.1 | 0.1 | 1.3 |
DTPWC9 | S | 0.1 | 6.6 | 2.2 | 9.0 | 0.1 | 1.8 | 2.6 | 4.4 | 0.1 | 61.5 | 1.9 | 63.5 | 0.2 | 1.3 | 0.3 | 1.7 | 0.1 | 1.0 | 0.1 | 1.1 |
LaPosta | S | 0.1 | 10.7 | 2.1 | 12.9 | 0.1 | 2.3 | 1.9 | 4.3 | 0.1 | 62.7 | 0.2 | 62.9 | 0.4 | 1.3 | 0.4 | 2.1 | 0.1 | 1.2 | 0.1 | 1.3 |
CML311B | S | 0.2 | 11.8 | 1.5 | 13.4 | 0.0 | 2.1 | 1.3 | 3.4 | 0.0 | 62.5 | 1.7 | 64.2 | 0.3 | 1.4 | 0.3 | 2.0 | 0.1 | 1.2 | 0.0 | 1.4 |
CLA35 | S | 0.1 | 10.9 | 2.0 | 13.0 | 0.1 | 1.9 | 1.7 | 3.6 | 0.1 | 62.1 | 1.9 | 64.1 | 0.4 | 1.2 | 0.3 | 2.0 | 0.1 | 1.1 | 0.0 | 1.3 |
P390am | S | 0.1 | 12.2 | 1.8 | 14.2 | 0.1 | 2.0 | 1.6 | 3.6 | 0.1 | 61.6 | 0.9 | 62.5 | 0.4 | 1.5 | 0.3 | 2.1 | 0.1 | 1.2 | 0.0 | 1.4 |
DTPWC9 | S | 0.2 | 9.1 | 1.6 | 10.9 | 0.1 | 2.0 | 1.4 | 3.4 | 0.1 | 70.5 | 0.3 | 70.7 | 0.3 | 1.4 | 0.3 | 2.0 | 0.1 | 1.4 | 0.1 | 1.5 |
Mean | T | 0.1 | 9.7 | 2.9 | 12.7 | 0.1 | 2.1 | 3.0 | 5.0 | 0.1 | 60.3 | 1.0 | 61.3 | 0.4 | 1.2 | 0.5 | 2.0 | 0.1 | 1.1 | 0.1 | 1.2 |
S | 0.1 | 10.2 | 1.9 | 12.2 | 0.1 | 2.0 | 1.8 | 3.8 | 0.1 | 63.5 | 1.2 | 64.6 | 0.3 | 1.3 | 0.3 | 2.0 | 0.1 | 1.2 | 0.1 | 1.3 | |
Tukey-Test | ns | ns | * | ns | ns | ns | * | * | ns | * | ns | * | ns | * | * | ns | ns | ns | ns | ns |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ortiz-Islas, S.; Serna-Saldivar, S.; García-Lara, S. Constitutive Changes in Nutrients and Phytochemicals in Kernels of Aluminium-Tolerant Maize (Zea mays L.). Crops 2022, 2, 14-22. https://doi.org/10.3390/crops2010002
Ortiz-Islas S, Serna-Saldivar S, García-Lara S. Constitutive Changes in Nutrients and Phytochemicals in Kernels of Aluminium-Tolerant Maize (Zea mays L.). Crops. 2022; 2(1):14-22. https://doi.org/10.3390/crops2010002
Chicago/Turabian StyleOrtiz-Islas, Sofia, Sergio Serna-Saldivar, and Silverio García-Lara. 2022. "Constitutive Changes in Nutrients and Phytochemicals in Kernels of Aluminium-Tolerant Maize (Zea mays L.)" Crops 2, no. 1: 14-22. https://doi.org/10.3390/crops2010002
APA StyleOrtiz-Islas, S., Serna-Saldivar, S., & García-Lara, S. (2022). Constitutive Changes in Nutrients and Phytochemicals in Kernels of Aluminium-Tolerant Maize (Zea mays L.). Crops, 2(1), 14-22. https://doi.org/10.3390/crops2010002