Deciphering the Mosaic of Therapeutic Potential: A Scoping Review of Neural Network Applications in Psychotherapy Enhancements
Abstract
:1. Introduction
1.1. Psychotherapeutic Interventions
1.2. Common Factors across Psychotherapeutic Approaches
1.3. Artificial Intelligence in the Field of Psychotherapy
1.4. Objectives and Hypotheses
2. Materials and Methods
2.1. Search Strategies
2.2. Study Eligibility
2.3. Data Extraction
2.4. Quality Assessment
3. Results
3.1. Description of Studies
3.2. Applications of Neural Networks in Psychotherapy
3.2.1. Predicting Patients’ Psychotherapeutic Outcomes
3.2.2. Content Analysis
3.2.3. Automated Categorization of Psychotherapeutic Interactions
3.2.4. Quality of the Evidence
4. Discussion
4.1. Main Findings
4.2. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Neural Networks | Psychotherapy | |
---|---|---|
EMBASE | X | psychotherapy/OR psychology |
MEDLINE | X | Psychology Services, Psychology/or Psychotherapy, Psychiatric |
APA | Neural networks/artificial intelligence | psychotherapy/or psychiatry/or mental health/ |
CINHAL | X | |
Free vocabulary | (Neural networks OR machine learning OR deep learning OR artificial intelligence) N3 (Neural OR neuron OR networks OR computer science OR deep OR natural language processing) | (psychotherapy OR psychology) N2 (interventions* OR treatment* OR psychoed* OR psychology* OR psychiatry* OR psych*) |
References
- Marks, S. Psychotherapy in historical perspective. Hist. Human Sci. 2017, 30, 3–16. [Google Scholar] [CrossRef]
- Kazdin, A.E. Understanding how and why psychotherapy leads to change. Psychother. Res. 2009, 19, 418–428. [Google Scholar] [CrossRef]
- Bargh, J.A.; Morsella, E. The Unconscious Mind. Perspect. Psychol. Sci. 2008, 3, 73–79. [Google Scholar] [CrossRef]
- Solobutina, M.M.; Miyassarova, L.R. Dynamics of Existential Personality Fulfillment in the Course of Psychotherapy. Behav. Sci. 2019, 10, 21. [Google Scholar] [CrossRef]
- Imel, Z.E.; Wampold, B.E. The importance of treatment and the science of common factors in psychotherapy. Handb. Couns. Psychol. 2008, 4, 249–266. [Google Scholar]
- Kennedy, S.H.; Lam, R.W.; McIntyre, R.S.; Tourjman, S.V.; Bhat, V.; Blier, P.; Hasnain, M.; Jollant, F.; Levitt, A.J.; MacQueen, G.M.; et al. Canadian Network for Mood and Anxiety Treatments (CANMAT) 2016 Clinical Guidelines for the Management of Adults with Major Depressive Disorder: Section 3. Pharmacological Treatments. Can. J. Psychiatry 2016, 61, 540–560. [Google Scholar] [CrossRef]
- Roth, A.; Fonagy, P. What Works for Whom?: A Critical Review of Psychotherapy Research; Guilford Publications: New York, NY, USA, 2006. [Google Scholar]
- Lincoln, T.M.; Pedersen, A. An Overview of the Evidence for Psychological Interventions for Psychosis: Results from Meta-Analyses. Clin. Psychol. Eur. 2019, 1, 1–23. [Google Scholar] [CrossRef]
- Bergin, A.E.; Garfield, S.L. Handbook of Psychotherapy and Behavior Change; Wiley: Hoboken, NJ, USA, 1994; p. 866. [Google Scholar]
- Garfield, S.L.; Bergin, A.E.; Dryden, W. Handbook of psychotherapy and behavior change. J. Cogn. Psychother. 1987, 1, 264–265. [Google Scholar] [CrossRef]
- Barkham, M.; Lambert, M.J. The efficacy and effectiveness of psychological therapies. In Bergin and Garfield’s Handbook of Psychotherapy and Behavior Change: 50th Anniversary Edition, 7th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2021; pp. 135–189. [Google Scholar]
- Linden, M.; Schermuly-Haupt, M.L. Definition, assessment and rate of psychotherapy side effects. World Psychiatry 2014, 13, 306–309. [Google Scholar] [CrossRef]
- Strauss, B.; Gawlytta, R.; Schleu, A.; Frenzl, D. Negative effects of psychotherapy: Estimating the prevalence in a random national sample. BJPsych Open 2021, 7, E186. [Google Scholar] [CrossRef]
