Biomedical Informatics: State of the Art, Challenges, and Opportunities
Abstract
:1. Introduction
- Biological data, ranging from deoxyribonucleic acid (DNA) sequences and protein structures to complex cellular processes, for bioinformatics;
- Clinical trial data for clinical informatics;
- X-ray images for imaging informatics;
- Healthcare data—such as electronic health records (EHRs) or electronic medical records (EMRs)—for public health informatics.
2. State of the Art in Biomedical Informatics
2.1. Computational Biology and Medicine
2.2. Explainable Artificial Intelligence in Biomedical Research and Clinical Practice
- Dalex;
- ELI5 (“Explain Like I’m 5”);
- InterpretML;
- SHAP.
- Dalex;
- InterpretML;
- LIME.
2.3. Machine Learning Methods and Application for Bioinformatics and Healthcare
- Achieving 99.2% accuracy, 98.0% recall, and 98.0% precision on the Wisconsin Breast Cancer (WBCD) dataset;
- Achieving 79.5% accuracy, 76.0% recall, and 59.0% precision on the Wisconsin Prognostic Breast Cancer (WPBC) dataset.
2.4. Imaging Informatics
2.5. Medical Statistics and Data Science
3. Challenges and Opportunities in Biomedical Informatics
3.1. Computational Biology and Medicine
3.2. Explainable Artificial Intelligence in Biomedical Research and Clinical Practice
3.3. Machine Learning Methods and Application for Bioinformatics and Healthcare
3.4. Imaging Informatics
3.5. Medical Statistics and Data Science
- Diverse types of effect measures (e.g., correlation coefficients, regression coefficients, risk ratios, odds ratios, and mean differences) that may not be directly comparable.
- Estimates lacking standard errors, posing an issue as meta-analysis methods typically rely on study weights determined by their standard errors.
- Estimates pertaining to different time points of outcome occurrence or measurement.
- Variety in methods of measurement for explanatory variables and outcomes.
- Diverse sets of adjustment factors.
- Various approaches to handling continuous explanatory variables (e.g., categorization, linear or non-linear trends, log-transforms), including the selection of cut-point values when dichotomizing continuous values into “high” and “normal” groups.
4. Conclusions
Funding
Conflicts of Interest
References
- Lotsch, J. Biomedinformatics: A new journal for the new decade to publish biomedical informatics research. BioMedInformatics 2021, 1, 1–5. [Google Scholar] [CrossRef]
- de Brevern, A.G. BioMedInformatics, the link between biomedical informatics, biology and computational medicine. BioMedInformatics 2024, 4, 1–7. [Google Scholar] [CrossRef]
- Page, C.D.; Natarajan, S. Biomedical informatics. In Encyclopedia of Machine Learning and Data Mining; Springer: Boston, MA, USA, 2017; pp. 143–163. [Google Scholar]
- Kashyap, V. Taxonomy: Biomedical health informatics. In Encyclopedia of Database Systems, 2nd ed.; Springer: New York, NY, USA, 2018; pp. 3874–3877. [Google Scholar]
- Shortliffe, E.H.; Cimino, J.J. (Eds.) Biomedical Informatics: Computer Applications in Health Care and Biomedicine, 5th ed.; Springer: Cham, Switzerland, 2021. [Google Scholar]
- Medlock, S.; Groos, S.S.; de Wildt, K.K.; Westerbeek, L. Health informatics. In The International Encyclopedia of Health Communication; Wiley: Hoboken, NJ, USA, 2023. [Google Scholar]
- Ranganathan, S.; Gribskov, M.; Nakai, K.; Schonbach, C. (Eds.) Encyclopedia of Bioinformatics and Computational Biology; Elsevier: Amsterdam, The Netherlands, 2019. [Google Scholar]
