Alfalfa Rotation Strategy and Soil Type Influence Soil Characteristics and Replanted Alfalfa Yield in the Irrigated Semiarid, Subtropical Southwestern USA
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results and Discussion
3.1. Weather Conditions
3.2. Pre-Alfalfa Replanting Soil Test Results
3.3. First Production Year Alfalfa Dry Matter Yield
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalinová, J. Varietal Differences in Allelopathic Potential of Common Buckwheat (Fagopyrum esculentum Moench). Cereal Res. Commun. 2008, 36, 397–408. [Google Scholar] [CrossRef]
- Jennings, J.A.; Nelson, C.J. Zone of Autotoxic Influence around Established Alfalfa Plants. Agron. J. 2002, 94, 1104–1111. [Google Scholar] [CrossRef]
- Chon, S.; Nelson, C.J.; Coutts, J.H. Osmotic and Autotoxic Effects of Leaf Extracts on Germination and Seedling Growth of Alfalfa. Agron. J. 2004, 96, 1673–1679. [Google Scholar] [CrossRef]
- Chung, I.-M.; Seigler, D.; Miller, D.A.; Kyung, S.-H. Autotoxic Compounds from Fresh Alfalfa Leaf Extracts: Identification and biological activity. J. Chem. Ecol. 2000, 26, 315–327. [Google Scholar] [CrossRef]
- Jennings, J.A.; Nelson, C.J. Rotation Interval and Pesticide Effects on Establishment of Alfalfa after Alfalfa. Agron. J. 2002, 94, 786–791. [Google Scholar] [CrossRef]
- El-Darier, A.M.; Abdelaziz, H.A.; El-Dien, M.H.Z. Effect of Soil Type on the Allelotoxic Activity of Medicago sativa L. Residues in Vicia faba L. Agroecosystems. J. Taibah Univ. Sci. 2014, 8, 84–89. [Google Scholar] [CrossRef] [Green Version]
- Seguin, P.; Sheaffer, C.C.; Schmitt, M.A.; Russelle, M.P.; Randall, G.W.; Peterson, P.R.; Hoverstad, T.R.; Qiring, S.R.; Swanson, D.R. Alfalfa Autotoxicity: Effects of Reseeding Delay, Original Stand Age, and Cultivar. Agron. J. 2002, 94, 775–781. [Google Scholar] [CrossRef]
- Darapuneni, M.K.; Lauriault, L.M.; Angadi, S.V. Alfalfa Termination Strategies Determine Subsequent Wheat and Haygrazer Forage Yield and Nutritive Value. Crop. Forage Turfgrass Manag. 2019, 5, 190034. [Google Scholar] [CrossRef]
- Kettler, T.A.; Lyon, D.J.; Doran, J.W.; Powers, W.L.; Stroup, W.W. Soil Quality Assessment after Weed-Control Tillage in a No-Till Wheat-Fallow Cropping System. Soil Sci. Soc. Am. J. 2000, 64, 339–346. [Google Scholar] [CrossRef] [Green Version]
- Olsen, S.R.; Cole, C.V.; Watanabe, F.S.; Dean, L.A. USDA Circular 939, Estimation of Available Phosphorus in Soils by Extraction with Sodium Bicarbonate; U.S. Government Printing Office: Washington, DC, USA, 1954; 19p.
