Hoeing as a Possibility for Mechanical Weed Control in Winter Oilseed Rape (Brassica napus L.)
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
3.1. Weeds
3.2. Oilseed Rape Grain Yield
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Salisbury, P.A.; Potter, T.D.; Gurung, A.M.; Mailer, R.J.; Williams, W.M. Potential impact of weedy Brassicaceae species on oil and meal quality of oilseed rape (canola) in Australia. Weed Res. 2018, 58, 200–209. [Google Scholar] [CrossRef]
- Llewellyn, R.; Ronning, D.; Clarke, M.; Mayfield, A.; Walker, S.; Ouzman, J. Impact of Weeds on Australian Grain Production: The Cost of Weeds to Australian Grain Growers and the Adoption of Weed Management and Tillage Practices; Report for Grains Research and Development Corporation, CSIRO: Canberra, Australia, March 2016.
- Sharma, G.; Shrestha, S.; Kunwar, S.; Tseng, T.M. Crop diversification for improved weed management: A review. Agriculture 2021, 11, 461. [Google Scholar] [CrossRef]
- Beckie, H.J.; Johnson, E.N.; Blackshaw, R.E.; Gan, Y. Weed Suppression by Canola and Mustard Cultivars. Weed Technol. 2008, 22, 182–185. [Google Scholar] [CrossRef]
- Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei. Bodenbearbeitung, Bewässerung, Landschaftselemente, Erhebung über Landwirtschaftliche Produktionsmethoden (ELPM); Statistisches Bundesamt: Wiesbaden, Germany, 2011. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Produktionsmethoden/Publikationen/Downloads-Produktionsmethoden/bodenbearbeitung-bewaesserung-2032805109004.pdf?__blob=publicationFile (accessed on 21 November 2021).
- Statistisches Bundesamt. Land- und Forstwirtschaft, Fischerei. Bodenbearbeitung, Erosionsschutz, Fruchtwechsel/Agrarstrukturerhebung; Statistisches Bundesamt: Wiesbaden, Germany, 2017. Available online: https://www.destatis.de/DE/Themen/Branchen-Unternehmen/Landwirtschaft-Forstwirtschaft-Fischerei/Produktionsmethoden/Publikationen/Downloads-Produktionsmethoden/bodenbearbeitung-erosionsschutz-fruchtwechsel-5411209169004.pdf?__blob=publicationFile (accessed on 21 November 2021).
- Beckie, H.J. Herbicide-Resistant Weeds: Management Tactics and Practices. Weed Technol. 2006, 20, 793–814. [Google Scholar] [CrossRef]
- Asaduzzaman, M.; Pratley, J.E.; Luckett, D.; Lemerle, D.; Wu, H. Weed management in canola (Brassica napus L): A review of current constraints and future strategies for Australia. Arch. Agron. Soil Sci. 2020, 66, 427–444. [Google Scholar] [CrossRef]
- Milesi, M.M.; Lorenz, V.; Durando, M.; Rossetti, M.F.; Varayoud, J. Glyphosate Herbicide: Reproductive Outcomes and Multigenerational Effects. Front. Endocrinol. 2021, 12, 672532. [Google Scholar] [CrossRef] [PubMed]
- Ghanizadeh, H.; Harrington, K.C. Herbicide resistant weeds in New Zealand: State of knowledge. N. Z. J. Agric. Res. 2021, 64, 471–482. [Google Scholar] [CrossRef]
- Rao, A.N.; Singh, R.G.; Mahajan, G.; Wani, S.P. Weed research issues, challenges, and opportunities in India. Crop Prot. 2020, 134, 104451. [Google Scholar] [CrossRef]
- Krähmer, H.; Andreasen, C.; Economou-Antonaka, G.; Holec, J.; Kalivas, D.; Kolářová, M.; Novák, R.; Panozzo, S.; Pinke, G.; Salonen, J.; et al. Weed surveys and weed mapping in Europe: State of the art and future tasks. Crop Prot. 2020, 129, 105010. [Google Scholar] [CrossRef]
- Parish, S. A Review of Non-Chemical Weed Control Techniques. Biol. Agric. Hortic. 1990, 7, 117–137. [Google Scholar] [CrossRef]