- Richesson, R.L.; Andrews, J.E.; Hollis, K.F. (Eds.) Clinical Research Informatics, 3rd ed.; Springer: Cham, Switzerland, 2023. [Google Scholar]
- Hubner, U.H.; Wilson, G.M.; Morawski, T.S.; Ball, M.J. (Eds.) Nursing Informatics: A Health Informatics, Interprofessional and Global Perspective, 5th ed.; Springer: Cham, Switzerland, 2022. [Google Scholar]
- Athanasopoulou, K.; Daneva, G.N.; Adamopoulos, P.G.; Scorilas, A. Artificial intelligence: The milestone in modern biomedical research. BioMedInformatics 2022, 2, 727–744. [Google Scholar] [CrossRef]
- Carreras, J.; Kikuti, Y.Y.; Miyaoka, M.; Hiraiwa, S.; Tomita, S.; Ikoma, H.; Kondo, Y.; Ito, A.; Hamoudi, R.; Nakamura, N. The use of the random number generator and artificial intelligence analysis for dimensionality reduction of follicular lymphoma transcriptomic data. BioMedInformatics 2022, 2, 268–280. [Google Scholar] [CrossRef]
- Lotsch, J.; Kringel, D.; Ultsch, A. Explainable artificial intelligence (XAI) in biomedicine: Making AI decisions trustworthy for physicians and patients. BioMedInformatics 2022, 2, 1–17. [Google Scholar] [CrossRef]
- Gashi, M.; Vukovic, M.; Jekic, N.; Thalmann, S.; Holzinger, A.; Jean-Quartier, C.; Jeanquartier, F. State-of-the-art explainability methods with focus on visual analytics showcased by glioma classification. BioMedInformatics 2022, 2, 139–158. [Google Scholar] [CrossRef]
- Egwom, O.J.; Hassan, M.; Tanimu, J.J.; Hamada, M.; Ogar, O.M. An LDA-SVM machine learning model for breast cancer classification. BioMedInformatics 2022, 2, 345–358. [Google Scholar] [CrossRef]
- Hossain, M.S.; Raihan, M.E.; Hossain, M.S.; Syeed, M.M.M.; Rashid, H.; Reza, M.S. Aedes larva detection using ensemble learning to prevent dengue endemic. BioMedInformatics 2022, 2, 405–423. [Google Scholar] [CrossRef]
- Ibrokhimov, B.; Kang, J.-Y. Deep learning model for COVID-19-infected pneumonia diagnosis using chest radiography images. BioMedInformatics 2022, 2, 654–670. [Google Scholar] [CrossRef]
- Eder, M.; Moser, E.; Holzinger, A.; Jean-Quartier, C.; Jeanquartier, F. Interpretable machine learning with brain image and survival data. BioMedInformatics 2022, 2, 492–510. [Google Scholar] [CrossRef]
- Nieminen, P. Application of standardized regression coefficient in meta-analysis. BioMedInformatics 2022, 2, 434–458. [Google Scholar] [CrossRef]
- Andreucci, C.A.; Fonseca, E.M.M.; Jorge, R.N. 3D printing as an efficient way to prototype and develop dental implants. BioMedInformatics 2022, 2, 671–679. [Google Scholar] [CrossRef]
- Riley, R.D.; Moons, K.G.M.; Snell, K.I.E.; Ensor, J.; Hooft, L.; Altman, D.G.; Hayden, J.; Collins, G.S.; Debray, T.P.A. A guide to systematic review and meta-analysis of prognostic factor studies. BMJ 2019, 364, k4597. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Leung, C.K. Biomedical Informatics: State of the Art, Challenges, and Opportunities. BioMedInformatics 2024, 4, 89-97. https://doi.org/10.3390/biomedinformatics4010006
Leung CK. Biomedical Informatics: State of the Art, Challenges, and Opportunities. BioMedInformatics. 2024; 4(1):89-97. https://doi.org/10.3390/biomedinformatics4010006
Chicago/Turabian StyleLeung, Carson K. 2024. "Biomedical Informatics: State of the Art, Challenges, and Opportunities" BioMedInformatics 4, no. 1: 89-97. https://doi.org/10.3390/biomedinformatics4010006
APA StyleLeung, C. K. (2024). Biomedical Informatics: State of the Art, Challenges, and Opportunities. BioMedInformatics, 4(1), 89-97. https://doi.org/10.3390/biomedinformatics4010006