- Lauriault, L.M.; Marsalis, M.A.; VanLeeuwen, D.M. Planting Date Affects Rainfed Sorghum Forage Yields in Semiarid, Subtropical Environments. Forage Grazinglands 2012, 10, 1–7. [Google Scholar] [CrossRef]
- SAS Institute. The SAS 9.3 for Windows; SAS Institute Inc.: Cary, NC, USA, 2013. [Google Scholar]
- Saxton, A.M. A macro for converting mean separation output to letter groupings in Proc Mixed. In Proceedings of the 23rd SAS Users Group International, Nashville, TN, USA, 22–25 March 1998; Jansen, L., Ed.; SAS Institute: Cary, NC, USA, 1998; pp. 1243–1246. [Google Scholar]
- Fribourg, H.A.; Strand, R.H. Influence of Seeding Dates and Methods on Establishment of Small-seeded Legumes 1. Agron. J. 1973, 65, 804–807. [Google Scholar] [CrossRef]
- Coblentz, W.K.; Walgenbach, R.P. Fall Growth, Nutritive Value, and Estimation of Total Digestible Nutrients for Cereal-Grain Forages in the North-Central United States 1. J. Anim. Sci. 2010, 88, 383–399. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hickman, M.V. Long-Term Tillage and Crop Rotation Effects on Soil Chemical and Mineral Properties. J. Plant Nutr. 2002, 25, 1457–1470. [Google Scholar] [CrossRef]
- Hamarashid, N.; Othman, M.; Hussain, M. Effects of Soil Texture on Chemical Compositions, Microbial Populations and Carbon Mineralization in Soil. Egypt J. Exp. Biol. 2010, 6, 59–64. [Google Scholar]
- Alijani, K.; Bahrani, M.J.; Kazemeini, S.A. Short-Term Responses of Soil and Wheat Yield to Tillage, Corn Residue Management and Nitrogen Fertilization. Soil Tillage Res. 2012, 124, 78–82. [Google Scholar] [CrossRef]
- Awale, R.; Machado, S.; Rhinhart, K. Soil Carbon, Nitrogen, pH, and Crop Yields in Winter Wheat-Spring Pea Systems. Agron. J. 2018, 110, 1523–1531. [Google Scholar] [CrossRef]
- Dixit, A.K.; Agrowal, R.K.; Das, S.K.; Sahay, C.S.; Choudhary, M.; Rain, A.K.; Kumra, S.; Kantwa, S.R.; Palsaniya, D.R. Soil Properties, Crop Productivity and Energetics under Different Tillage Practices in Fodder Sorghum + Cowpea—Wheat Cropping System. Arch. Agron. Soil Sci. 2019, 65, 492–506. [Google Scholar] [CrossRef]
- Bhatt, T.D.; Bector, V.; Singh, M.; Singh, D. Performance Evaluation of Real-Time Soil pH Measuring System in Different Tillage Systems. Agric. Engr. Today 2017, 41, 26–31. [Google Scholar]
- Thompson, C.A.; Whitney, D.A. Effects of 30 Years of Cropping and Tillage Systems on Surface Soil Test Changes. Commun. Soil Sci. Plant Anal. 2000, 31, 241–257. [Google Scholar] [CrossRef]
- Woźniak, A. Chemical Properties and Enzyme Activity of Soil as Affected by Tillage System and Previous Crop. Agriculture 2019, 9, 262. [Google Scholar] [CrossRef] [Green Version]
- Butterly, C.R.; Kaudal, B.B.; Baldock, J.A.; Tang, C. Contribution of soluble and insoluble fractions of agricultural residues to short-term pH changes. Eur. J. Soil Sci. 2011, 62, 718–727. [Google Scholar] [CrossRef]
- Lauriault, L.M.; Marsalis, M.A.; Groesbeck, J.D. Revisiting alfalfa planting dates for the semiarid U.S. Southwest. Agron. J. 2020, 112, 2006–2019. [Google Scholar] [CrossRef]
