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Abstract: Biomedical informatics can be considered as a multidisciplinary research and educational
field situated at the intersection of computational sciences (including computer science, data science,
mathematics, and statistics), biology, and medicine. In recent years, there have been advances in
the field of biomedical informatics. The current article highlights some interesting state-of-the-art
research outcomes in these fields. These include research outcomes in areas like (i) computational
biology and medicine, (ii) explainable artificial intelligence (XAI) in biomedical research and clinical
practice, (iii) machine learning (including deep learning) methods and application for bioinformatics
and healthcare, (iv) imaging informatics, as well as (v) medical statistics and data science. Moreover,
the current article also discusses some existing challenges and potential future directions for these
research areas to advance the fields of biomedical informatics.
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1. Introduction

Biomedical informatics [1–6] can be considered as a multidisciplinary research and
educational field situated at the intersection of computational sciences (including computer
science, data science, mathematics, and statistics), biology, and medicine. It compresses
sub-fields like bioinformatics [7], clinical informatics [8], imaging informatics, nursing
informatics [9], pharmacy informatics, public health informatics, etc. By incorporating
data-driven scientific approaches, it aims to extract useful information from biomedical
data and transfer the information into knowledge. Here, biomedical data can be extracted
from various application areas of biomedical informatics, computational biology, and
medical care—such as anatomy, biomodelling, cancer biology, evolutionary biology, ge-
nomics, neuroscience, neuropsychiatry, pharmacy and pharmacology, pharmacometrics,
and physiological medicine. Examples of these biomedical data include:

• Biological data, ranging from deoxyribonucleic acid (DNA) sequences and protein
structures to complex cellular processes, for bioinformatics;

• Clinical trial data for clinical informatics;
• X-ray images for imaging informatics;
• Healthcare data—such as electronic health records (EHRs) or electronic medical

records (EMRs)—for public health informatics.

In recent years, there have been advances in biomedical informatics. These include
advancements in bioinformatics, clinical informatics, imaging informatics, public health
informatics, pharmacological data science, as well as data science methodologies in pre-
senting and utilizing biomedical datasets. Given the high volumes of research outcomes
in biomedical informatics, it appears to be impractical to provide an exhaustive list here.
Hence, in this article, we highlight several state-of-the-art research outcomes in the field of
biomedical informatics, and discuss some existing challenges as well as future opportunities.
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2. State of the Art in Biomedical Informatics

In this section, we highlight some interesting state-of-the-art research in the field of
biomedical informatics.

2.1. Computational Biology and Medicine

The application of computational techniques in the realms of biology, biotechnol-
ogy, biomedical research, as well as healthcare and medical practices involves the use
of data analysis, mathematical modelling, and simulation. These methods enable us to
gain insights into intricate biological systems and decipher the molecular foundations
of diseases. The integration of biology, bioinformatics, and computational approaches is
geared towards advancing our comprehension of life processes and elevating the precision
of medical decision making. In recent years, the rapid evolution of experimental method-
ologies aimed at unravelling the intricate complexities of the human genome and proteome
has resulted in an exponential surge of digital information. As a burgeoning field, bioin-
formatics synergizes the realms of computer science, biology, and chemistry. It integrates
artificial intelligence (AI), encompassing machine learning (ML) and artificial neural net-
works (ANNs), and catalyzes transformative breakthroughs in both biological and medical
sciences. The marriage of AI with computer science has not only modernized traditional
medicine, but also heralded a new era in systems biology, promising advancements in drug
discovery strategies and the streamlining of clinical practice.

For instance, Athanasopoulou et al. [10] conducted a comprehensive review that delin-
eates the primary categories of AI and provides an in-depth exploration of the fundamental
principles underpinning widely employed ML, ANNs, and deep learning (DL) approaches.
Furthermore, the review underscores the pivotal role of AI-based methods across various
biological research domains, with a specific focus on their applications in proteomics and
drug design techniques. Beyond the laboratory, the examination extends to the profound
implications of AI in everyday clinical practice and healthcare systems, illuminating its
potential to revolutionize patient care.

In another instance, Carreras et al. [11] predicted the outcomes of 184 untreated
follicular lymphoma patients using gene expression data and AI—in particular, ANNs.
By employing an approach with 120 independent multilayer perceptron (MLP) solutions
generated through random number generation, they ranked 22,215 gene probes based
on their importance in overall survival forecasting. The final ANN architecture included
newly identified predictor genes related to cell processes and integrated the international
prognostic index (IPI) and immune markers.