- Nahum, D.; Alfonso, C.A.; Sönmez, E. Common Factors in Psychotherapy. In Advances in Psychiatry; Javed, A., Fountoulakis, K.N., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 471–481. [Google Scholar]
- Fisher, H.; Atzil-Slonim, D.; Bar-Kalifa, E.; Rafaeli, E.; Peri, T. Emotional experience and alliance contribute to therapeutic change in psychodynamic therapy. Psychotherapy 2016, 53, 105–116. [Google Scholar] [CrossRef]
- Wampold, B.E. How important are the common factors in psychotherapy? An update. World Psychiatry 2015, 14, 270–277. [Google Scholar] [CrossRef]
- Hyland, M.E. A reformulated contextual model of psychotherapy for treating anxiety and depression. Clin. Psychol. Rev. 2020, 80, 101890. [Google Scholar] [CrossRef]
- Cook, S.C.; Schwartz, A.C.; Kaslow, N.J. Evidence-Based Psychotherapy: Advantages and Challenges. Neurotherapeutics 2017, 14, 537–545. [Google Scholar] [CrossRef]
- Tahan, M. Artificial Intelligence applications and psychology: An overview. Neuropsychopharmacol. Hung. 2019, 21, 119–126. [Google Scholar] [CrossRef]
- Gual-Montolio, P.; Jaén, I.; Martínez-Borba, V.; Castilla, D.; Suso-Ribera, C. Using Artificial Intelligence to Enhance Ongoing Psychological Interventions for Emotional Problems in Real- or Close to Real-Time: A Systematic Review. Int. J. Environ. Res. Public Health 2022, 19, 7737. [Google Scholar] [CrossRef]
- Horn, R.L.; Weisz, J.R. Can Artificial Intelligence Improve Psychotherapy Research and Practice? Adm. Policy Ment. Health 2020, 47, 852–855. [Google Scholar] [CrossRef]
- Rocheteau, E. On the role of artificial intelligence in psychiatry. Br. J. Psychiatry 2023, 222, 54–57. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Yang, G.R.; Wang, X.J. Artificial Neural Networks for Neuroscientists: A Primer. Neuron 2020, 107, 1048–1070. [Google Scholar] [CrossRef]
- McGowan, J.; Straus, S.; Moher, D.; Langlois, E.V.; O’Brien, K.K.; Horsley, T.; Aldcroft, A.; Zarin, W.; Garitty, C.M.; Hempel, S.; et al. Reporting scoping reviews—PRISMA ScR extension. J. Clin. Epidemiol. 2020, 123, 177–179. [Google Scholar] [CrossRef]
- Guyatt, G.; Oxman, A.D.; Akl, E.A.; Kunz, R.; Vist, G.; Brozek, J.; Norris, S.; Falck-Ytter, Y.; Glasziou, P.; DeBeer, H.; et al. GRADE guidelines: 1. Introduction-GRADE evidence profiles and summary of findings tables. J. Clin. Epidemiol. 2011, 64, 383–394. [Google Scholar] [CrossRef]
- Gori, A.; Lauro-Grotto, R.; Giannini, M.; Schuldberg, D. Predicting treatment outcome by combining different assessment tools: Toward an integrative model of decision support in psychotherapy. J. Psychother. Integr. 2010, 20, 251–269. [Google Scholar] [CrossRef]
- Nitti, M.; Ciavolino, E.; Salvatore, S.; Gennaro, A. Analyzing psychotherapy process as intersubjective sensemaking: An approach based on discourse analysis and neural networks. Psychother. Res. 2010, 20, 546–563. [Google Scholar] [CrossRef]
- Koppe, G.; Guloksuz, S.; Reininghaus, U.; Durstewitz, D. Recurrent Neural Networks in Mobile Sampling and Intervention. Schizophr. Bull. 2019, 45, 272–276. [Google Scholar] [CrossRef]
- Ewbank, M.P.; Cummins, R.; Tablan, V.; Bateup, S.; Catarino, A.; Martin, A.J.; Blackwell, A.D. Quantifying the Association between Psychotherapy Content and Clinical Outcomes Using Deep Learning. JAMA Psychiatry 2020, 77, 35–43. [Google Scholar] [CrossRef]
- Burger, F.; Neerincx, M.A.; Brinkman, W.P. Natural language processing for cognitive therapy: Extracting schemas from thought records. PLoS ONE 2021, 16, e0257832. [Google Scholar] [CrossRef]