- Xuan, T.D.; Tawata, S.; Khanh, T.D.; Chung, I.M. Decomposition of Allelopathic Plants in Soil. J. Agron. Crop. Sci. 2005, 191, 162–171. [Google Scholar] [CrossRef]
- Ferriera, M.I.; Reinhardt, C.F. Field Assessment of Crop Residues for Allelopathic Effects on Both Crops and Weeds. Agron. J. 2010, 102, 1593–1600. [Google Scholar] [CrossRef] [Green Version]
Characteristic | Test 1 | Test 2 |
---|---|---|
Series | Canez | Quay |
Rooting depth | >1.5 m | 1 m |
Water holding capacity | 229 | 140 |
Calcareous | Yes | Yes |
pH | 8.3 | 8.5 |
EC, mmho cm−1 | 0.27 | 31 |
OM, % | 0.6 | 0.6 |
N, ppm | 7.4 | 5.7 |
P, ppm | 28 | 23 |
K, ppm | 188 | 234 |
S, ppm | 7 | 7 |
Zn, ppm | 0.28 | 0.22 |
Fe, ppm | 5.7 | 7.8 |
Mn, ppm | 3.7 | 3.9 |
Cu, ppm | 0.18 | 0.44 |
Ca, ppm | 2588 | 2880 |
Mg, ppm | 281 | 320 |
Na, ppm | 48 | 46 |
CEC | 16 | 17.9 |
Year 1 | Year 2 | Year 3 | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Treatment | Activity | May | June | July | Aug | Sep | Oct | May | June | July | Aug | Sep | Oct | May | June | July | Aug | Sep | Oct |
Continuous alfalfa | Removed as hay | ||||||||||||||||||
Stand destroyed | |||||||||||||||||||
Alfalfa replanted | |||||||||||||||||||
Alfalfa harvested | |||||||||||||||||||
SS, 1 year (SS1) | Alfalfa removed as hay | ||||||||||||||||||
Alfalfa destroyed | |||||||||||||||||||
SS planted | |||||||||||||||||||
SS removed as hay | |||||||||||||||||||
Alfalfa replanted | |||||||||||||||||||
Alfalfa harvested | |||||||||||||||||||
SS, 2 years (SS2) | Alfalfa removed as hay | ||||||||||||||||||
Alfalfa destroyed | |||||||||||||||||||
SS planted | |||||||||||||||||||
SS removed as hay | |||||||||||||||||||
Alfalfa replanted | |||||||||||||||||||
Alfalfa harvested | |||||||||||||||||||
WW/SS | Alfalfa removed as hay | ||||||||||||||||||
Alfalfa destroyed | |||||||||||||||||||
WW planted | |||||||||||||||||||
WW removed as hay | |||||||||||||||||||
SS planted | |||||||||||||||||||
SS removed as hay | |||||||||||||||||||
Alfalfa replanted | |||||||||||||||||||
Alfalfa harvested |
Temperature, °C | Precipitation, mm | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Test 1 Year | 1 | 2 | 3 | -- | Long-Term | 1 | 2 | 3 | -- | Long-Term |
Test 2 Year | -- | 1 | 2 | 3 | -- | 1 | 2 | 3 | ||
January | 6.7 | 7.2 | 0.0 | 3.9 | 3.3 | 34 | 2 | 17 | 1 | 10 |
February | 7.2 | 6.1 | 6.1 | 3.3 | 5.6 | 28 | 0 | 5 | 1 | 13 |
March | 12.2 | 12.2 | 12.2 | 6.7 | 9.4 | 29 | 5 | 77 | 5 | 19 |
April | 13.3 | 13.3 | 7.8 | 13.3 | 14.4 | 59 | 18 | 21 | 20 | 28 |
May | 18.3 | 21.7 | 21.7 | 18.9 | 18.9 | 60 | 29 | 21 | 64 | 47 |
June | 25.0 | 25.6 | 25.6 | 26.1 | 25.0 | 4 | 44 | 71 | 52 | 47 |
July | 26.7 | 25.6 | 26.7 | 26.4 | 26.1 | 76 | 82 | 21 | 143 | 66 |
August | 24.4 | 23.9 | 23.9 | 23.9 | 25.0 | 113 | 130 | 32 | 92 | 68 |
September | 23.3 | 18.3 | 23.3 | 20.7 | 21.7 | 109 | 36 | 12 | 15 | 39 |
October | 15.6 | 15.0 | 17.2 | 15.0 | 15.0 | 14 | 27 | 19 | 74 | 34 |
November | 11.1 | 10.0 | 9.4 | 10.0 | 8.3 | 0 | 4 | 6 | 2 | 17 |