- Pannacci, E.; Lattanzi, B.; Tei, F. Non-chemical weed management strategies in minor crops: A review. Crop Prot. 2017, 96, 44–58. [Google Scholar] [CrossRef]
- Blackshaw, R.E.; Beckie, H.J.; Molnar, L.J.; Entz, T.; Moyer, J.R.; Blackshaw, R.E.; Beckie, H.J.; Moyer, J.R. Combining agronomic practices and herbicides improves weed management in wheat–canola rotations within zero-tillage production systems. Weed Sci. 2005, 53, 528–535. [Google Scholar] [CrossRef]
- Wei, D.; Liping, C.; Zhijun, M.; Guangwei, W.; Ruirui, Z. Review of non-chemical weed management for green agriculture. Int. J. Agric. Biol. Eng. 2010, 3, 52–61. [Google Scholar]
- Green, J.M.; Owen, M.D.K. Herbicide-Resistant Crops: Utilities and Limitations for Herbicide-Resistant Weed Management. J. Agric. Food Chem. 2011, 59, 5819–5829. [Google Scholar] [CrossRef]
- Kunz, C.; Weber, J.F.; Gerhards, R. Benefits of precision farming technologies for mechanical weed control in soybean and sugar beet—Comparison of precision hoeing with conventional mechanical weed control. Agronomy 2015, 5, 130–142. [Google Scholar] [CrossRef] [Green Version]
- Melander, B.; Munier-jolain, N.; Wirth, J.; Schwarz, J.; van der Weide, R.; Bonin, L.; Jensen, P.K.; Kudsk, P. European Perspectives on the Adoption of Nonchemical Weed Management in Reduced-Tillage Systems for Arable Crops. Weed Technol. 2013, 27, 231–240. [Google Scholar] [CrossRef] [Green Version]
- Bond, W.; Grundy, A.C. Non-chemical weed management in organic farming systems. Weed Res. 2001, 41, 383–405. [Google Scholar] [CrossRef]
- Fogliatto, S.; Milan, M.; De Palo, F.; Ferrero, A.; Vidotto, F. Effectiveness of mechanical weed control on Italian flint varieties of maize. Renew. Agric. Food Syst. 2017, 34, 447–459. [Google Scholar] [CrossRef] [Green Version]
- Pullen, D.W.M.; Cowell, P.A. An Evaluation of the Performance of Mechanical Weeding Mechanisms for use in High Speed Inter-Row Weeding of Arable Crops. J. Agric. Eng. Res. 1997, 67, 27–34. [Google Scholar] [CrossRef]
- Rasmussen, I.A. The effect of sowing date, stale seedbed, row width and mechanical weed control on weeds and yields of organic winter wheat. Weed Res. 2004, 44, 12–20. [Google Scholar] [CrossRef]
- Andersen, G.L.; Kuennen, T. CULTI CAM HD—Efficient weed control in row crops using active implement steering and stereo camera. In Land Technik AgEng 2019; VDI Verlag: Düsseldorf, Germany, 2019; pp. 455–461. [Google Scholar]
- Kunz, C.; Weber, J.F.; Peteinatos, G.G.; Sökefeld, M.; Gerhards, R. Camera steered mechanical weed control in sugar beet, maize and soybean. Precis. Agric. 2018, 19, 708–720. [Google Scholar] [CrossRef]
- Kurstjens, D.A.G. Precise tillage systems for enhanced non-chemical weed management. Soil Tillage Res. 2007, 97, 293–305. [Google Scholar] [CrossRef]
- Razaz, M.; Fathi, G.; Enayatgholizadeh, M.R. Effect of chemical, mechanical and Integrated weeds control, on yield and yield component bean (Vigna sinensis L.). Adv. Environ. Biol. 2014, 8, 159–162. [Google Scholar]
- Redlick, C.; Syrovy, L.D.; Duddu, H.S.N.; Benaragama, D.; Johnson, E.N.; Willenborg, C.J.; Shirtliffe, S.J. Developing an Integrated Weed Management System for Herbicide-Resistant Weeds Using Lentil (Lens culinaris) as a Model Crop. Weed Sci. 2017, 65, 778–786. [Google Scholar] [CrossRef]
- Velička, R.; Marcinkevičienė, A.; Pupalienė, R.; Butkevičienė, L.M.; Kosteckas, R.; Čekanauskas, S.; Kriaučiūnienė, Z. Winter oilseed rape and weed competition in organic farming using non-chemical weed control. Zemdirb.-Agric. 2016, 103, 11–20. [Google Scholar] [CrossRef] [Green Version]