2.2. Explainable Artificial Intelligence in Biomedical Research and Clinical Practice

The integration of AI systems in biomedical and clinical contexts has the potential to
disrupt the traditional doctor–patient dynamic, a relationship historically rooted in trust
and transparency regarding medical advice and therapeutic choices. As the responsibility
for diagnoses and treatment decisions shifts from human physicians to machine algorithms,
the decision-making process becomes less transparent. ML algorithms—particularly those
employed for skill learning in clinical decision making—rely on examples to fine-tune their
general applicability, such as ANNs and classifiers. Consequently, seeking an explanation
for a decision becomes challenging because these algorithms lack the inherent capacity for
detailed justification. While experts in statistics or computer science might comprehend the
intricate mathematical aspects of AI algorithms, such technical explanations are insufficient
when human lives are at stake. Recognizing this challenge, the concept of explainable AI
(XAI) has garnered increasing attention from both the scientific and regulatory realms. It
aims to provide (i) trustworthiness, (ii) causality, (iii) transferability, (iv) informativeness,
(v) trust, (vi) fairness, (vii) accessibility, (viii) interactivity, and (ix) privacy awareness. The
emphasis lies in ensuring that XAI possesses the capability to offer comprehensive explana-
tions for their decisions, catering to the understanding of domain experts. The necessity for
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transparency becomes paramount, especially in the intricate realm of healthcare, where
decisions profoundly impact individuals’ well-being.

For instance, Lotsch et al. [12] observed a critical requirement that XAI not only makes
decisions, but also provides detailed and comprehensible explanations to experts within
the field. This dual functionality is imperative for fostering trust, maintaining ethical
standards, and addressing concerns surrounding the ethical implications of AI in medical
decision making. As the scientific community delves into the intricacies of AI applications
in healthcare, developing robust explanations for AI decisions emerges as a pivotal aspect
in navigating the evolving landscape of technology-assisted medical practices.

Gashi et al. [13] provided a comprehensive reflection on a curated list of libraries
designed to offer decision support to AI models, with a specific emphasis on supporting
visual explainability and interpretability. The primary objective is to assist practitioners
and researchers in identifying suitable libraries that facilitate a clear understanding of
the decision-making process, particularly in sensitive domains such as medicine, where
transparency is paramount for safe and reliable application. They utilized a glioma classifi-
cation model’s reasoning as a foundational case study, recognizing the critical importance
of visual interpretability in medical applications. The comparison involves an examination
of 11 Python libraries. Notable among these libraries are Shapley Additive Explanations
(SHAP) and Local Interpretable Model-Agnostic Explanations (LIME), well known for their
contributions in visualizing explainability in AI models. The evaluation encompasses four
libraries for global interpretations:

• Dalex;
• ELI5 (‘’Explain Like I’m 5”);
• InterpretML;
• SHAP.

Moreover, the evaluation also encompasses three libraries for local interpretations:

• Dalex;
• InterpretML;
• LIME.

The showcased model not only validates known variations, but also contributes to the
unveiling of lesser-known variations that could serve as potential biomarkers. Their work
underscores the significance of visual explainability tools in enhancing the transparency and
reliability of AI models, especially in critical applications such as medical decision making.

2.3. Machine Learning Methods and Application for Bioinformatics and Healthcare

As a crucial branch of AI, ML (including DL) has garnered significant interest among
researchers in the realms of science and engineering. Its progress is propelled by cutting-
edge hardware and innovative approaches to real-world challenges. Among various
application domains, bioinformatics and healthcare stand out as arenas where ML or DL
can truly unleash their potential. These fields frequently involve extensive data, tackle
mission-critical responsibilities, and hold substantial socioeconomic significance for society.
For example, ML or DL methods leverage ANNs to analyze and interpret intricate biological
data—in particular, addressing diseases like cancer, dengue, and coronavirus disease
2019 (COVID-19). These methods excel in tasks like gene expression analysis, protein
structure prediction, and genomic sequence interpretation in bioinformatics, providing
heightened accuracy and efficiency. In healthcare, ML and DL are instrumental in medical
image analysis, disease diagnosis, drug discovery, and personalized treatment planning.
The capacity of ML or DL models to autonomously learn complex patterns from large
datasets has transformed these fields, offering innovative solutions and advancing our
understanding of biological systems for improved biomedical research and patient care.
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To elaborate, breast cancer is a widespread and serious health concern, underscoring
the importance of early detection for timely treatment. In the realm of bioinformatics
and healthcare, recent strides involve leveraging ML techniques to combat breast cancer.
Traditionally, the extraction of information from data to support clinical diagnosis is a
laborious task. To address this challenge, Egwom et al. [14] adopted ML and feature
extraction methods to revolutionize the breast cancer diagnostic process. Their proposed
ML model for breast cancer classification employs a support vector machine (SVM) for
classification and linear discriminant analysis (LDA) for feature extraction. The model’s
feature extraction performance was assessed using principal component analysis (PCA)
and random forest for classification. Comparative analyses demonstrated the efficacy of the
proposed model, involving a computation of missing values based on classifier accuracy,
precision, and recall. The study conducted evaluations in computing missing values with
the median. Notably, employing LDA-SVM with median-based missing value computation
yielded superior results:

• Achieving 99.2% accuracy, 98.0% recall, and 98.0% precision on the Wisconsin Breast
Cancer (WBCD) dataset;

• Achieving 79.5% accuracy, 76.0% recall, and 59.0% precision on the Wisconsin Prog-
nostic Breast Cancer (WPBC) dataset.

Besides breast cancer, dengue has become a persistent global health concern with a
notable increase in both cases and fatalities over the years. The absence of direct medica-
tions or vaccines necessitates a focus on monitoring and controlling the primary carriers
(Aedes mosquitoes) to curb the endemicity. The current methodology involves collecting
larval samples from breeding sites and manual examination by expert entomologists us-
ing microscopes—which is an arduous, time consuming, and impractical process. Prior
attempts at automated Aedes larvae detection systems lacked the required accuracy and
reliability. To address this challenge, Hossain et al. [15] proposed an automated system
employing ensemble learning, achieving a remarkable accuracy of over 99% even from
low-magnification images. This ensemble learning system surpasses previous methods
in accuracy and demonstrates practical usability, offering a promising advancement in
efficient Aedes larvae detection.

2.4. Imaging Informatics

Imaging informatics has made positive impacts on transforming medical imaging,
facilitating the handling, storage, retrieval, mining, and analysis of extensive imaging
datasets. Incorporating AI and ML algorithms into healthcare imaging serves as a potent
mechanism for identifying abnormalities and aiding healthcare professionals in rendering
more precise diagnoses.

For instance, the precise and early identification of the causes for pneumonia is crucial
for implementing prompt treatment and preventive measures, alleviating the burden of
infections and enhancing intervention strategies. The outbreak of COVID-19 has led to
a surge in new cases of pneumonia and related conditions like acute respiratory distress
syndrome. Chest radiography—commonly known as CXR or X-ray—has emerged as a
crucial diagnostic tool for COVID-19-infected pneumonia in designated healthcare insti-
tutions. The need for swift and reliable pneumonia diagnosis is crucial. To address this
challenge, Ibrokhimov and Kang [16] proposed a computer-aided diagnosis (CAD) system
based on DL for the rapid detection of pneumonia using X-ray images. To enhance clas-
sification accuracy and expedite model conversion, they also leveraged transfer learning
and parallel computing techniques with established DL models like VGG19 (a convolu-
tional neural network (CNN) with 19 layers) and ResNet50 (a deep CNN with 50 layers).
Experimental results underscore the effectiveness of DL models in swiftly and accurately
diagnosing pneumonia using X-ray images. This shows another application of DL methods
for bioinformatics and healthcare in addition to those mentioned in Section 2.3.

Besides X-ray, magnetic resonance imaging (MRI) also aids medical professionals in
decision making. Currently, ML algorithms are commonly employed for this purpose,
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but they often lack transparency in their internal decision processes, making validation
and interpretation challenging. To address these challenges, Eder et al. [17] applied XAI
methods to interpret the decision making of an ML algorithm in the context of predicting
the survival rates of patients with brain tumors based on MRI scans. They employed a CNN
structure, enhancing explainability through Shapley overlays. The resulting overfitting of
some network structures serves as a use case for their interpretation method. The study
demonstrates that network structures can be validated by experts through visualizations,
rendering the decision-making process interpretable. The implementation—available on
GitLab as “XAIforBrainImgSurv” (https://gitlab.com/matte3000/xai-for-brain-img-surv
(accessed on 28 December 2023))—underscores the feasibility of combining explainers with
three-dimensional voxels and emphasizes the role of interpretation in supporting result
evaluation. This shows another application of XAI in biomedical research and clinical
practice in addition to those mentioned in Section 2.2.

2.5. Medical Statistics and Data Science

Medical statistics and data science play a vital role in medical research, clinical trials,
and healthcare decision making. Given the rapid expansion of biomedical informatics
data, the incorporation of sophisticated statistical methods and data science tools has
become essential for extracting meaningful insights from intricate datasets and enhancing
medical practices.