- Bennemann, B.; Schwartz, B.; Giesemann, J.; Lutz, W. Predicting patients who will drop out of out-patient psychotherapy using machine learning algorithms. Br. J. Psychiatry 2022, 220, 192–201. [Google Scholar] [CrossRef]
- Chen, M.; Liang, X.; Xu, Y. Construction and Analysis of Emotion Recognition and Psychotherapy System of College Students under Convolutional Neural Network and Interactive Technology. Comput. Intell. Neurosci. 2022, 2022, 5993839. [Google Scholar] [CrossRef]
- Rodrigo, H.; Beukes, E.W.; Andersson, G.; Manchaiah, V. Predicting the Outcomes of Internet-Based Cognitive Behavioral Therapy for Tinnitus: Applications of Artificial Neural Network and Support Vector Machine. Am. J. Audiol. 2022, 31, 1167–1177. [Google Scholar] [CrossRef]
- Drayton, M. The Minnesota Multiphasic Personality Inventory-2 (MMPI-2). Occup. Med. 2009, 59, 135–136. [Google Scholar] [CrossRef]
- Basaraba, C.N.; Scodes, J.M.; Dambreville, R.; Radigan, M.; Dachepally, P.; Gu, G.; Wang, R.; Dixon, L.B.; Wall, M.M. Prediction Tool for Individual Outcome Trajectories Across the Next Year in First-Episode Psychosis in Coordinated Specialty Care. JAMA Psychiatry 2023, 80, 49–56. [Google Scholar] [CrossRef]
- Coley, R.Y.; Jennifer, M.B.; Arne, B.; Gregory, E.S. Predicting outcomes of psychotherapy for depression with electronic health record data. J. Affect. Disord. Rep. 2021, 6, 100198. [Google Scholar] [CrossRef]
- Chekroud, A.M.; Bondar, J.; Delgadillo, J.; Doherty, G.; Wasil, A.; Fokkema, M.; Cohen, Z.; Belgrave, D.; DeRubeis, R.; Iniesta, R.; et al. The promise of machine learning in predicting treatment outcomes in psychiatry. World Psychiatry 2021, 20, 154–170. [Google Scholar] [CrossRef]
- Lutz, W.; Zimmermann, D.; Müller, V.N.L.S.; Deisenhofer, A.-K.; Rubel, J.A. Randomized controlled trial to evaluate the effects of personalized prediction and adaptation tools on treatment outcome in outpatient psychotherapy: Study protocol. BMC Psychiatry 2017, 17, 306. [Google Scholar] [CrossRef]
- Yin, Z.; Sulieman, L.M.; Malin, B.A. A systematic literature review of machine learning in online personal health data. J. Am. Med. Inform. Assoc. 2019, 26, 561–576. [Google Scholar] [CrossRef]
- Rezaeenour, J.; Ahmadi, M.; Jelodar, H.; Shahrooei, R. Systematic review of content analysis algorithms based on deep neural networks. Multimed. Tools Appl. 2023, 82, 17879–17903. [Google Scholar] [CrossRef]
- Gottschalk, L.A. The application of computerized content analysis of natural language in psychotherapy research now and in the future. Am. J. Psychother. 2000, 54, 305–311. [Google Scholar] [CrossRef]
- Lu, X. Deep Learning Based Emotion Recognition and Visualization of Figural Representation. Front. Psychol. 2021, 12, 818833. [Google Scholar] [CrossRef]
- Hudon, A.; Beaudoin, M.; Phraxayavong, K.; Dellazizzo, L.; Potvin, S.; Dumais, A. Use of Automated Thematic Annotations for Small Data Sets in a Psychotherapeutic Context: Systematic Review of Machine Learning Algorithms. JMIR Ment. Health 2021, 8, e22651. [Google Scholar] [CrossRef]
- Hudon, A.; Beaudoin, M.; Phraxayavong, K.; Dellazizzo, L.; Potvin, S.; Dumais, A. Implementation of a machine learning algorithm for automated thematic annotations in avatar: A linear support vector classifier approach. Health Inform. J. 2022, 28, 14604582221142442. [Google Scholar] [CrossRef] [PubMed]
- Hossain, E.; Rana, R.; Higgins, N.; Soar, J.; Barua, P.D.; Pisani, A.R.; Turner, K. Natural Language Processing in Electronic Health Records in relation to healthcare decision-making: A systematic review. Comput. Biol. Med. 2023, 155, 106649. [Google Scholar] [CrossRef] [PubMed]
Article | Population | Neural Network | Intervention | Metrics Used | Main Outcome | Quality Assessment |
---|---|---|---|---|---|---|