December | 4.4 | 3.3 | 3.9 | 4.4 | 3.9 | 0 | 38 | 29 | 6 | 16 |
Annual | 15.7 | 15.2 | 14.8 | 14.4 | 15.0 | 526 | 415 | 329 | 473 | 399 |
Soil Test Results | Alfalfa Yield | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | EC | OM | N | P | K | S | Zn | Fe | Mn | Cu | Ca | Mg | Na | CEC | |||
Test | mmhos cm−1 | % | ppm | Mg ha−1 | |||||||||||||
1 | 8.29 | 0.27 | 0.49 | 3.1 | 12.4 | 183 | 9.9 | 0.34 | 5.48 | 4.31 | 0.28 | 2738 | 329 | 43.1 | 17.1 | 5.91 | |
2 | 8.38 | 0.44 | 1.08 | 29.7 | 10.0 | 236 | 38.7 | 0.29 | 8.76 | 4.77 | 0.49 | 2702 | 345 | 80.3 | 17.4 | 5.19 | |
Rotation | |||||||||||||||||
ALF | 8.25 | 0.39 | 0.86 | 22.8 | 11.5 | 205 | 22.8 | 0.32 | 7.46 | 4.74 | 0.38 | 2708 | 350 | 64.4 | 17.3 | 6.43 | AB |
SS1 | 8.40 | 0.36 | 0.71 | 17.2 | 12.4 | 234 | 24.6 | 0.30 | 6.73 | 4.71 | 0.38 | 2779 | 339 | 54.5 | 17.5 | 5.30 | B |
SS2 | 8.38 | 0.34 | 0.75 | 13.3 | 9.3 | 190 | 27.0 | 0.32 | 7.41 | 4.50 | 0.39 | 2786 | 326 | 66.1 | 17.5 | 6.92 | A |
WW/SS | 8.30 | 0.34 | 0.80 | 12.4 | 11.5 | 209 | 22.8 | 0.32 | 6.86 | 4.21 | 0.38 | 2609 | 333 | 61.9 | 16.6 | 3.54 | C |
5% LSD | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | NS | 1.22 | |
p-values | |||||||||||||||||
Test (T) | 0.49 | 0.02 | 0.01 | 0.01 | 0.45 | 0.04 | 0.01 | 0.51 | 0.04 | 0.52 | 0.01 | 0.96 | 0.49 | 0.01 | 0.94 | 0.14 | |
Rotation (R) | 0.40 | 0.92 | 0.46 | 0.57 | 0.80 | 0.64 | 0.96 | 0.99 | 0.89 | 0.86 | 1.00 | 0.46 | 0.74 | 0.49 | 0.67 | 0.01 | |
T × R | 0.03 | 0.86 | 0.98 | 0.45 | 0.84 | 0.83 | 0.73 | 0.90 | 0.89 | 0.94 | 0.43 | 0.27 | 0.46 | 0.81 | 0.53 | 0.01 |
Test | ||
---|---|---|
Rotation | 1 | 2 |
pH, 5% LSD = 0.29 | ||
ALF | 8.35ABC | 8.15C |
SS1 | 8.37ABC | 8.43AB |
SS2 | 8.33ABC | 8.43AB |
WW/SS | 8.10BC | 8.50A |
Yield, Mg ha−1, 5% LSD = 2.00 | ||
ALF | 7.95A | 4.91B |
SS1 | 5.75B | 4.86B |
SS2 | 8.30A | 5.54B |
WW/SS | 1.64C | 5.44B |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lauriault, L.M.; Darapuneni, M.K. Alfalfa Rotation Strategy and Soil Type Influence Soil Characteristics and Replanted Alfalfa Yield in the Irrigated Semiarid, Subtropical Southwestern USA. Crops 2021, 1, 141-152. https://doi.org/10.3390/crops1030014
Lauriault LM, Darapuneni MK. Alfalfa Rotation Strategy and Soil Type Influence Soil Characteristics and Replanted Alfalfa Yield in the Irrigated Semiarid, Subtropical Southwestern USA. Crops. 2021; 1(3):141-152. https://doi.org/10.3390/crops1030014
Chicago/Turabian StyleLauriault, Leonard M., and Murali K. Darapuneni. 2021. "Alfalfa Rotation Strategy and Soil Type Influence Soil Characteristics and Replanted Alfalfa Yield in the Irrigated Semiarid, Subtropical Southwestern USA" Crops 1, no. 3: 141-152. https://doi.org/10.3390/crops1030014
APA StyleLauriault, L. M., & Darapuneni, M. K. (2021). Alfalfa Rotation Strategy and Soil Type Influence Soil Characteristics and Replanted Alfalfa Yield in the Irrigated Semiarid, Subtropical Southwestern USA. Crops, 1(3), 141-152. https://doi.org/10.3390/crops1030014