For instance, the persistent issue of inconsistent result presentation in studies ex-
amining the relationship between a quantitative explanatory variable and a quantitative
dependent variable has prompted a long-standing concern in the evaluation of reported
findings. To address this challenge, Nieminen [18] provided a review to elucidate the
procedures for summarizing and synthesizing research outcomes from multivariate models
with a quantitative outcome variable. Specifically, the review outlines the application of the
standardized regression coefficient as an effect size index in the context of meta-analysis,
detailing how it can be estimated and converted from data presented in original research
articles. An illustrative synthesis example is provided, focusing on research articles in-
vestigating the link between childhood body mass index (BMI) and carotid intima-media
thickness (cIMT) in adult life.

Moreover, medical statistics and data science also play a role in the production of
innovative implants. Through additive manufacturing, it represents a significant domain
within the medical field—particularly, in the context of individualized, serial production.
Meeting the demands of personalized healthcare necessitates expedited delivery of implants
to healthcare facilities. The comprehensive manufacturing process, encompassing activities
such as 3D drawing data generation, imaging techniques, 3D printing, and post-processing,
typically spans a week. This duration is notably applicable to high-risk Class III implants
(e.g., dental implant) requiring specialized equipment and a validated premarket approval
(PMA) process (cf. low- or moderate-risk Class I biomedical device that requires general
controls, moderate- or high-risk Class II biomedical device that requires special controls).
For instance, Andreucci et al. [19] outlined the development of a biomechanical model for
dental implants, from conceptualization and patenting to the creation of a final product
ready for additive manufacturing. They also discussed the advantages and constraints
associated with using titanium metal printing for dental implant prototypes.

3. Challenges and Opportunities in Biomedical Informatics

In this section, we discuss some challenges and potential future directions in the field
of biomedical informatics.

3.1. Computational Biology and Medicine

Despite the widespread excitement surrounding the integration of AI in biomedical
informatics, several significant challenges persist. For example, the precision and effective-

https://gitlab.com/matte3000/xai-for-brain-img-surv
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ness of ML algorithms hinge on the quality and quantity of training datasets, with issues
like “overfitting” arising when algorithms memorize noise from restricted datasets.

Additionally, the “opaque-box problem” (also known as the black-box problem) in DL
poses a major concern, as it obstructs the understanding of the decision-making process
within algorithms, limiting their interpretability. Efforts are being made to develop more
XAI models. However, challenges persist—particularly in computer vision, robotics, and
natural language processing (NLP) due to data shortages, technical requirements, and
linguistic complexities. Beyond technical challenges, social and legal challenges (such as
ethical concerns, privacy protection, biases, and accountability) underscore the need for
rigorous validation and regulatory approval. Despite the promising convergence of AI and
biomedical informatics, the journey ahead can be complex as it is marked by numerous
obstacles requiring careful consideration and resolution.

3.2. Explainable Artificial Intelligence in Biomedical Research and Clinical Practice

It was observed that exclusively expecting interpretability from statisticians who
are involved in medical decision making may be limited. Similar to how AI-specific
terms may be perplexing to biomedical experts, biomedical terms and methods can be
equally incomprehensible to non-biomedical experts. Despite the fact that the medical
environment is regarded as the home of professional field for medical experts, the growing
integration of AI necessitates a reciprocal understanding, urging biomedical researchers,
medical professionals, and clinical practitioners to familiarize themselves with each other’s
disciplines. It calls for a shared opportunity for biomedical informatics experts to establish
a common language of terms and concepts for mutual discussion, enabling each expert to
elucidate their field to the other and collaboratively convey this understanding to the patient.
In essence, just as CD19—which stands for Cluster of Differentiation 19—as molecules
in a type of white blood cells called B lymphocytes (aka B cells) may be unfamiliar to a
computer scientist, SVM—which stands for support vector machine—might be obscure to
a biomedical researcher or clinical practitioner, emphasizing the joint effort required for
effective communication and knowledge exchange between disciplines.

For some of the tasks involved in biomedical research and clinical practice (e.g., the
classification of biomarkers), future opportunities might involve considering the specific
types of mutation by incorporating diverse mutations as distinct features. Furthermore,
an integration of data from diverse sources could encompass additional subclasses or
clinical features, with the inclusion of survival prediction or clustering approaches to gain
insights into signaling pathways. Future opportunities may also encompass performance
experiments for more detailed insights into requirements and recommendations. Ulti-
mately, leveraging open data, providing an open-source implementation, prioritizing user
friendliness, and demonstrating the application of XAI to real scientific problems has the
potential to contribute significantly to the realms of biomedical research, clinical practice,
and beyond.