- Jursík, M.; Kočárek, M.; Suchanová, M.; Kolářová, M.; Šuk, J. Effect of irrigation and adjuvant on residual activity of pendimethalin and metazachlor in kohlrabi and soil. Plant Soil Environ. 2019, 65, 387–394. [Google Scholar] [CrossRef] [Green Version]
- Kočárek, M.; Kodešová, R.; Sharipov, U.; Jursík, M. Effect of adjuvant on pendimethalin and dimethenamid-P behaviour in soil. J. Hazard. Mater. 2018, 354, 266–274. [Google Scholar] [CrossRef] [PubMed]
- Gummert, A.; Ladewig, E.; Märländer, B. Guidelines for integrated pest management in sugar beet cultivation—Weed control. J. Für Kult. 2012, 64, 105–111. [Google Scholar]
- Birthisel, S.K.; Clements, R.S.; Gallandt, E.R. Review: How will climate change impact the ‘many little hammers’ of ecological weed management? Weed Res. 2021, 61, 327–341. [Google Scholar] [CrossRef]
- Maqsood, Q.; Abbas, R.N.; Iqbal, M.A.; Serap, K.A.; Iqbal, A.; Sabagh, A. El Overviewing of weed management practices to reduce weed seed bank and to increase maize yield. Planta Daninha 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Weisberger, D.; Nichols, V.; Liebman, M. Does diversifying crop rotations suppress weeds? A meta-analysis. PLoS ONE 2019, 14, e0219847. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gruber, S.; Claupein, W. Effect of soil tillage intensity on seedbank dynamics of oilseed rape compared with plastic pellets as reference material. J. Plant Dis. Prot. 2006, 20, 273–280. [Google Scholar]
- Duke, S.O. Why have no new herbicide modes of action appeared in recent years? Pest Manag. Sci. 2012, 68, 505–512. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lemerle, D.; Luckett, D.J.; Wu, H.; Widderick, M.J. Agronomic interventions for weed management in canola (Brassica napus L.)—A review. Crop Prot. 2017, 95, 69–73. [Google Scholar] [CrossRef]
Process | 2014/2015 | 2015/2016 | 2016/2017 |
---|---|---|---|
Sowing | 3 September | 27 August | 25 August |
Weed count | 24 October | 30 September | 30 November |
Hoeing autumn | 28 October | 1 October | 2 December |
Weed count | 17 November | 19 October | 20 December |
Weed count | 16 March | 22 March | 20 March |
Hoeing spring | 18 March | 24 March | 21 March |
Weed count | 10 April | 18 April | 12 April |
Harvest | 28 July | 30 July | 29 July |
2014/2015 | 2015/2016 | 2016/2017 | ||||
---|---|---|---|---|---|---|
Treatment | Date | Agent | Date | Agent | Date | Agent |
Insecticides | 9 September | 7.5 g ha−1 deltamethrin | 5 April | 57.5 g ha−1 etofenprox | 5 October | 7.5 g ha−1 beta-cyfluthrin |
26 September | 7.5 g ha−1 deltamethrin | 11 April | 72 g ha−1 thiacloprid | 3 April | 57.5 g ha−1 etofenprox | |
15 April | 57.5 g ha−1 etofenprox | 22 April | 40 g ha−1 acetamiprid | |||
20 April | 25.5 g ha−1 indoxacarb | |||||
6 May | 48 g ha−1 tau-fluvinate | |||||
300 g ha−1 citric acid | ||||||
Herbicides | 10 September | 500 g ha−1 metazachlor | 31 August | 500 g ha−1 metazachlor | 1 September | 500 g ha−1 metazachlor |
500 g ha−1 dimethenamid-P | 500 g ha−1 dimethenamid-P | 500 g ha−1 dimethenamid-P | ||||
250 g ha−1 quinmerac | 250 g ha−1 quinmerac | 250 g ha−1 quinmerac | ||||
20 October | 80 g ha−1 propaquizafop | 8 October | 80 g ha−1 propaquizafop | 5 October | 80 g ha−1 propaquizafop | |
Fungicides | 6 May | 250 g ha−1 azoxystrobin | 26 October | 96 g ha−1 prothioconazole | 3 April | 96 g ha−1 prothioconazole |