(Gori et al., 2010) [27] | Patients who requested psychotherapeutic treatment (n = 150) | Artificial Neural Networks | Predict treatment outcome | Italian version of the MMPI-2 | ANN forecasted 81% of the clinical outcomes (successful/unsuccessful therapy) | Low |
(Nitti et al., 2010) [28] | Patient who followed a psychodynamic psychotherapy (n = 1) | Discourse Flow Analysis | Analysis of the verbatim of 43 sessions of therapy | Indexes of discourse network (connectivity, activity, and regulation) | Neural networks allow us the identification of patterns characterizing the psychotherapy process. | Very low |
(Koppe et al., 2019) [29] | Experiences and context specific interventions for psychosis. (n = n/a) | Recurrent Neural Networks | Mobile sampling for prediction of symptoms | None | RNNs could be used to forecast individual trajectories and schedule online feedback and interventions. | Very low |
(Ewbank et al., 2020) [30] | Patients who followed internet-enabled CBT (n = 13,073) | Bidirectional LSTM | Automated categorization of therapist utterances | PHQ-9, GAD-7 | The model achieved acceptable categorization and has reached human-level agreement. | Moderate |
(Burger et al., 2021) [31] | Healthy participants (n = 320) | Recurrent Neural Networks | Identifying schemas (derived from schema therapy) from thought records. | HDAS, BDI-IA, CDS | Schemas can be automatically extracted, and NNs perform better than KNN and support vector approaches. | Low |
(Bennemann et al., 2022) [32] | Outpatients treated with CBT (n = 2543) | Ensemble modeling using several machine learning algorithms (including artificial neural networks) | Predicting the drop-out rates of patients | PSSI, BSI | Neural networks were identified to be less suited to predict naturalistic data-sets and binary events. | Moderate |
(Chen et al., 2022) [33] | Students who followed human–computer interaction psychotherapy (n = 120) | Convolutional Neural Networks | Recognizing emotions based on the human–computer interaction | Kaggle facial emotion recognition dataset | Convolutional neural networks are better to recognize student emotions than backpropagation neural network and decision tree algorithms. | Low |
(Rodrigo et al., 2022) [34] | Individuals who completed internet-enabled CBT for tinnitus (n = 228) | Artificial Neural Networks | Predicting the treatment outcome by determining variables associated with treatment success. | TFI | The best predictive model was achieved by the artificial neural network with an area under the curve with a value of 0.73 over 33 predictor variables. | Low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hudon, A.; Aird, M.; La Haye-Caty, N. Deciphering the Mosaic of Therapeutic Potential: A Scoping Review of Neural Network Applications in Psychotherapy Enhancements. BioMedInformatics 2023, 3, 1101-1111. https://doi.org/10.3390/biomedinformatics3040066
Hudon A, Aird M, La Haye-Caty N. Deciphering the Mosaic of Therapeutic Potential: A Scoping Review of Neural Network Applications in Psychotherapy Enhancements. BioMedInformatics. 2023; 3(4):1101-1111. https://doi.org/10.3390/biomedinformatics3040066
Chicago/Turabian StyleHudon, Alexandre, Maxine Aird, and Noémie La Haye-Caty. 2023. "Deciphering the Mosaic of Therapeutic Potential: A Scoping Review of Neural Network Applications in Psychotherapy Enhancements" BioMedInformatics 3, no. 4: 1101-1111. https://doi.org/10.3390/biomedinformatics3040066
APA StyleHudon, A., Aird, M., & La Haye-Caty, N. (2023). Deciphering the Mosaic of Therapeutic Potential: A Scoping Review of Neural Network Applications in Psychotherapy Enhancements. BioMedInformatics, 3(4), 1101-1111. https://doi.org/10.3390/biomedinformatics3040066