In situations where AI decisions significantly impact lives, it is imperative to employ
knowledge-based AI. For applications in fields like medicine, where the decisions need to be
comprehensible to professionals, the use of AI methods should be confined to systems that
are understandable. These systems should offer a causal and logical derivation of decisions
from multivariate data, using the terminology and methods of medical decision making,
thereby incorporating a formal representation of knowledge which is comprehensible to
humans. This perspective aligns with XAI, emphasizing transparency in computational
decisions that can be effectively communicated to medical staff and patients. Future
opportunities include further enhancements to (i) trustworthiness, (ii) causality, (iii) trans-
ferability, (iv) informativeness, (v) trust, (vi) fairness, (vii) accessibility, (viii) interactivity,
and (ix) a privacy awareness of XAI.
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3.3. Machine Learning Methods and Application for Bioinformatics and Healthcare

Recall from Section 2.3 that Egwom et al. [14] used LDA for feature extraction. Future
opportunities include an exploration of other feature extraction techniques (e.g., indepen-
dent component analysis).

Recall from the same section that Hossain et al. [15] demonstrated the use of DL
methods in bioinformatics and healthcare applications for detecting dengue. A future
opportunity includes further reduction in the implementation cost (e.g., using smartphones
instead of computers and digital cameras with a microlens). This reduction would increase
practicality, cost effectiveness, accessibility, and adaptability. Another future opportu-
nity is to apply or adapt DL methods in other applications such as detecting Zika and
Chikungunya diseases.

3.4. Imaging Informatics

Besides applying ML models on X-ray images, it is also imperative to explore the
diagnostic performance when applying ML models on MRI and CT (computed tomogra-
phy) scan modalities, and to conduct relevant experiments to assess their efficacy. Future
opportunities also include the employment of parallel computing for data distribution
between child nodes to expedite the training process, as well as an incorporation of both
data-distributed and model-distributed computing mechanisms for enhanced training
acceleration. Network architectures that are more tailored and specifically designed for
the analysis of a specific image type (X-ray, MRI, or CT) are also desired. The resulting
architectures can be used to investigate SHAP interpretations based on different image
modalities. Furthermore, there are opportunities to refine the ML or DL models by inte-
grating heterogeneous data from multiple sources.

3.5. Medical Statistics and Data Science

In the area of medical statistics and data science, Riley et al. [20] identified some
challenges in the meta-analysis of multivariable findings. Future opportunities include
solutions to address these challenges:

• Diverse types of effect measures (e.g., correlation coefficients, regression coefficients,
risk ratios, odds ratios, and mean differences) that may not be directly comparable.

• Estimates lacking standard errors, posing an issue as meta-analysis methods typically
rely on study weights determined by their standard errors.

• Estimates pertaining to different time points of outcome occurrence or measurement.
• Variety in methods of measurement for explanatory variables and outcomes.
• Diverse sets of adjustment factors.
• Various approaches to handling continuous explanatory variables (e.g., categorization,

linear or non-linear trends, log-transforms), including the selection of cut-point values
when dichotomizing continuous values into “high” and “normal” groups.

Moreover, to address the challenge whereby covariates in multiple regression models
can be different across studies, a suggested solution is to conduct meta-analyses only on
estimates adjusted for at least a predefined core set of established covariates, defined in
consultation with experts. Separate meta-analyses can then be conducted for unadjusted
and adjusted prognostic effect estimates.

Furthermore, when conducting a meta-analysis, a challenge arises from insufficiently
reported data in evaluated articles, hindering the computation of effect size estimates.
Articles often lack detailed descriptive statistics and may not provide standard errors for
regression coefficients, limiting their use in systematic reviews. The validity and practical
utility of observational research depends on good study design, appropriate analysis
methods, and high-quality reporting. To address the aforementioned challenges, future
opportunities include the development of guidance documents for data presentation and
the promotion of a more structured framework in scientific reporting. Examples can be
presented through attached tables and figures with descriptive statistics for response and
explanatory variables, aiding researchers in summarizing and meta-analyzing effects. With
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the worry that these challenges may intensify with the application of ML methods (which
typically lack interpretable effect sizes for clinicians), there are future opportunities—as
mentioned in Section 3.2—to enhance XAI in biomedical research and clinical practice.

4. Conclusions

In this article, we highlighted some interesting state-of-the-art research in the field of
biomedical informatics. Several interesting research outcomes from these areas include:
(i) computational biology and medicine, (ii) explainable artificial intelligence (XAI) in
biomedical research and clinical practice, (iii) machine learning (including deep learn-
ing) methods and application for bioinformatics and healthcare, (iv) imaging informatics,
and (v) medical statistics and data science. Moreover, we also discussed some existing
challenges and potential future directions for these research areas in the field of biomedi-
cal informatics.
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