192 g ha−1 tebuconazole | 192 g ha−1 tebuconazole | |||||
5 April | 96 g ha−1 prothioconazole | |||||
192 g ha−1 tebuconazole | ||||||
Nitrogen fertiliser | 1 October | 40 kg N ha−1 calcium ammonium nitrate | 15 March | 90 kg N ha−1 ammonium sulphate nitrate | 21 October | 30 kg N ha−1 calcium ammonium nitrate |
10 March | 90 kg N ha−1 ammonium sulphate nitrate | 7 April | 90 kg N ha−1 ammonium sulphate nitrate | 15 March | 80 kg N ha−1 ammonium sulphate nitrate | |
8 April | 90 kg N ha−1 ammonium sulphate nitrate | 6 April | 90 kg N ha−1 ammonium sulphate nitrate |
DF | F Value | Pr > F | ||
---|---|---|---|---|
Weed count | 1 | |||
2014/2015 | WC | 2 | 0.77 | 0.5050 |
V | 1 | 0.02 | 0.8879 | |
WC × V | 2 | 2.29 | 0.1567 | |
2015/2016 | WC | 2 | 3.07 | 0.1205 |
V | 1 | 0.05 | 0.8275 | |
WC × V | 2 | 0.50 | 0.6229 | |
2016/2017 | WC | 2 | 42.84 | 0.0003 |
V | 1 | 0.59 | 0.4631 | |
WC × V | 2 | 0.67 | 0.5337 | |
Weed count | 2 | |||
2014/2015 | WC | 2 | 2.90 | 0.1316 |
V | 1 | 1.68 | 0.2269 | |
WC × V | 2 | 0.81 | 0.4732 | |
2015/2016 | WC | 2 | 2.94 | 0.1288 |
V | 1 | 0.64 | 0.4432 | |
WC × V | 2 | 3.81 | 0.2634 | |
2016/2017 | WC | 2 | 49.18 | 0.0002 |
V | 1 | 0.70 | 0.4237 | |
WC × V | 2 | 0.53 | 0.6043 | |
Weed count | 3 | |||
2014/2015 | WC | 2 | 3.16 | 0.1155 |
V | 1 | 0.39 | 0.5461 | |
WC × V | 2 | 0.20 | 0.8221 | |
2015/2016 | WC | 2 | 3.03 | 0.1230 |
V | 1 | 2.97 | 0.1188 | |
WC × V | 2 | 0.38 | 0.6919 | |
2016/2017 | WC | 2 | 114.78 | <0.0001 |
V | 1 | 1.36 | 0.2730 | |
WC × V | 2 | 0.36 | 0.7050 | |
Weed count | 4 | |||
2014/2015 | WC | 2 | 1.15 | 0.3783 |
V | 1 | 0.29 | 0.6018 | |
WC × V | 2 | 0.15 | 0.8668 | |
2015/2016 | WC | 2 | 16.41 | 0.0037 |
V | 1 | 18.08 | 0.1521 | |
WC × V | 2 | 5.47 | 0.4279 | |
2016/2017 | WC | 2 | 23.80 | 0.0014 |
V | 1 | 1.24 | 0.2941 | |
WC × V | 2 | 0.44 | 0.6556 |
Trial Year | Effect | DF | F Value | Pr > F |
---|---|---|---|---|
2014/2015 | WC | 2 | 6.32 | 0.0333 |
V | 1 | 3.32 | 0.1015 | |
WC × V | 2 | 0.44 | 0.6601 | |
2015/2016 | WC | 2 | 9.29 | 0.0145 |
V | 1 | 5.24 | 0.0578 | |
WC × V | 2 | 0.29 | 0.7553 | |
2016/2017 | WC | 2 | 5.61 | 0.0422 |
V | 1 | 10.24 | 0.0708 | |
WC × V | 2 | 9.45 | 0.1062 |
Trial Year | Effect | DF | F Value | Pr > F |
---|---|---|---|---|
2014/2015 | WC | 2 | 0.49 | 0.6332 |
V | 1 | 0.48 | 0.5069 | |
WC × V | 2 | 0.63 | 0.5536 | |
2015/2016 | WC | 2 | 2.74 | 0.1429 |
V | 1 | 0.22 | 0.6528 | |
WC × V | 2 | 1.53 | 0.2685 | |
2016/2017 | WC | 2 | 6.93 | 0.0276 |
V | 1 | 1.90 | 0.2014 | |
WC × V | 2 | 0.06 | 0.9408 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schwabe, S.; Gruber, S.; Claupein, W. Hoeing as a Possibility for Mechanical Weed Control in Winter Oilseed Rape (Brassica napus L.). Crops 2022, 2, 1-13. https://doi.org/10.3390/crops2010001
Schwabe S, Gruber S, Claupein W. Hoeing as a Possibility for Mechanical Weed Control in Winter Oilseed Rape (Brassica napus L.). Crops. 2022; 2(1):1-13. https://doi.org/10.3390/crops2010001
Chicago/Turabian StyleSchwabe, Sebastian, Sabine Gruber, and Wilhelm Claupein. 2022. "Hoeing as a Possibility for Mechanical Weed Control in Winter Oilseed Rape (Brassica napus L.)" Crops 2, no. 1: 1-13. https://doi.org/10.3390/crops2010001
APA StyleSchwabe, S., Gruber, S., & Claupein, W. (2022). Hoeing as a Possibility for Mechanical Weed Control in Winter Oilseed Rape (Brassica napus L.). Crops, 2(1), 1-13. https://doi.org/10.3390/crops2010001